
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 25
Daniel Gottesman

Administrative

This class is being recorded

Problem set #8 is due Dec. 1 at midnight.

Problem set #7 solutions are available.

Quantum Timelines

This class is being recorded

Today’s quantum computers have ~100 qubits (= quantum bits).

Cryptographic algorithms probably require on the order of
1 million high-fidelity qubits.

How long will this take?

The IBM Quantum roadmap says that they will have 4,000
qubit devices in 2025.

It’s certainly possible that quantum computers will be a threat to
cryptographic systems in 20 years.

So we need protection against quantum computation for
any protocol likely to last that long and for anything that
needs to stay secret for that long.

Quantum Algorithms for Crypto

This class is being recorded

Shor’s algorithm: Solves factoring and discrete log efficiently.
(The time is limited by the time to perform modular
exponentiation.)

Consequence: RSA and Diffie-Hellman (including with
elliptic curves) are insecure against a quantum computer.

Grover’s algorithm: Speeds up exhaustive search from to
.

O(N)
O(N)

Consequence: AES and other symmetric cryptosystems
need to double key lengths to retain the same level of
security against a quantum computer.

Collision-finding: Instead of a birthday attack needing
hash function evaluations, needs .

O(N)
O(N1/3)

Consequence: Hash functions need to increase output
lengths by x1.5 to retain the same level of security against a
quantum computer.

Post-Quantum Cryptography

This class is being recorded

RSA and Diffie-Hellman are insecure against quantum computers,
so we need new public-key encryption protocols or KEMs and
new digital signature schemes.

We need protocols whose security is based on different
algorithms which can’t be broken by known quantum
algorithms.

Note: The security of these new cryptographic protocols has not
been studied as much as RSA/Diffie-Hellman, so it is more likely
that there is an undiscovered classical or quantum attack against
them. But at least we don’t know how to break them on a
quantum computer.

Another reason to study these protocols now is to give
more time to try to break them before they are in
widespread use.

Current Status

This class is being recorded

NIST is running a competition for post-quantum cryptography.
Currently:

• One KEM protocol and three digital signature protocols
selected to become standards.

• Four public key encryption/KEM protocols selected for
Round 4 for further study.
• However, one of these four was broken after being

selected for Round 4.
• A new call for additional signature protocols has been

issued with a goal of diversifying the types of protocols to
standardize.

The goal is not to choose a single standard but rather a portfolio
of possible protocols considered secure.

Security and efficiency are both important for this contest.

Encryption/KEM Options

This class is being recorded

Selected for standardization: Crystals-Kyber, which is based on
lattice problems, specifically the learning-with-errors (LWE)
problem.

Still under consideration: BIKE, Classic McEliece, and HQC,
which are all based on error-correcting codes. The math is fairly
similar to lattice problems.

The idea of error-correcting code protocols is older
(Classic McEliece is an evolution of a 1978 proposal), and
their security is therefore better understood. However,
lattice-based schemes are more efficient and easier to use
to give protocols with additional properties (such as
homomorphic encryption).

Matrices and Vectors

This class is being recorded

We will need just the most basic elements of linear algebra to
discuss lattice-based encryption protocols.

A matrix M is an array of numerical (or variable) entries,
with the entry in the ith row and jth column.

m × n
Mij

A vector is a list of n numerical (or variable) entries, with
the ith entry. There is a standard graphical representation of
vectors with n entries as coordinates in n-dimensional space.

v vi

Matrix times a vector is a vector: .

Vector times a matrix is a vector: .

Dot product between 2 vectors is a number: .

(Mv)i = ∑
j

Mijvj

(vTM)j = ∑
i

viMij

v ⋅ w = vTw = ∑
i

viwi

vTMw = v ⋅ (Mw) = ∑
ij

viMijwj

Lattices

This class is being recorded

A lattice is a regular array of points, integer combinations of
some set of vectors.

L = {∑
i

sivi |si ∈ ℤ}
Examples:

v1

v2 v2

v1

Alternate Generating Sets

This class is being recorded

v1

v2

v′ 1

v′ 2

The same lattice can be generated by different sets of vectors.

In this example, and . Also, v′ 1 = 2v1 + v2 v′ 2 = v1 + v2

 and .v1 = v′ 1 − v′ 2 v2 = 2v′ 2 − v′ 1

Note that some sets of vectors
might generate a sublattice instead.

Shortest Vector in a Lattice

v′ 1

v′ 2

This class is being recorded

In this example, notice that the shortest
vectors in the lattice are and ,
which are not part of the generating set.

v1 v2

With a high-dimensional lattice, looking at different integer linear
combinations of generating vectors to find the shortest vector(s)
is a challenging problem.

Depending on the properties of the lattice and whether we want
to find the absolutely smallest vector or merely one that is an
approximation to the smallest vector, this problem can be
computationally hard (including against quantum algorithms), up
to and including NP-hard.

Closest Lattice Vector

v′ 1

v′ 2

This class is being recorded

w

Given which is not in the lattice, which
lattice vector is it closest to?

w

Closest Lattice Vector

v′ 1

v′ 2

This class is being recorded

w

Given which is not in the lattice, which
lattice vector is it closest to?

w

In this example, is closest to .w v′ 1 + v′ 2

Closest Lattice Vector

v′ 1

v′ 2

This class is being recorded

w

Given which is not in the lattice, which
lattice vector is it closest to?

w

In this example, is closest to .w v′ 1 + v′ 2

Again, with a high-dimensional lattice, this problem can be
computationally hard, depending on properties of the lattice.

We can think of as being of the form , where is a lattice
vector and is a short vector not in the lattice.

w v + e v
e

Closest Lattice Vector

v′ 1

v′ 2

This class is being recorded

w

Given which is not in the lattice, which
lattice vector is it closest to?

w

In this example, is closest to .w v′ 1 + v′ 2

Again, with a high-dimensional lattice, this problem can be
computationally hard, depending on properties of the lattice.

We can think of as being of the form , where is a lattice
vector and is a short vector not in the lattice.

w v + e v
e

Note: If is in the lattice, finding which vector it is can be done
easily using linear algebra.

w

Lattice Vectors and Matrices

v′ 1

v′ 2

We can write an arbitrary element of the lattice in the form

This class is being recorded

v = As

where A is a matrix where the ith column is the generating
vector and s is the vector of coefficients.vi

v

Example: Here,

A = (1 1
2 1) s = (1

1)
so

v = As = (2
3)

Learning With Errors

This class is being recorded

The Learning With Errors (LWE) problem is to solve the closest
lattice vector problem with some distribution over and , but
with arithmetic mod q.

s e

Specifically: Given matrix A, vector , find such thatw s
As + e = w mod q

for some “small” .e

Decisional LWE: Determine if is uniformly random or if it was
generated as

w

As + e = w mod q
for some “small” .e

LWE and decisional LWE are of equivalent difficulty.

LWE Encryption

This class is being recorded

Gen: Bob chooses a random matrix A, an n-dimensional
vector according to , and an m-dimensional vector
according to . Let . The public key is
and the private key is .

m × n
s ψ e

ψ w = As + e mod q (A, w)
s

Fixed protocol parameters: m, n, and q, as well as a distribution
of short vectors.

ψ

Enc: Given public key , to encrypt a single bit b, Alice
chooses an m-dimensional vector according to , an n-
dimensional vector according to , and a number x according
to . The ciphertext is , with

(A, w)
r ψ

f ψ
ψ (c, c′)

cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q

LWE Decryption

This class is being recorded

Dec: Given private key and ciphertext , Bob computess (c, c′)
k = (c′ − c ⋅ s) mod q

Then Bob determines if k is close to 0, in which case Dec
outputs b=0, or if k is close to , in which case Dec outputs
b=1.

⌊q/2⌋

Here we consider k to be close to 0 if it is slightly larger than
0 or slightly less than q (which can also be interpreted as
being a negative number of small absolute value).

LWE Correctness

This class is being recorded

Recall:

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

LWE Correctness

This class is being recorded

Recall:

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q

LWE Correctness

This class is being recorded

Recall:

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q

and
c ⋅ s = (rT A + fT)s = rT As + f ⋅ s mod q

LWE Correctness

This class is being recorded

Recall:

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q

and
c ⋅ s = (rT A + fT)s = rT As + f ⋅ s mod q

k = (c′ − c ⋅ s) mod q
= b⌊q/2⌋ + (x + r ⋅ e − f ⋅ s) mod q

so

LWE Correctness

This class is being recorded

Recall:

w = As + e mod q
cT = rT A + fT mod q
c′ = r ⋅ w + x + b⌊q/2⌋ mod q
k = (c′ − c ⋅ s) mod q

Then
c′ = rT(As + e) + x + b⌊q/2⌋ = rT As + r ⋅ e + x + b⌊q/2⌋ mod q

and
c ⋅ s = (rT A + fT)s = rT As + f ⋅ s mod q

k = (c′ − c ⋅ s) mod q
= b⌊q/2⌋ + (x + r ⋅ e − f ⋅ s) mod q

so

All quantities in the parentheses in the last line are “small,” so k
will either be close to 0 or to q/2, and will be decoded correctly.

LWE Example: Gen

This class is being recorded

Let q = 101, m = n = 3.

A =
63 52 64
17 37 86
38 28 25

Suppose Bob picks
s = (

0
0
2) e = (

−2
−2
0)

Then

w = As + e mod 101 =
63 52 64
17 37 86
38 28 25 (

0
0
2) + (

−2
−2
0) =

25
69
50

Public key:
A =

63 52 64
17 37 86
38 28 25

, w =
25
69
50

Private key: s = (
0
0
2)

LWE Example: Enc

Public key:
A =

63 52 64
17 37 86
38 28 25

, w =
25
69
50

Message bit: b=1

Alice chooses

This class is being recorded

r = (
2

−2
1) f = (

−1
−1
2) x = 1

Ciphertext: , with(c, c′)

c = Ar + f mod 101 =
63 17 38
52 37 28
64 86 25 (

2
−2
1) + (

−1
−1
2) =

28
57
84

c′ = r ⋅ w + x + b⌊q/2⌋ mod 101 = (
2

−2
1) ⋅

25
69
50

+ 51 = 13

LWE Example: Dec

Ciphertext: c =
28
57
84

, c′ = 13

Private key: s = (
0
0
2)

Bob calculates

This class is being recorded

k = (c′ − c ⋅ s) mod 101 = 13 −
28
57
84

⋅ (
0
0
2) = 13 − 164 = 51

This is close to 50 and far from 0, so Bob decodes the message
b=1.

LWE Security

This class is being recorded

This LWE-based encryption system is CPA-secure provided the
LWE problem is hard. The LWE problem is in turn equivalent to
the worst-case hardness of some of the lattice problems we
discussed earlier, but not unfortunately for the NP-hard choices
of lattice parameters.

Still, we don’t know how to break the LWE assumption or
protocol even with a quantum computer.

Note: This is a case where the average-case hardness that shows
up in the cryptosystem is equivalent to worst-case hardness of a
cleaner problem. This is a relatively strong security “proof.”

Crystals-Kyber uses LWE with coefficients over rings
instead of mod q.

Post-Quantum Signatures

This class is being recorded

Lattice problems and LWE can also be used to create digital
signature protocols secure against known quantum algorithms.

An alternative approach uses essentially hash functions and
Merkle trees.

Selected in the NIST contest:

Crystals-Dilithium and FALCON are two lattice-based
signature schemes.

SPHINCS+ is a hash-function-based signature scheme.

