
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 27
Daniel Gottesman

Administrative

This class is being recorded

Problem set #9 due Thursday, Dec. 8 at midnight.

Course evaluations are now available to fill out.

• Will be open book again (textbook, lecture notes)
• Students taking the final at ADS: Remember to book with them

soon.
• Today and Thursday (last lecture): Review for final
• Topics covered: Everything up to (and including) post-quantum

cryptography

Final exam: Monday, Dec. 19, 1:30-3:30 PM

The last 15 minutes of class on Thursday will be reserved for
course evaluations.

A list of topics covered in the course is available on the course
website.

Review Plan

• Principles and basic tools (Kerckhoff’s principle, computational
complexity, proof by reduction)

• Cryptographic primitives (Pseudorandom generators,
pseudorandom functions, hash functions)

• Cryptographic protocols (Private and public-key encryption,
key agreement, KEM, MAC, authenticated encryption, digital
signature, identification protocol)

• Modular arithmetic — Thursday

This class is being recorded

Principles and Basic Tools

This class is being recorded

• Kerckhoff’s principle
• Computational complexity
• Proof by reduction

Kerckhoff’s Principle

This class is being recorded

Assume the protocol is known by the
adversary. Only the key is secret.

This means that anything that is not explicitly listed as part of the
private key (or otherwise is secret) is known to Eve:

• Any parameters of the protocol (e.g., prime q or base g)
are known to Eve.

• Any functions involved (e.g., hash function H(x)) are known
to Eve.

• Public keys are certainly known to Eve.
• Private keys are not known by Eve.
• Random values picked by a participant and not explicitly

announced are not known by Eve.

Example: Identification Protocol

Alice Bob

Prove you
are Alice

private key x e=(p, q, g, y)

Initial message I = gk mod p

Challenge (α, r)

(α, r)Response s

s

This class is being recorded

random k

s = k−1(α + xr) mod q V(e, α, r, s) = I

Yes!

V(e, α, r, s) = gαs−1yrs−1

The protocol involves the following values: p, q, g, x, y, k, I, , r, s.
Which are known to Eve and which are not?

α

Example: Identification Protocol

Alice Bob

Prove you
are Alice

private key x e=(p, q, g, y)

Initial message I = gk mod p

Challenge (α, r)

(α, r)Response s

s

This class is being recorded

random k

s = k−1(α + xr) mod q V(e, α, r, s) = I

Yes!

V(e, α, r, s) = gαs−1yrs−1

The protocol involves the following values: p, q, g, x, y, k, I, , r, s.
Which are known to Eve and which are not?

α

Secret: x, k

Example: Identification Protocol

Alice Bob

Prove you
are Alice

private key x e=(p, q, g, y)

Initial message I = gk mod p

Challenge (α, r)

(α, r)Response s

s

This class is being recorded

random k

s = k−1(α + xr) mod q V(e, α, r, s) = I

Yes!

V(e, α, r, s) = gαs−1yrs−1

The protocol involves the following values: p, q, g, x, y, k, I, , r, s.
Which are known to Eve and which are not?

α

Secret: x, k

Example: Identification Protocol

Alice Bob

Prove you
are Alice

private key x e=(p, q, g, y)

Initial message I = gk mod p

Challenge (α, r)

(α, r)Response s

s

This class is being recorded

random k

s = k−1(α + xr) mod q V(e, α, r, s) = I

Yes!

V(e, α, r, s) = gαs−1yrs−1

The protocol involves the following values: p, q, g, x, y, k, I, , r, s.
Which are known to Eve and which are not?

α

Secret: x, k Public: p, q, g, y, I, , r, s. Also V.α

Efficient and Negligible

This class is being recorded

Almost always, we are interested in efficient algorithms, namely
ones which run in a time polynomial as a function of the size of
the input to the function.

E.g.: Can G(s) be a pseudorandom generator if ?|G(s) | = f(s)

Efficient and Negligible

This class is being recorded

Almost always, we are interested in efficient algorithms, namely
ones which run in a time polynomial as a function of the size of
the input to the function.

E.g.: Can G(s) be a pseudorandom generator if ?|G(s) | = f(s)
Answer: It can be if f(s) is polynomial and it cannot if f(s)
is exponential . Why? The brute force attack takes
as input a string of size and tries all values of s.
This runs in time , which is . This is a polynomial
as a function of the size of the input to .

cs 𝒜
|G(s) |

2s (cs)log c

𝒜

Efficient and Negligible

This class is being recorded

Almost always, we are interested in efficient algorithms, namely
ones which run in a time polynomial as a function of the size of
the input to the function.

E.g.: Can G(s) be a pseudorandom generator if ?|G(s) | = f(s)
Answer: It can be if f(s) is polynomial and it cannot if f(s)
is exponential . Why? The brute force attack takes
as input a string of size and tries all values of s.
This runs in time , which is . This is a polynomial
as a function of the size of the input to .

cs 𝒜
|G(s) |

2s (cs)log c

𝒜

A function is negligible if it goes to 0 faster than any polynomial.
Specifically, for all polynomials p(x).lim

x→∞
f(x)p(x) = 0

E.g.: not negligible
 negligible

f(x) = 1/(100x3)
f(x) = exp(− x)

Reductions

This class is being recorded

Imagine you are a robot in a world full of similar robots. Your
job is to play one of the cryptographic games we have discussed
for defining security of protocols. Say you play the game G.

Unfortunately, you are very bad at your job. You can’t figure out
how to win consistently, or even much better than random
chance.

But one day you have a bright idea! Your friend has the job
to play the game H, and you’ve realized that G and H are
related. While your friend is sleeping, you download a copy
of their AI and construct an elaborate simulation.

In the simulation, your copy of the friend thinks they are going to
work and need to play H. But you have arranged that the
simulation uses specific values to H so that you can use their
answers to help you play G.

Note: The simulation must be identical to the friend’s real
job or the copy will realize it is a copy.

Reduction Example

This class is being recorded

For example, suppose your job is to break the RSA assumption:
Given N, e, and random y, find x such that .xe = y mod N

Your friend plays the factoring game: Given N find a factor
of N.

When you are given (N, e, y), you start your simulation and your
friend’s copy thinks they are going to work. You arrange for
them to be given the problem N and they answer p. You take
this value out of the simulation and calculate q = N/p, then .
Then you use Euclid’s algorithm to find and
compute and use that for your answer x.

φ(N)
e−1 mod φ(N)

yφ(N) mod N

You have reduced breaking RSA to factoring.

Hardness via Reductions

This class is being recorded

Unfortunately for you, your friend is also bad at their job. The
answers they give are not real factors, or maybe they don’t
answer at all. Either way, your algorithm will fail.

Disappointed, you conclude that there is no way to do
your job.

Is this a valid conclusion?

Hardness via Reductions

This class is being recorded

Unfortunately for you, your friend is also bad at their job. The
answers they give are not real factors, or maybe they don’t
answer at all. Either way, your algorithm will fail.

Disappointed, you conclude that there is no way to do
your job.

Is this a valid conclusion?

No. There could be a different robot that is better at factoring,
or maybe there is a way to beat RSA that doesn’t involve
virtually kidnapping anyone.

But: If your friend finds out about your plan, he might be
able to conclude that his job — factoring — is hopeless. If
RSA is unbreakable, then factoring must be hard as well.

Cryptographic Primitives

This class is being recorded

• Pseudorandom generators
• Pseudorandom functions
• Hash functions

Pseudorandomness

This class is being recorded

Pseudorandom generator G(s)

Pseudorandom function Fk(r)

• One input s, “seed”
• Output looks like a random string when s unknown
• Output should be longer than the seed
• Stream cipher is a more flexible version

• Two inputs: k (key) and r
• For fixed but unknown k, looks like a random function of r
• Output can be the same size or smaller than the input
• Block cipher is a fixed-size version, but must be a

permutation (with computable inverse for known k)

Pseudorandomness Games

Alice Eve

x

𝒜(x)
non-random if
random if

𝒜(x) = 1
𝒜(x) = 0

Pseudorandom generator:

This class is being recorded

Alice Eve

𝒜n

non-random if
random if

𝒜𝒪
n = 1

𝒜𝒪
n = 0

n
𝒪O = Fk(r) or f(r) 𝒪

Pseudorandom function:

Hash Functions
Hash function H(x)

This class is being recorded

• Unlike pseudorandom functions and generators, function
and input are both known

• Output must be shorter than the input
• Main cryptographic property is collision resistance, meaning

it is hard to find two inputs , with the same output

• Does not need to look like a random function
• But is often modeled as a random oracle anyway
• Note: but (unlike a pseudorandom function) it is always

easy to distinguish from a truly random function since we
can just test it on specific inputs

• Often take arbitrary-length inputs

x1 x2
H(x1) = H(x2)

Cryptographic Protocols

This class is being recorded

• Private-key encryption
• Public-key encryption
• Key agreement
• Key encapsulation mechanism (KEM)
• MAC
• Authenticated encryption
• Digital signature
• Identification protocol

Cryptographic Protocols Comparison

Protocol Purpose Pub./Priv. Interactive?

Private-key encryption Encryption Private No

Public-key encryption Encryption Public No

Key agreement Gen. key None Yes

KEM Gen. key Public No

MAC Authenticate Private No

Authenticated encrypt. Enc. + Auth. Private No

Digital signature Authenticate Public No

Identification protocol Authenticate Public Yes

This class is being recorded

Encryption Security Definitions

This class is being recorded

Alice Eve

c

𝒜(c)
i

mi key k

c

: and .ℬ(s) m0 m1
, m0 m1

i

EAV security:

Eve chooses two messages and and must identify an
encryption of one of them.

m0 m1

Encryption Security Definitions

This class is being recorded

Alice Eve

c

𝒜(c)
i

mi key k

c

: and .ℬ(s) m0 m1
, m0 m1

i
Enc(k,x)

CPA security (private key):

Eve chooses two messages and and must identify an
encryption of one of them.

m0 m1

Encryption Security Definitions

This class is being recorded

Alice Eve

c

𝒜(c)
i

mi key k

c

: and .ℬ(s) m0 m1
, m0 m1

i
Enc(k,x)

Dec(k,x)

not c

CCA security (private key):

Eve chooses two messages and and must identify an
encryption of one of them.

m0 m1

Encryption Security Definitions

This class is being recorded

Alice Eve

c

𝒜(c)
i

mi

c

: and .ℬ(s) m0 m1
, m0 m1

i public key e
e

Gen

CPA security (public key):

Eve chooses two messages and and must identify an
encryption of one of them.

m0 m1

Encryption Security Definitions

This class is being recorded

Alice Eve

c

𝒜(c)
i

mi

c

: and .ℬ(s) m0 m1
, m0 m1

i public key e
e

Gen

Dec(k,x)

not c

CCA security (public key):

Eve chooses two messages and and must identify an
encryption of one of them.

m0 m1

Security Definitions for Key Gen.

Alice Eve

k or k’

𝒜(x)k if
k’ if

𝒜(x) = 1
𝒜(x) = 0

This class is being recorded

Eve must distinguish between k generated by the protocol and a
uniformly random k’.

Key agreement security:

Transcript

Security Definitions for Key Gen.

Alice Eve

k or k’

𝒜(x)k if
k’ if

𝒜(x) = 1
𝒜(x) = 0

This class is being recorded

Eve must distinguish between k generated by the protocol and a
uniformly random k’.

Public key, ciphertext

KEM CPA security:

Security Definitions for Key Gen.

Alice Eve

k or k’

𝒜(x)k if
k’ if

𝒜(x) = 1
𝒜(x) = 0

Decaps

not c

This class is being recorded

Eve must distinguish between k generated by the protocol and a
uniformly random k’.

Public key, ciphertext

KEM CCA security:

Authentication Security Definitions

This class is being recorded

Alice Eve

𝒜

s
Mac?Vrfy(k, m̂, ̂t) Mac

(m̂, ̂t), m̂ ≠ mi

mi

Eve must forge a message which she hasn’t queried to her
oracle.

MAC security:

Authentication Security Definitions

This class is being recorded

Alice Eve

𝒜

s mi

Sign?Vrfy(e, m̂, ̂σ) Sign

(m̂, ̂σ), m̂ ≠ mi

Eve must forge a message which she hasn’t queried to her
oracle.

Digital signature security:

Authentication Security Definitions

This class is being recorded

Alice Eve

𝒜

s mi

Eve must forge a message which she hasn’t queried to her
oracle.

Enc?Dec(k, ̂c) valid Enc

̂c

Unforgeability (for encryption):

Recall that authenticated encryption is CCA security plus
unforgeability.

General Encryption Constructions

This class is being recorded

EAV security:

Pseudorandom
generator G(s)

Pseudo one-time pad
c = G(k) ⊕ m

CPA security:

Pseudorandom
function Fk(r) Need random IV r to

avoid repeating ciphertext

(r, Fk(r) ⊕ m)

CBC mode or CTR mode
for longer messages

CCA security/AE:

MAC Encrypt then authenticate

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

Gen
e

d

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

Gen
e

d

message m

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

Encaps

k c

Gen
e

d

message m

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

Encaps

k c

Gen
e

d

Enc c’
message m

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

Encaps

k c

(c,c’)

Gen
e

d

Enc c’
message m

c

c’

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

Encaps

k c

(c,c’)

Gen
e

d

Enc c’
message m

c

c’

Decaps

k

KEM/DEM

This class is being recorded

Using a KEM, we can effectively upgrade these private-key
encryption protocols into public-key encryption protocols:

Alice Bob

Encaps

k c

(c,c’)

Gen
e

d

Enc c’
message m

c

c’

Decaps

k

Dec
m

Generic MAC Constructions

This class is being recorded

Mac(k, m) = Fk(m)
Pseudorandom
function Fk(r)

CBC-Mac
For longer messages; no
IV, include length as first
input, tag is only output
of last block

Hash-and-Mac (Note: previously I also
had H(m) as part of the
tag, but this is not needed.)

Mac(k, H(m))

Hash function construction

h

x1

z0
z1

h

x2

z2
h

x3

z3
h

x4

z4

Merkle-Damgard construction makes hash functions for arbitrary
input out of a compression function of fixed size.

This class is being recorded

Need to pad the input appropriately.

RSA and Diffie-Hellman Encryption

This class is being recorded

Diffie-Hellman: Alice sends , Bob sends
, key is .

A = ga mod p
B = gb mod p Ab = Ba = gab mod p

El Gamal: Public key is , private key is b, encryption is
 (for secret random a).

gb mod p
mgab mod p

RSA: Public key is (N, e), private key is d such that
. Encryption is (with m

appropriately padded to).
de = 1 mod φ(N) m̃e mod N

m̃

DH KEM: Public key is , private key is b, ciphertext is
, key is .

gb mod p
A = ga mod p H(Ab) mod p = H(gab)

RSA KEM: Public key is (N, e), private key is d such that
. Encryption is , key is .de = 1 mod φ(N) xe mod N H(x)

RSA and DSA signatures
RSA: Public key is (N, e), private key is d such that

. Signature is .de = 1 mod φ(N) σ = H(m)d mod N

DSA: Public key is , private key is x. Signature is
 for random k, .

y = gx mod p
s = k−1(H(m) + xr) mod q r = gk mod p

(Verify by checking that)r = gH(m)s−1yrs−1 mod p

This class is being recorded

Feistel Network

f

subkey k1

f

subkey k2

L0 R0

R1 = L0 ⊕ f(k1, R0)
L1 = R0

L2 = R1
R2 = L1 ⊕ f(k2, R1)

This class is being recorded

A Feistel network consists of a sequence of rounds sequentially
acting on the message, which is split into a left and right half.

In each round, the current right half is fed into a round function f
with a key for the round and then XORed with the left half. The
modified left half and old right half are then switched.

DES Overview

This class is being recorded

64-bit input (permuted)

f

master key k

subkey k1

f

subkey k2

…

64-bit output (permuted)

16 rounds

…

L0 R0

R1 = L0 ⊕ f(k1, R0)
L1 = R0

…
L2 = R1

R2 = L1 ⊕ f(k2, R1)

DES is a
Feistel
network.

Substitution-Permutation Networks
The DES mangler function is a variant of a substitution-
permutation network, a design paradigm for pseudorandom
permutations.

This class is being recorded

round key ki

S S S S S S S S

xi+1

1. State is mixed
with round key.

2. Substitution step
using small invertible
S-boxes.

No expansionxi

3. Permute bits.

AES Overview

This class is being recorded

The AES permutation takes a 128-bit input represented as 4 x 4
matrix of bytes:

master key k

subkey k1

subkey k2

…

AES is basically
a substitution-
permutation
network.

S

1. Key mixing

2. S-boxes

3. Row shifting and
column mixing

…

