
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 4
Daniel Gottesman

Administrative

This class is being recorded

Remember the first problem set is due at noon next Tuesday,
Sep. 13.

There was an error in problem 2b of the first problem set
(now corrected): it asked you to calculate “the conditional
distribution ,” which should have been

.
Prob(M = m)

Prob(M = m |C = horse)

And remember, if you are reading these slides before the lecture,
stop and think when you get to the vote.

Recap: Computational Limits
Recall that last time we discussed applying computational limits
to Eve’s attacks. We decided that we would usually insist that
Eve’s attack be completed in polynomial time as a function of the
input size and security parameter.

This means that Eve’s attack uses a number of
computational steps equal to f(n), where n is the size of the
ciphertext (which itself usually scales with s, the security
parameter), for , for some constant c.f(n) = O(nc)

This gives us a well-defined theory, but has the caveat that for
practical applications we can’t just think about the limit of infinite
n, but should plug in the actual parameters of our protocol to
see what level of security we get in practice.

This class is being recorded

Improving on the One-Time Pad

This class is being recorded

How can we use this approach to improve on the one-time pad?

We wish to replace the long key with a bit string that looks
random to Eve but that can be generated in the same way by
both Alice and Bob using a short shared key. This gives the
pseudo one-time pad.
For our threat model, we will assume that:

• Eve knows the technique we are using to generate the bit
string but doesn’t know the short key.

• Eve can perform arbitrary polynomial-time computations.

What does “looks random” mean?

Does it mean that 0 and 1 are equally likely for each bit?

No. 50% chance of 000000 and 50% chance of 111111 has
that property, but correlations matter too.

An Example

Here are two sequences of 50 bits. One was generated by
rolling dice and one was generated by repeatedly applying a
deterministic procedure to a random starting point:

Sequence #1:

Sequence #2:

Which is which? Vote.

11011101110100001011111110110011100001110100010110

This class is being recorded

01101001000010111010110101001111111000011000001100

The Example Continued

The non-random sequence was generated by the rule

Sequence #1:

Sequence #2:

Does anyone want to change their vote?

11011101110100001011111110110011100001110100010110

01101001000010111010110101001111111000011000001100

This class is being recorded

xi+1 = Axi + B mod 16
writing each in binary. A and B are secret and the starting
point was also generated with dice.

xi

How to Tell the Difference

Consider . xi+1 = Axi + B mod 16

• If A is even, then always has the same parity as B, and is
therefore either always even or always odd (except the first
one). In either case, every 4th bit is the same ().

• If A is odd and B is even, then has the same parity as ,
and therefore also has the same parity as . Again, every
4th bit is the same.

• If A is odd and B is odd, then will have the opposite parity
from . Now every 4th bit alternates 0 and 1.

xi

i = 0 mod 4
Axi xi

xi+1 xi

xi+1
xi

So for the non-random sequence, look at every 4th bit. Either
they are always the same (except maybe the first one) or they
alternate 0 and 1. The random sequence doesn’t have to follow
either pattern and probably won’t.

This class is being recorded

The Answer to the Example

Sequence #1:

Sequence #2:

11011101110100001011111110110011100001110100010110

01101001000010111010110101001111111000011000001100

This class is being recorded

The parameters I used were A=13, B=11.

xi+1 = Axi + B mod 16

Look at every 4th bit:

Sequence #1 alternates. Sequence #2 doesn’t alternate or stay
the same. Sequence #2 is the random one.

Morals About Random Numbers

• It’s not always easy to tell the difference between random
numbers and numbers generated by a deterministic process.

• But sometimes there are subtle ways to distinguish the two.

Does this matter for cryptography? Yes!

If you use the pseudo one-time pad with a string that has
detectable patterns, Eve can potentially use those to attack
the encryption. Remember, we want to be conservative.
Even if we don’t know how to use the pattern to break the
encryption, can we be sure that Eve does not?

This class is being recorded

Built-in random generators in many old programming languages
use a version of the same linear congruent generator in the
example with better parameters. More modern languages, like
Python, use the Mersenne twister. But both methods have subtle
correlations that make them unsafe for cryptography.

Cryptographic Random Numbers
However, we are on the right track. We need a procedure for
which any patterns are so subtle, Eve can’t find them within the
limits of her computational power.

We can formalize this through a game of the same sort as we
just tried. Alice presents Eve with a random string and then Eve
must guess whether the string is truly random or was produced
through the deterministic process. (Again, assuming Eve knows
the process but not some specific parameters used as the key.)

Alice Eve

This class is being recorded

x

Attack

random/non-random

Brute-Force Attack

Alice’s procedure is deterministic with a small random seed y.
For each choice of y, there is a x = G(y) which Alice will use to
challenge Eve (if she picks the deterministic procedure).

But the set of possible x’s that you can get this way is much
smaller than the list of possible random numbers.

Alice Eve

x

random/non-random

x = G(0000)?
x = G(0001)?
x = G(0010)?
x = G(0011)?
x = G(0100)?
x = G(0101)?
x = G(0110)?

…

In order for Alice to have a chance to beat
Eve, we need to assume a computational
limit on Eve.

This class is being recorded

Pseudorandom Generators

This class is being recorded

Definition: Let be a deterministic function
with for all s. Then G(y) is a pseudorandom generator
if, for any attack , a probabilistic
polynomial time algorithm, it holds that

G : {0,1}s → {0,1}ℓ(s)

ℓ(s) > s
𝒜 : {0,1}ℓ(s) → {0,1}

|Pry(𝒜(G(y)) = 1) − Prx(𝒜(x) = 1) | ≤ ϵ(s)

with a negligible function and probabilities averaged over
randomness of , as well as over seeds y (left probability) drawn
uniformly from and truly random strings x (right
probability) drawn uniformly from .

ϵ(s)
𝒜
{0,1}s

{0,1}ℓ(s)

Alice Eve

x

𝒜(x)
non-random if
random if

𝒜(x) = 1
𝒜(x) = 0

Does Pseudorandomness Exist?

A pseudorandom generator outputs strings for which any
polynomial-time algorithm can’t successfully distinguish from
random strings.

How can we build pseudorandom generators? Not
straightforward, but we will discuss how to do it later.

To prove that these constructions give pseudorandom
generators, we need to prove that there is no efficient way
to distinguish the output from random bits.

This class is being recorded

Does Pseudorandomness Exist?

A pseudorandom generator outputs strings for which any
polynomial-time algorithm can’t successfully distinguish from
random strings.

How can we build pseudorandom generators? Not
straightforward, but we will discuss how to do it later.

To prove that these constructions give pseudorandom
generators, we need to prove that there is no efficient way
to distinguish the output from random bits.

… but unfortunately, we don’t know good ways of
proving that something can’t be done in polynomial time.
If we could prove a pseudorandom generator exists, we
could show P ≠ NP.

Instead, we try different kinds of attacks on the generator, and if
they fail, we tentatively assume it works, with more confidence
over time if it is still not broken.

This class is being recorded

Cryptographic Primitives
Suppose now that we have something we think is a
pseudorandom generator. We can then use it to create other
cryptographic protocols. A pseudorandom generator is an
example of a cryptographic primitive.

Pseudorandom
generator

Pseudo one-time pad

This class is being recorded

We can use cryptographic primitives
as components in a larger (and
maybe more useful) cryptographic
protocol. For instance, we will use
pseudorandom generators to create
a more efficient encryption scheme,
the pseudo one-time pad.

If done properly, the security of the overall protocol can be
proven provided the primitives being used are secure. This is
where the precise definitions are essential.

This modular approach is particularly useful if the same primitive
can be used in many places.

Pseudo One-Time Pad

This class is being recorded

Let G(y) be a pseudorandom generator. The security
parameter s should be chosen so that is equal to the
length of the message to be used.

ℓ(s)

Gen: Choose uniformly random bit string k of length s.

The security parameter s should be chosen to be equal to
the message length to be used.

Enc: Acts on message m as .Enc(k, m) = m ⊕ k
Dec: Acts on ciphertext c as .Dec(k, c) = c ⊕ k

One-time pad:

Pseudo one-time pad:

Gen: Choose uniformly random bit string k of length s.

Enc: Acts on message m as .Enc(k, m) = m ⊕ G(k)
Dec: Acts on ciphertext c as .Dec(k, c) = c ⊕ G(k)

Why Is This Secure?
It is hard to distinguish the output of a pseudorandom generator
from random numbers. Another way of saying this is anything
you do with the output of a pseudorandom generator should
give the same results as doing the same thing with a random
string.

This class is being recorded

Eve cannot learn anything
from a ciphertext encrypted
with the one-time pad. If Eve
has an attack on the pseudo
one-time pad, then that is a
different result than the one-
time pad, which means the
G(y) you used could not have
actually been a
pseudorandom generator.

Eve

Attack

???

One-time
pad

c

Eve

Attack

m

Failed
pseudo
one-time
pad

c

Computationally-Secure Encryption

To actually prove this, we will need to devise a definition of
security for encryption that allows computational limits on Eve.

We will start with definition B of perfect secrecy from last time
and turn it into a game similar to the one we used to define
pseudorandom generators.

This class is being recorded

Recall:

In other words, Eve cannot guess if the message is or .m0 m1

Definition B: An encryption protocol (Enc, Dec) provides perfect
secrecy if for any pair of valid messages , and any
ciphertext c,

m0, m1

Pr(Enc(k, m0) = c) = Pr(Enc(k, m1) = c)
with probability averaged over keys k and randomness in Enc and
Dec.

EAV Security, First Try

Alice Eve

c

𝒜(c)

i

plaintext mi
key k

c

Definition: (Enc, Dec) with security parameter s has
indistinguishable encryptions in the presence of an eavesdropper
(is EAV-secure) if, for any pair of messages and and for any
efficient attack ,

m0 m1
𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1) = 1) | ≤ ϵ(s)

for negligible and probability taken over k and randomness
of Enc.

ϵ(s)

This class is being recorded

 or ?m0 m1

EAV Security

Alice Eve

c

𝒜(c)

i

mi key k

c

Definition: (Enc, Dec) with security parameter s has
indistinguishable encryptions in the presence of an eavesdropper
(is EAV-secure) if, for any pair of messages and chosen by
the adversary (using) and for any efficient attack ,

m0 m1
ℬ(s) 𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1)) = 1) | ≤ ϵ(s)

for negligible and probability taken over k and randomness
of Enc.

ϵ(s)

This class is being recorded

: and .ℬ(s) m0 m1
, m0 m1

i

Commentary on the Definition
How is does letting the adversary pick and change the
definition? It actually makes the definition slightly weaker
because Eve’s algorithm to pick and is efficient.

m0 m1

ℬ(s) m0 m1

Why did I do this?

• The weaker definition is easier to satisfy and it seems fine
to say Eve might be able to distinguish a pair of messages
that are hard to find.

• In later stronger definitions (such as the chosen plaintext
attack), it will be more important to have Eve choose the
possible messages.

This class is being recorded

Compared to the definition of perfect security, when we put the
computational bound on Eve, we should also relax to negligible
probability of distinguishing the messages because Eve
usually has a “guess the key” attack that succeeds with small
probability.

ϵ(s)

Proof By Reduction

Our intuition is that if Eve has an attack on the pseudo one-time
pad, then it must have been that the function G(y) used was not
actually a pseudorandom generator. We can turn this into a
proof by using the attack on the pseudo one-time pad to design
an attack on the pseudorandom generator.

Attack on
pseudo one-
time pad

Attack on pseudorandom
generator

This is called a reduction: we are building the security of the
pseudo one-time pad on that of the simpler cryptographic
primitive used to create it. Reduction is an extremely common
proof technique in cryptography and theoretical CS.

This class is being recorded

If we are confident in the
security of the pseudorandom
generator, this turns around and
implies that there can’t be an
effective attack on the pseudo
one-time pad.

Security of Pseudo One-Time Pad
Theorem: The pseudo one-time pad is EAV-secure if it uses a
secure pseudorandom generator.

Proof plan:

Given an attack (,) on the pseudo one-time pad,
we will construct an attack on the pseudorandom
generator.

ℬ(s) 𝒜(c)
𝒜′ (x)

 will succeed in distinguishing the pseudorandom
numbers from random with probability if (,)
succeeds in distinguishing messages with probability . If
the pseudorandom generator is secure, will be negligible,
which will imply that is also negligible. Therefore this
particular attack on the pseudo one-time pad doesn’t
succeed.

𝒜′ (x)
ϵ′ (s) ℬ(s) 𝒜(c)

ϵ(s)
ϵ′ (s)

ϵ(s)

But the attack was arbitrary, so the pseudo one-time pad is
EAV-secure.

This class is being recorded

The Reduction

The idea is that the attack will use x as the key in a virtual
pseudo one-time pad protocol, in which a virtual Eve will run the
attack (,) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)

This class is being recorded

Virtual Alice

key k=x

Virtual Eve

Virtual pseudo OTP

The Reduction

The idea is that the attack will use x as the key in a virtual
pseudo one-time pad protocol, in which a virtual Eve will run the
attack (,) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)

This class is being recorded

Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP

The Reduction

The idea is that the attack will use x as the key in a virtual
pseudo one-time pad protocol, in which a virtual Eve will run the
attack (,) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)

This class is being recorded

Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP

Did ? If
so, .
Else, .

𝒜(c) = i
𝒜′ (x) = 1

𝒜′ (x) = 0

If Virtual Eve’s attack
succeeds, Eve
guesses x was
pseudorandom.
Otherwise, she
guesses x is random.

Why Does This Work?

The important thing to make this reduction work is that Virtual
Eve has no idea she is just a simulation. In particular, everything
she sees is completely consistent with attacking either the one-
time pad or the pseudo one-time pad.

This class is being recorded

The only input and output to the virtual protocol goes
through Alice, and Alice only makes choices she could have
made in a real one-time pad or pseudo one-time pad.

Why is this important? We want Virtual Eve to run her attack
exactly as she would against a real encryption scheme. If she
were to change her attack, then we would only get results about
her changed attack and not the true attack. That would not help
us prove security.

Success Probability for Random x

In the case where x was actually a uniform random string chosen
by Alice, then the virtual protocol run was actually a virtual one-
time pad. This means that it has perfect secrecy, and whatever
pair of messages (,) was chosen by and whichever
ciphertext c ended up being used,

m1 m2 ℬ(s)

Pr(Enc(x, m1) = c) = Pr(Enc(x, m2) = c) = pc

Now,

This class is being recorded

Pr(𝒜(Enc(x, mi)) = 1) = ∑
c

Pr(Enc(x, mi) = c)Pr(𝒜(c) = 1)

= ∑
c

pcPr(𝒜(c) = 1)

which doesn’t depend on i. In particular,

Pr(𝒜(Enc(x, m1)) = 1) = Pr(𝒜(Enc(x, m2)) = 1)

Success Probability for (random)𝒜′ (x)
To calculate the success probability for , first note that𝒜′ (x)

If x is random, then .Pr(𝒜′ (x) = 1) = 1/2

Pr(𝒜′ (x) = 1) =
1
2 [Pr(𝒜(Enc(x, m1)) = 1) + 1 − Pr(𝒜(Enc(x, m0)) = 1)]

This class is being recorded

(Actually this should be averaged over pairs (,) chosen by
, but we can specialize to with deterministic output.)

m0 m1
ℬ(s) ℬ(s)

 (pseudorandom case)𝒜′ (G(y))

In the case that is pseudorandom, then letx = G(y)

δ(x) = Pr(𝒜(Enc(G(y), m1)) = 1) − Pr(𝒜(Enc(G(y), m0)) = 1)

so in this case. Note that
here, probability is taken over randomness of Enc and , but we
are not yet averaging over y.

Pr(𝒜′ (G(y)) = 1) = 1/2 (1 + δ(G(y)))
𝒜

When we do average over possible x and y values,

Pry(𝒜′ (G(y)) = 1) − Prx(𝒜′ (x) = 1) =
1
2 ∑

y

Pr(y)δ(G(y))

so by the definition of a pseudorandom generator,

∑
y

Pr(y)δ(G(y)) ≤ 2ϵ(s)

This class is being recorded

for negligible , which is also the formula needed for EAV
security of the pseudo one-time pad.

ϵ(s)

