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Administrative

This class is being recorded

Remember the first problem set is due at noon next Tuesday, 
Sep. 13.

There was an error in problem 2b of the first problem set 
(now corrected): it asked you to calculate “the conditional 
distribution ,” which should have been

.
Prob(M = m)

Prob(M = m |C = horse)

And remember, if you are reading these slides before the lecture, 
stop and think when you get to the vote.



Recap: Computational Limits
Recall that last time we discussed applying computational limits 
to Eve’s attacks.  We decided that we would usually insist that 
Eve’s attack be completed in polynomial time as a function of the 
input size and security parameter.

This means that Eve’s attack uses a number of 
computational steps equal to f(n), where n is the size of the 
ciphertext (which itself usually scales with s, the security 
parameter), for , for some constant c.f(n) = O(nc)

This gives us a well-defined theory, but has the caveat that for 
practical applications we can’t just think about the limit of infinite 
n, but should plug in the actual parameters of our protocol to 
see what level of security we get in practice.
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Improving on the One-Time Pad
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How can we use this approach to improve on the one-time pad?

We wish to replace the long key with a bit string that looks 
random to Eve but that can be generated in the same way by 
both Alice and Bob using a short shared key.  This gives the 
pseudo one-time pad.
For our threat model, we will assume that:

• Eve knows the technique we are using to generate the bit 
string but doesn’t know the short key.

• Eve can perform arbitrary polynomial-time computations.

What does “looks random” mean?

Does it mean that 0 and 1 are equally likely for each bit?

No.  50% chance of 000000 and 50% chance of 111111 has 
that property, but correlations matter too.



An Example

Here are two sequences of 50 bits.  One was generated by 
rolling dice and one was generated by repeatedly applying a 
deterministic procedure to a random starting point:

Sequence #1:

Sequence #2:

Which is which?  Vote.

11011101110100001011111110110011100001110100010110
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01101001000010111010110101001111111000011000001100



The Example Continued

The non-random sequence was generated by the rule

Sequence #1:

Sequence #2:

Does anyone want to change their vote?

11011101110100001011111110110011100001110100010110

01101001000010111010110101001111111000011000001100
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xi+1 = Axi + B mod 16
writing each  in binary.  A and B are secret and the starting 
point was also generated with dice.

xi



How to Tell the Difference

Consider .  xi+1 = Axi + B mod 16

• If A is even, then  always has the same parity as B, and is 
therefore either always even or always odd (except the first 
one).  In either case, every 4th bit is the same ( ).

• If A is odd and B is even, then  has the same parity as , 
and therefore  also has the same parity as .  Again, every 
4th bit is the same.

• If A is odd and B is odd, then  will have the opposite parity 
from .  Now every 4th bit alternates 0 and 1.

xi

i = 0 mod 4
Axi xi

xi+1 xi

xi+1
xi

So for the non-random sequence, look at every 4th bit.  Either 
they are always the same (except maybe the first one) or they 
alternate 0 and 1.  The random sequence doesn’t have to follow 
either pattern and probably won’t.
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The Answer to the Example

Sequence #1:

Sequence #2:

11011101110100001011111110110011100001110100010110

01101001000010111010110101001111111000011000001100
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The parameters I used were A=13, B=11.

xi+1 = Axi + B mod 16

Look at every 4th bit:

Sequence #1 alternates.  Sequence #2 doesn’t alternate or stay 
the same.  Sequence #2 is the random one.



Morals About Random Numbers

• It’s not always easy to tell the difference between random 
numbers and numbers generated by a deterministic process.

• But sometimes there are subtle ways to distinguish the two.

Does this matter for cryptography?  Yes!

If you use the pseudo one-time pad with a string that has 
detectable patterns, Eve can potentially use those to attack 
the encryption.  Remember, we want to be conservative.  
Even if we don’t know how to use the pattern to break the 
encryption, can we be sure that Eve does not?
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Built-in random generators in many old programming languages 
use a version of the same linear congruent generator in the 
example with better parameters.  More modern languages, like 
Python, use the Mersenne twister.  But both methods have subtle 
correlations that make them unsafe for cryptography.



Cryptographic Random Numbers
However, we are on the right track.  We need a procedure for 
which any patterns are so subtle, Eve can’t find them within the 
limits of her computational power.

We can formalize this through a game of the same sort as we 
just tried.  Alice presents Eve with a random string and then Eve 
must guess whether the string is truly random or was produced 
through the deterministic process.  (Again, assuming Eve knows 
the process but not some specific parameters used as the key.)

Alice Eve
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x

Attack

random/non-random



Brute-Force Attack

Alice’s procedure is deterministic with a small random seed y.  
For each choice of y, there is a x = G(y) which Alice will use to 
challenge Eve (if she picks the deterministic procedure).

But the set of possible x’s that you can get this way is much 
smaller than the list of possible random numbers.

Alice Eve

x

random/non-random

x = G(0000)?
x = G(0001)?
x = G(0010)?
x = G(0011)?
x = G(0100)?
x = G(0101)?
x = G(0110)?

…

In order for Alice to have a chance to beat 
Eve, we need to assume a computational 
limit on Eve.
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Pseudorandom Generators
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Definition: Let  be a deterministic function 
with  for all s.  Then G(y) is a pseudorandom generator 
if, for any attack , a probabilistic 
polynomial time algorithm, it holds that

G : {0,1}s → {0,1}ℓ(s)

ℓ(s) > s
𝒜 : {0,1}ℓ(s) → {0,1}

|Pry(𝒜(G(y)) = 1) − Prx(𝒜(x) = 1) | ≤ ϵ(s)

with  a negligible function and probabilities averaged over 
randomness of , as well as over seeds y (left probability) drawn 
uniformly from  and truly random strings x (right 
probability) drawn uniformly from .

ϵ(s)
𝒜
{0,1}s

{0,1}ℓ(s)

Alice Eve

x

𝒜(x)
non-random if 
random if 

𝒜(x) = 1
𝒜(x) = 0



Does Pseudorandomness Exist?

A pseudorandom generator outputs strings for which any 
polynomial-time algorithm can’t successfully distinguish from 
random strings.

How can we build pseudorandom generators?  Not 
straightforward, but we will discuss how to do it later.

To prove that these constructions give pseudorandom 
generators, we need to prove that there is no efficient way 
to distinguish the output from random bits.
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Does Pseudorandomness Exist?

A pseudorandom generator outputs strings for which any 
polynomial-time algorithm can’t successfully distinguish from 
random strings.

How can we build pseudorandom generators?  Not 
straightforward, but we will discuss how to do it later.

To prove that these constructions give pseudorandom 
generators, we need to prove that there is no efficient way 
to distinguish the output from random bits.

… but unfortunately, we don’t know good ways of 
proving that something can’t be done in polynomial time.
If we could prove a pseudorandom generator exists, we 
could show P ≠ NP.

Instead, we try different kinds of attacks on the generator, and if 
they fail, we tentatively assume it works, with more confidence 
over time if it is still not broken.
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Cryptographic Primitives
Suppose now that we have something we think is a 
pseudorandom generator.  We can then use it to create other 
cryptographic protocols.  A pseudorandom generator is an 
example of a cryptographic primitive.

Pseudorandom 
generator

Pseudo one-time pad
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We can use cryptographic primitives 
as components in a larger (and 
maybe more useful) cryptographic 
protocol.  For instance, we will use 
pseudorandom generators to create 
a more efficient encryption scheme, 
the pseudo one-time pad.

If done properly, the security of the overall protocol can be 
proven provided the primitives being used are secure.  This is 
where the precise definitions are essential.

This modular approach is particularly useful if the same primitive 
can be used in many places.



Pseudo One-Time Pad
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Let G(y) be a pseudorandom generator.  The security 
parameter s should be chosen so that  is equal to the 
length of the message to be used.

ℓ(s)

Gen: Choose uniformly random bit string k of length s.

The security parameter s should be chosen to be equal to 
the message length to be used.

Enc: Acts on message m as .Enc(k, m) = m ⊕ k
Dec: Acts on ciphertext c as .Dec(k, c) = c ⊕ k

One-time pad:

Pseudo one-time pad:

Gen: Choose uniformly random bit string k of length s.

Enc: Acts on message m as .Enc(k, m) = m ⊕ G(k)
Dec: Acts on ciphertext c as .Dec(k, c) = c ⊕ G(k)



Why Is This Secure?
It is hard to distinguish the output of a pseudorandom generator 
from random numbers.  Another way of saying this is anything 
you do with the output of a pseudorandom generator should 
give the same results as doing the same thing with a random 
string.
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Eve cannot learn anything 
from a ciphertext encrypted 
with the one-time pad.  If Eve 
has an attack on the pseudo 
one-time pad, then that is a 
different result than the one-
time pad, which means the 
G(y) you used could not have 
actually been a 
pseudorandom generator.

Eve

Attack

???

One-time 
pad

c

Eve

Attack

m

Failed 
pseudo 
one-time 
pad

c



Computationally-Secure Encryption

To actually prove this, we will need to devise a definition of 
security for encryption that allows computational limits on Eve.

We will start with definition B of perfect secrecy from last time 
and turn it into a game similar to the one we used to define 
pseudorandom generators.
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Recall:

In other words, Eve cannot guess if the message is  or .m0 m1

Definition B: An encryption protocol (Enc, Dec) provides perfect 
secrecy if for any pair of valid messages , and any 
ciphertext c,

m0, m1

Pr(Enc(k, m0) = c) = Pr(Enc(k, m1) = c)
with probability averaged over keys k and randomness in Enc and 
Dec.



EAV Security, First Try

Alice Eve

c

𝒜(c)

i

plaintext mi
key k

c

Definition: (Enc, Dec) with security parameter s has 
indistinguishable encryptions in the presence of an eavesdropper 
(is EAV-secure) if, for any pair of messages  and  and for any 
efficient attack ,

m0 m1
𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1) = 1) | ≤ ϵ(s)

for negligible  and probability taken over k and randomness 
of Enc.

ϵ(s)
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 or ?m0 m1



EAV Security

Alice Eve

c

𝒜(c)

i

mi key k

c

Definition: (Enc, Dec) with security parameter s has 
indistinguishable encryptions in the presence of an eavesdropper 
(is EAV-secure) if, for any pair of messages  and  chosen by 
the adversary (using ) and for any efficient attack ,

m0 m1
ℬ(s) 𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1)) = 1) | ≤ ϵ(s)

for negligible  and probability taken over k and randomness 
of Enc.

ϵ(s)
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:  and .ℬ(s) m0 m1
, m0 m1

i



Commentary on the Definition
How is does letting the adversary pick  and  change the 
definition?  It actually makes the definition slightly weaker 
because Eve’s algorithm  to pick  and  is efficient.

m0 m1

ℬ(s) m0 m1

Why did I do this?

• The weaker definition is easier to satisfy and it seems fine 
to say Eve might be able to distinguish a pair of messages 
that are hard to find.

• In later stronger definitions (such as the chosen plaintext 
attack), it will be more important to have Eve choose the 
possible messages.
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Compared to the definition of perfect security, when we put the 
computational bound on Eve, we should also relax to negligible 
probability  of distinguishing the messages because Eve 
usually has a “guess the key” attack that succeeds with small 
probability.

ϵ(s)



Proof By Reduction

Our intuition is that if Eve has an attack on the pseudo one-time 
pad, then it must have been that the function G(y) used was not 
actually a pseudorandom generator.  We can turn this into a 
proof by using the attack on the pseudo one-time pad to design 
an attack on the pseudorandom generator.

Attack on 
pseudo one-
time pad

Attack on pseudorandom 
generator

This is called a reduction: we are building the security of the 
pseudo one-time pad on that of the simpler cryptographic 
primitive used to create it.  Reduction is an extremely common 
proof technique in cryptography and theoretical CS.
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If we are confident in the 
security of the pseudorandom 
generator, this turns around and 
implies that there can’t be an 
effective attack on the pseudo 
one-time pad.



Security of Pseudo One-Time Pad
Theorem: The pseudo one-time pad is EAV-secure if it uses a 
secure pseudorandom generator.

Proof plan:

Given an attack ( , ) on the pseudo one-time pad, 
we will construct an attack  on the pseudorandom 
generator.

ℬ(s) 𝒜(c)
𝒜′ (x)

 will succeed in distinguishing the pseudorandom 
numbers from random with probability  if ( , ) 
succeeds in distinguishing messages with probability .  If 
the pseudorandom generator is secure,  will be negligible, 
which will imply that  is also negligible.  Therefore this 
particular attack on the pseudo one-time pad doesn’t 
succeed.

𝒜′ (x)
ϵ′ (s) ℬ(s) 𝒜(c)

ϵ(s)
ϵ′ (s)

ϵ(s)

But the attack was arbitrary, so the pseudo one-time pad is 
EAV-secure.
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The Reduction

The idea is that the attack  will use x as the key in a virtual 
pseudo one-time pad protocol, in which a virtual Eve will run the 
attack ( , ) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

Virtual pseudo OTP



The Reduction

The idea is that the attack  will use x as the key in a virtual 
pseudo one-time pad protocol, in which a virtual Eve will run the 
attack ( , ) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP



The Reduction

The idea is that the attack  will use x as the key in a virtual 
pseudo one-time pad protocol, in which a virtual Eve will run the 
attack ( , ) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP

Did ?  If 
so, .  
Else, .

𝒜(c) = i
𝒜′ (x) = 1

𝒜′ (x) = 0

If Virtual Eve’s attack 
succeeds, Eve 
guesses x was 
pseudorandom.  
Otherwise, she 
guesses x is random.



Why Does This Work?

The important thing to make this reduction work is that Virtual 
Eve has no idea she is just a simulation.  In particular, everything 
she sees is completely consistent with attacking either the one-
time pad or the pseudo one-time pad.
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The only input and output to the virtual protocol goes 
through Alice, and Alice only makes choices she could have 
made in a real one-time pad or pseudo one-time pad.

Why is this important?  We want Virtual Eve to run her attack 
exactly as she would against a real encryption scheme.  If she 
were to change her attack, then we would only get results about 
her changed attack and not the true attack.  That would not help 
us prove security.



Success Probability for Random x

In the case where x was actually a uniform random string chosen 
by Alice, then the virtual protocol run was actually a virtual one-
time pad.  This means that it has perfect secrecy, and whatever 
pair of messages ( , ) was chosen by  and whichever 
ciphertext c ended up being used,

m1 m2 ℬ(s)

Pr(Enc(x, m1) = c) = Pr(Enc(x, m2) = c) = pc

Now,
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Pr(𝒜(Enc(x, mi)) = 1) = ∑
c

Pr(Enc(x, mi) = c)Pr(𝒜(c) = 1)

= ∑
c

pcPr(𝒜(c) = 1)

which doesn’t depend on i.  In particular,

Pr(𝒜(Enc(x, m1)) = 1) = Pr(𝒜(Enc(x, m2)) = 1)



Success Probability for  (random)𝒜′ (x)
To calculate the success probability for , first note that𝒜′ (x)

If x is random, then .Pr(𝒜′ (x) = 1) = 1/2

Pr(𝒜′ (x) = 1) =
1
2 [Pr(𝒜(Enc(x, m1)) = 1) + 1 − Pr(𝒜(Enc(x, m0)) = 1)]
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(Actually this should be averaged over pairs ( , ) chosen by 
, but we can specialize to  with deterministic output.)

m0 m1
ℬ(s) ℬ(s)



 (pseudorandom case)𝒜′ (G(y))

In the case that  is pseudorandom, then letx = G(y)

δ(x) = Pr(𝒜(Enc(G(y), m1)) = 1) − Pr(𝒜(Enc(G(y), m0)) = 1)

so  in this case. Note that 
here, probability is taken over randomness of Enc and , but we 
are not yet averaging over y.

Pr(𝒜′ (G(y)) = 1) = 1/2 (1 + δ(G(y)))
𝒜

When we do average over possible x and y values,

Pry(𝒜′ (G(y)) = 1) − Prx(𝒜′ (x) = 1) =
1
2 ∑

y

Pr(y)δ(G(y))

so by the definition of a pseudorandom generator,

∑
y

Pr(y)δ(G(y)) ≤ 2ϵ(s)
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for negligible , which is also the formula needed for EAV 
security of the pseudo one-time pad.

ϵ(s)




