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Administrative

This class is being recorded

Problem set #9 due tonight at midnight.

Course evaluations are now available to fill out.

• Will be open book again (textbook, lecture notes)
• Students taking the final at ADS: Remember to book with them 

soon.
• Today (last lecture): Review for final
• Topics covered: Everything up to (and including) post-quantum 

cryptography

Final exam: Monday, Dec. 19, 1:30-3:30 PM, here (IRB 0318)

The last 15 minutes of class will be reserved for course 
evaluations.

A list of topics covered in the course is available on the course 
website.

Office hours: I will hold an extended office hour next week, from 
10:30 AM-12:30 AM Tuesday Dec. 13.



Modular Arithmetic Summary
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• Elements of 
• Euclid’s algorithm
• Groups
• Modular exponentiation and order
• Chinese remainder theorem

ℤ*N



Elements of ℤ*21

Let us work through the structure of  in detail.ℤ*21
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First: What are the elements of ?ℤ*21

Recall: the * indicates that we are talking only about the 
elements that have a multiplicative inverse — those that are 
relatively prime to 21.

ℤ*21 = {1,2,4,5,8,10,11,13,16,17,19,20}

The number of elements of  is .ℤ*21 φ(21) = 12

Recall:  is the number of numbers that are relatively 
prime to N.  When p is prime, .  When N=pq 
with p and q prime, .

φ(N)
φ(p) = p − 1

φ(N) = (p − 1)(q − 1)



Non-Elements of ℤ*21
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What are not elements of ?ℤ*21

Multiples of 3 and 7, specifically 0, 3, 6, 7, 9, 12, 14, 15, 18.

Why not?

These have no multiplicative inverses.  For instance, consider 
:6i mod 21

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6i 0 6 12 18 3 9 15 0 6 12 18 3 9 15 0 6 12 18 3 9 15

Nothing can be multiplied by 6 to give 1: 6 has no multiplicative 
inverse.  This also means that division by 6 doesn’t make sense in 
general mod 21.



Multiplicative Inverses
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The elements of  do have multiplicative inverses mod 21.ℤ*21

Example: The multiplicative inverse of 8 mod 21 is 8: 

8 ⋅ 8 = 64 = 1 mod 21

But note that if we are working mod 15, then the inverse of 
8 is 2:

8 ⋅ 2 = 16 = 1 mod 15

and 8 doesn’t have a multiplicative inverse mod 10.

Dividing by 8 is equivalent to multiplying by its inverse:
11/8 = 11 ⋅ 8 = 4 mod 21
11/8 = 11 ⋅ 2 = 7 mod 15

We can find inverses using Euclid’s algorithm.



Euclid’s Algorithm Summary
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Euclid’s algorithm finds the GCD (greatest common divisor) of 
two numbers.  An extension (sometimes called the extended 
Euclidean algorithm) finds coefficients X and Y such that

Xa + Yb = gcd(a, b)

It works by subtracting multiples of the smaller number from the 
larger number and then continually updating and repeating the 
process.

It has many uses, including finding the GCD of two numbers 
or finding multiplicative inverses.



Euclid’s Algorithm

Let  and .  Assume .r0 = a r1 = b a > b
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Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 21 r1 = 8

, 
, 

r2 = 5
X2 = 1 Y2 = − 2

, 
, 

r3 = 3
X3 = − 1 Y3 = 3

, 
, 

r4 = 2
X4 = 2 Y4 = − 5

, 
, 

r5 = 1
X5 = − 3 Y5 = 8

r6 = 0

,gcd(21,8) = 1
1 = − 3 ⋅ 21 + 8 ⋅ 8



Euclid’s Algorithm

Let  and .  Assume .r0 = a r1 = b a > b
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Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 21 r1 = 8

, 
, 

r2 = 5
X2 = 1 Y2 = − 2

, 
, 

r3 = 3
X3 = − 1 Y3 = 3

, 
, 

r4 = 2
X4 = 2 Y4 = − 5

, 
, 

r5 = 1
X5 = − 3 Y5 = 8

r6 = 0

,gcd(21,8) = 1
1 = − 3 ⋅ 21 + 8 ⋅ 8

8−1 mod 21



Group Theory Summary

Definition: A group (G, *) is a set G of elements along with a 
binary operation  with the following properties:* : G × G → G

1. Closure:  when .
2. Associativity: , .
3. Identity:  such that .
4. Inverses:  such that 

.

g * h ∈ G g, h ∈ G
∀g, h, k ∈ G (g * h) * k = g * (h * k)

∃e ∈ G ∀g ∈ G, e * g = g * e = g
∀g ∈ G, ∃g−1 ∈ G

g * g−1 = g−1 * g = e
A subgroup H of G, written  is a subset of G which is also 
a group.  The order  of a finite group G is the number of 
elements.

H ≤ G
|G |

Lagrange’s Theorem: If H and G are finite groups with , 
then  divides .

H ≤ G
|H | |G |
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A set S generates a group G if all elements of G can be written 
as products of elements of S.  A group that can be generated by 
just one element is cyclic.



 as a Groupℤ*21
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 (or any ) is a group with multiplication as the group 
operation: 
ℤ*21 ℤ*N

• Multiplication is closed: .
• Associative: .
• Identity is 1: .
• Inverses: This is why we used  instead of .

a, b ∈ ℤ21 ⇒ ab mod 21 ∈ ℤ21
(ab)c = a(bc) mod 21
a ⋅ 1 = 1 ⋅ a = a

ℤ*21 ℤ21

Note that  under multiplication would satisfy all conditions 
but the last one.

ℤ21

 is a group as well, but only when the group operation is 
addition rather than multiplication.
ℤ21



Lattice as a Group
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A lattice is a group under 
addition of vectors.

v′ 1

v′ 2

v
Closure: If  and  are in the lattice, 
then  is also in the lattice.

v′ 1 v′ 2
v = v′ 1 + v′ 2

Associativity: Addition is associative: 
.(v + w) + x = v + (w + x)

Identity: The origin,  vector is in 
the lattice, and .

0
v + 0 = v

v

−v

Inverse: If  is in the lattice,  is 
in the lattice, and .

v −v
v + (−v) = 0

L = ∑
i

sivi si ∈ ℤ

0



Modular Exponentiation
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 can be computed efficiently (i.e., in a time polynomial 
in log x, log a, and log N) using repeated squaring.
xa mod N

Modular exponentials satisfy all the usual properties of 
exponentials.  For instance:

xaxb = xa+b mod N
(xa)b = xab mod N

x−a = 1/(xa) mod N

Let us calculate the order of elements in  under modular 
exponentiation.  Lagrange’s Theorem tells us all orders must be 
factors of .

ℤ*21

|ℤ*21 | = φ(21) = 12
Recall: The order of x mod N is the smallest integer r>0 
such that .xr = 1 mod N

xaya = (xy)a mod N



Orders in ℤ*21
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Orders in ℤ*21
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11 = 1 mod 21 Order of 1 is 1.



Orders in ℤ*21
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11 = 1 mod 21 Order of 1 is 1.

21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 11, 26 = 1 mod 21
Order of 2 is 6.



Orders in ℤ*21
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11 = 1 mod 21 Order of 1 is 1.

21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 11, 26 = 1 mod 21
Order of 2 is 6.

41 = 4, 42 = 16, 43 = 1 mod 21 Order of 4 is 3.



Orders in ℤ*21
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11 = 1 mod 21 Order of 1 is 1.

21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 11, 26 = 1 mod 21
Order of 2 is 6.

41 = 4, 42 = 16, 43 = 1 mod 21 Order of 4 is 3.

But note:  and 2 has order 6.22 = 4 mod 21
Therefore, .43 = (22)3 = 26 mod 21

We can deduce the order of 4 by looking at the powers of 2.



Orders in ℤ*21
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11 = 1 mod 21 Order of 1 is 1.

21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 11, 26 = 1 mod 21
Order of 2 is 6.

41 = 4, 42 = 16, 43 = 1 mod 21 Order of 4 is 3.

But note:  and 2 has order 6.22 = 4 mod 21
Therefore, .43 = (22)3 = 26 mod 21

We can deduce the order of 4 by looking at the powers of 2.

More generally,

ord(gj) = ord(g)/ gcd( j, ord(g))

E.g., if j and ord(g) are relatively prime, then .ord(gj) = ord(g)



Orders Continued

51 = 5, 52 = 4, 53 = 20, 54 = 16, 55 = 17, 56 = 1 mod 21

Order of 5 is 6.

101 = 10, 102 = 16, 103 = 13, 104 = 4, 105 = 19, 106 = 1 mod 21

Order of 10 is 6.

We can also conclude that the order of 17 is 6 as well, and the 
order of 20 is 2.

From this and the previous slide, we conclude that 11 and 19 
also have order 6, that 8 and 13 have order 2, and that 16 has 
order 3.



Cyclic Subgroups of ℤ*21
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The results of the previous page also tell us the subgroup 
structure of :ℤ*21

3 cyclic subgroups of order 6: 

{1,2,4,8,11,16} {1,4,5,16,17,20} {1,4,10,13,16,19}

1 cyclic subgroup of order 3:

{1,4,16}

{1,8}
3 cyclic subgroups of order 2:

{1,13} {1,20}
1 cyclic subgroup of order 1:

{1}

Note that  is not cyclic; it doesn’t have to be since 21 is not 
prime.  But when p is prime,  is cyclic.

ℤ*21
ℤ*p



Chinese Remainder Theorem
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Chinese remainder theorem: When a, b relatively prime,
x = xa mod a
x = xb mod b

have unique solution x mod ab.

Run Euclid’s algorithm to find 
X and Y such that 

aX + bY = 1

Then

x = xbaX + xabY

Example: , , , a = 3 b = 7 xa = 2
xb = 1

x = 2 mod 3
x = 1 mod 7

Euclid’s algorithm:

3 * (−2) + 7 * 1 = 1
, X = − 2 Y = 1

Then
x = 1 * 3 * (−2) + 2 * 7 * 1

= − 6 + 14 = 8 mod 21

Algorithm:




