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Administrative

This class is being recorded

Problem set #8 is due Dec. 1 at midnight.

Problem set #7 solutions are available.



Quantum Timelines
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Today’s quantum computers have ~100 qubits (= quantum bits).

Cryptographic algorithms probably require on the order of 
1 million high-fidelity qubits.

How long will this take?

The IBM Quantum roadmap says that they will have 4,000 
qubit devices in 2025.

It’s certainly possible that quantum computers will be a threat to 
cryptographic systems in 20 years.

So we need protection against quantum computation for 
any protocol likely to last that long and for anything that 
needs to stay secret for that long.



Quantum Algorithms for Crypto
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Shor’s algorithm: Solves factoring and discrete log efficiently.  
(The time is limited by the time to perform modular 
exponentiation.)

Consequence: RSA and Diffie-Hellman (including with 
elliptic curves) are insecure against a quantum computer.

Grover’s algorithm: Speeds up exhaustive search from  to 
.

O(N)
O( N)

Consequence: AES and other symmetric cryptosystems 
need to double key lengths to retain the same level of 
security against a quantum computer.

Collision-finding: Instead of a birthday attack needing  
hash function evaluations, needs .

O( N)
O(N1/3)

Consequence: Hash functions need to increase output 
lengths by x1.5 to retain the same level of security against a 
quantum computer.



Post-Quantum Cryptography
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RSA and Diffie-Hellman are insecure against quantum computers,
so we need new public-key encryption protocols or KEMs and 
new digital signature schemes.

We need protocols whose security is based on different 
algorithms which can’t be broken by known quantum 
algorithms.

Note: The security of these new cryptographic protocols has not 
been studied as much as RSA/Diffie-Hellman, so it is more likely 
that there is an undiscovered classical or quantum attack against 
them.  But at least we don’t know how to break them on a 
quantum computer.

Another reason to study these protocols now is to give 
more time to try to break them before they are in 
widespread use.



Current Status
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NIST is running a competition for post-quantum cryptography.  
Currently: 

• One KEM protocol and three digital signature protocols 
selected to become standards.

• Four public key encryption/KEM protocols selected for 
Round 4 for further study.
• However, one of these four was broken after being 

selected for Round 4.
• A new call for additional signature protocols has been 

issued with a goal of diversifying the types of protocols to 
standardize.

The goal is not to choose a single standard but rather a portfolio 
of possible protocols considered secure.

Security and efficiency are both important for this contest.



Encryption/KEM Options
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Selected for standardization: Crystals-Kyber, which is based on 
lattice problems, specifically the learning-with-errors (LWE) 
problem.

Still under consideration: BIKE, Classic McEliece, and HQC, 
which are all based on error-correcting codes.  The math is fairly 
similar to lattice problems.

The idea of error-correcting code protocols is older 
(Classic McEliece is an evolution of a 1978 proposal), and 
their security is therefore better understood.  However, 
lattice-based schemes are more efficient and easier to use 
to give protocols with additional properties (such as 
homomorphic encryption).



Matrices and Vectors
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We will need just the most basic elements of linear algebra to 
discuss lattice-based encryption protocols.

A matrix M is an  array of numerical (or variable) entries, 
with  the entry in the ith row and jth column.

m × n
Mij

A vector  is a list of n numerical (or variable) entries, with  
the ith entry.  There is a standard graphical representation of 
vectors with n entries as coordinates in n-dimensional space.

v vi

Matrix times a vector is a vector: .

Vector times a matrix is a vector: .

Dot product between 2 vectors is a number: .

(Mv)i = ∑
j

Mijvj

(vTM)j = ∑
i

viMij

v ⋅ w = vTw = ∑
i

viwi

vTMw = v ⋅ (Mw) = ∑
ij

viMijwj



Lattices
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A lattice is a regular array of points, integer combinations of 
some set of vectors. 

L = {∑
i

sivi |si ∈ ℤ}
Examples:

v1

v2 v2

v1



Alternate Generating Sets
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v1

v2

v′ 1

v′ 2

The same lattice can be generated by different sets of vectors.

In this example,  and .  Also, v′ 1 = 2v1 + v2 v′ 2 = v1 + v2

 and .v1 = v′ 1 − v′ 2 v2 = 2v′ 2 − v′ 1

Note that some sets of vectors 
might generate a sublattice instead.



Shortest Vector in a Lattice

v′ 1

v′ 2
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In this example, notice that the shortest 
vectors in the lattice are  and , 
which are not part of the generating set.

v1 v2

With a high-dimensional lattice, looking at different integer linear 
combinations of generating vectors to find the shortest vector(s) 
is a challenging problem.

Depending on the properties of the lattice and whether we want 
to find the absolutely smallest vector or merely one that is an 
approximation to the smallest vector, this problem can be 
computationally hard (including against quantum algorithms), up 
to and including NP-hard.



Closest Lattice Vector

v′ 1

v′ 2
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w

Given  which is not in the lattice, which 
lattice vector is it closest to?

w



Closest Lattice Vector

v′ 1

v′ 2
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w

Given  which is not in the lattice, which 
lattice vector is it closest to?

w

In this example,  is closest to .w v′ 1 + v′ 2



Closest Lattice Vector

v′ 1

v′ 2
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w

Given  which is not in the lattice, which 
lattice vector is it closest to?

w

In this example,  is closest to .w v′ 1 + v′ 2

Again, with a high-dimensional lattice, this problem can be 
computationally hard, depending on properties of the lattice.

We can think of  as being of the form , where  is a lattice 
vector and  is a short vector not in the lattice.

w v + e v
e



Closest Lattice Vector

v′ 1

v′ 2
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w

Given  which is not in the lattice, which 
lattice vector is it closest to?

w

In this example,  is closest to .w v′ 1 + v′ 2

Again, with a high-dimensional lattice, this problem can be 
computationally hard, depending on properties of the lattice.

We can think of  as being of the form , where  is a lattice 
vector and  is a short vector not in the lattice.

w v + e v
e

Note: If  is in the lattice, finding which vector it is can be done 
easily using linear algebra.

w



Lattice Vectors and Matrices

v′ 1

v′ 2

We can write an arbitrary element of the lattice in the form
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v = As

where A is a matrix where the ith column is the generating 
vector  and s is the vector of coefficients.vi

v

Example: Here,

A = (1 1
2 1) s = (1

1)
so

v = As = (2
3)



Learning With Errors
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The Learning With Errors (LWE) problem is to solve the closest 
lattice vector problem with some distribution over  and , but 
with arithmetic mod q.

s e

Specifically: Given matrix A, vector , find  such thatw s
As + e = w mod q

for some “small” .e

Decisional LWE: Determine if  is uniformly random or if it was 
generated as 

w

As + e = w mod q
for some “small” .e

LWE and decisional LWE are of equivalent difficulty.



LWE Encryption
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Gen: Bob chooses a random  matrix A, an n-dimensional 
vector  according to , and an m-dimensional vector  
according to .  Let .  The public key is  
and the private key is .

m × n
s ψ e

ψ w = As + e mod q (A, w)
s

Fixed protocol parameters: m, n, and q, as well as a distribution  
of short vectors.

ψ

Enc: Given public key , to encrypt a single bit b, Alice 
chooses an m-dimensional vector  according to , an n-
dimensional vector  according to , and a number x according 
to .   The ciphertext is , with

(A, w)
r ψ

f ψ
ψ (c, c′ )

cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q



LWE Decryption
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Dec: Given private key  and ciphertext , Bob computess (c, c′ )
k = (c′ − c ⋅ s) mod q

Then Bob determines if k is close to 0, in which case Dec 
outputs b=0, or if k is close to , in which case Dec outputs 
b=1.

⌊q/2⌋

Here we consider k to be close to 0 if it is slightly larger than 
0 or slightly less than q (which can also be interpreted as 
being a negative number of small absolute value).



LWE Correctness
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Recall: 

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q



LWE Correctness
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Recall: 

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q



LWE Correctness

This class is being recorded

Recall: 

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q

and 
c ⋅ s = (rT A + fT)s = rT As + f ⋅ s mod q



LWE Correctness
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Recall: 

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q

and 
c ⋅ s = (rT A + fT)s = rT As + f ⋅ s mod q

k = (c′ − c ⋅ s) mod q
= b⌊q/2⌋ + (x + r ⋅ e − f ⋅ s) mod q

so



LWE Correctness
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Recall: 

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q

and 
c ⋅ s = (rT A + fT)s = rT As + f ⋅ s mod q

k = (c′ − c ⋅ s) mod q
= b⌊q/2⌋ + (x + r ⋅ e − f ⋅ s) mod q

so

All quantities in the parentheses in the last line are “small,” so k 
will either be close to 0 or to q/2, and will be decoded correctly.



LWE Example: Gen
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Let q = 101, m = n = 3.

A =
63 52 64
17 37 86
38 28 25

Suppose Bob picks
s = (

0
0
2) e = (

−2
−2
0 )

Then

w = As + e mod 101 =
63 52 64
17 37 86
38 28 25 (

0
0
2) + (

−2
−2
0 ) =

25
69
50

Public key:
A =

63 52 64
17 37 86
38 28 25

, w =
25
69
50

Private key: s = (
0
0
2)



LWE Example: Enc

Public key:
A =

63 52 64
17 37 86
38 28 25

, w =
25
69
50

Message bit: b=1

Alice chooses
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r = (
2

−2
1 ) f = (

−1
−1
2 ) x = 1

Ciphertext: , with(c, c′ )

c = Ar + f mod 101 =
63 17 38
52 37 28
64 86 25 (

2
−2
1 ) + (

−1
−1
2 ) =

28
57
84

c′ = r ⋅ w + x + b⌊q/2⌋ mod 101 = (
2

−2
1 ) ⋅

25
69
50

+ 51 = 13



LWE Example: Dec

Ciphertext: c =
28
57
84

, c′ = 13

Private key: s = (
0
0
2)

Bob calculates
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k = (c′ − c ⋅ s) mod 101 = 13 −
28
57
84

⋅ (
0
0
2) = 13 − 164 = 51

This is close to 50 and far from 0, so Bob decodes the message 
b=1.



LWE Security
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This LWE-based encryption system is CPA-secure provided the 
LWE problem is hard.  The LWE problem is in turn equivalent to 
the worst-case hardness of some of the lattice problems we 
discussed earlier, but not unfortunately for the NP-hard choices 
of lattice parameters.

Still, we don’t know how to break the LWE assumption or 
protocol even with a quantum computer.

Note: This is a case where the average-case hardness that shows 
up in the cryptosystem is equivalent to worst-case hardness of a 
cleaner problem.  This is a relatively strong security “proof.”

Crystals-Kyber uses LWE with coefficients over rings 
instead of mod q.



Post-Quantum Signatures
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Lattice problems and LWE can also be used to create digital 
signature protocols secure against known quantum algorithms.

An alternative approach uses essentially hash functions and 
Merkle trees.

Selected in the NIST contest:

Crystals-Dilithium and FALCON are two lattice-based 
signature schemes.

SPHINCS+ is a hash-function-based signature scheme.




