
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 6
Daniel Gottesman

Administrative

This class is being recorded

Reminder: Problem Set #2 due Tuesday at noon.

Breaking RC4

There are other similar biases and correlations in the output
stream of RC4. This means that for many uses, RC4 can be
broken, even in practical situations.

Moral: Cryptography is hard!

While advances in computing power helped defeat RC4,
primarily advances in algorithms and a better understanding of the
structure of RC4 led to its defeat. Moreover, ad hoc
modifications of cryptographic protocols are extremely
dangerous.

This class is being recorded

In WEP, RC4 is modified to use an IV (to enable multiple
messages with the same key, as we will discuss next) by
substituting the public IV for the first 3 bytes of the key. This
enables even stronger attacks, making WEP completely insecure.

Because of these various attacks, RC4 is no longer widely used.

Multiple Messages

One problem with unmodified RC4 and similar stream ciphers
(ones without an IV) is that they always produce the same
output when started with a given key k.

This produces the same vulnerability as when the key for
the one-time pad is used twice.

This means that if we want to use the same key repeatedly,
something else has to change. This is where the IV comes in:

This class is being recorded

• IV could be a counter that increments with each message
sent. This can work, but Alice and Bob must keep track
how many messages were sent and if one gets lost, that
causes problems.

• Or IV can be random each time and transmitted along
with the ciphertext. This makes the ciphertext longer
than the message.

Complications of Multiple Messages

To define security for an encryption protocol that is supposed to
work for multiple messages, we need a new threat model.
Presumably we should imagine that Eve has access to
encryptions of more than one message.

But what if Eve happens to know — or guess — the
contents of one or more of those messages?

We should include this possibility in the threat model.
Sometimes the content of a message becomes obvious
later, for instance if the message contains your plans for the
day. At the end of the day, those plans have been revealed,
but your encrypted plans for tomorrow are still relevant
and an attractive target for Eve to break.

This class is being recorded

How can we formalize the idea that Eve knows some messages?
Which messages and how similar or different might they be from
the messages we are still trying to hide?

Chosen Plaintext Attack

This class is being recorded

Solution: Let Eve pick the plaintext of the other messages!

We will assume Eve can pick some polynomial number of
plaintext messages and see ciphertexts corresponding to
those messages.

This is the conservative assumption. It is hard to quantify exactly
which combinations of messages are likely, and also hard to
quantify which ones will be most dangerous in terms of helping
Eve break the protocol. But letting Eve pick the plaintexts
guarantees the worst case, which means that all other cases
where Eve knows some of the plaintexts are covered too.

Obviously, I am not suggesting that Eve is telling Alice what
to encrypt.

Well …

Battle of Midway
During WW II, American cryptographers had partially broken the
Japanese codes. In mid-1942, the U.S. intercepted
communications indicating that Japan was planning a surprise
attack against a U.S. target, but they were not initially able to
decode the location “AF.” They suspected that the target was
Midway Island, but the stakes were high if they guessed wrong.

This class is being recorded

Battle of Midway
During WW II, American cryptographers had partially broken the
Japanese codes. In mid-1942, the U.S. intercepted
communications indicating that Japan was planning a surprise
attack against a U.S. target, but they were not initially able to
decode the location “AF.” They suspected that the target was
Midway Island, but the stakes were high if they guessed wrong.

So they had the U.S. garrison on Midway send an
unencrypted message saying they had a problem with their
water distillation system and needed fresh water. And then
they intercepted a Japanese message that decrypted to “AF
is short of water.”

The Battle of Midway is one of the major Pacific naval battles of
WWII, and the U.S. victory is partially attributable to a chosen
plaintext attack.

This class is being recorded

Oracles

So how do we define a chosen plaintext attack?

Recall that for EAV security, we used a game where Eve picked a
pair of messages and then tried to guess which one Alice chose
to encrypt.

We need some way for Eve to pick the plaintext and get a
ciphertext, but we don’t want to give her the key. We will
instead model this as an oracle, a black box to which Eve
can ask questions but whose insides she cannot access.

Enc(k,x)

Eve

This class is being recorded

x

c

Eve can query this oracle
up to polynomially many
times at any time during
the game.

Definition of CPA Security

Alice Eve

c

𝒜(c)
i

mi key k

c

Definition: (Enc, Dec) with security parameter s is CPA-secure if,
for any pair of messages and chosen by the adversary
(using and oracle access to Enc(k,x)) and for any efficient
attack (also with oracle access to Enc(k,x))

m0 m1
ℬ(s)
𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1)) = 1) | ≤ ϵ(s)

for negligible and probability taken over k and randomness
of Enc.

ϵ(s)

This class is being recorded

: and .ℬ(s) m0 m1
, m0 m1

i

Enc(k,x)

Achieving CPA Security

In order to achieve CPA security, we need to make sure the
ciphertext for the current message is in some way independent
of the previous messages. For instance, using the one-time pad,
we could have a list of keys and use a different key for each
message sent.

, , , …m0 m1 m2

This class is being recorded

, , , …k0 k1 k2

c0 = m0 ⊕ k0

c1 = m1 ⊕ k1

c2 = m2 ⊕ k2

The first message
sent or requested
by Eve uses the
first key , the
second message
uses , and so
forth.

k0

k1

The messages being requested by Eve don’t help her at all: the
next key to be used is unrelated to the previous ones.ki

Random Functions

We can view this strategy using different terminology as a
random function indexed by a key k = (, , , …):k0 k1 k2

Fk(r) = kr

The function simply looks at the input r, picks the rth block of
the key k, and outputs it.

Notice that for using this with the one-time pad, it doesn’t
actually matter that we use r in order, just that we don’t repeat
r’s between different messages.

This class is being recorded

Using r in order 0, 1, 2, … works here, but it runs a risk that
if Alice and Bob fall out of sync, then Bob will no longer be
able to decode Alice’s messages.

In fact, if we have a long enough list, it is good enough to pick a
random r each time and announce it (so that Bob knows it).

Birthday Paradox

This class is being recorded

How many messages can we send before we are likely to see a
random r repeated?

This can be analyzed using the “birthday paradox”: There are
about 100 people in this class. Even though not everyone is
here and there are many more days than that in the year, the
odds are extremely high that two of us have the same
birthday. (In fact, there are almost certainly many such pairs
and a number of triplets, maybe some days with 4 or more.)

Let’s go around and compare.

Birthday Paradox

This class is being recorded

How many messages can we send before we are likely to see a
random r repeated?

This can be analyzed using the “birthday paradox”: There are
about 100 people in this class. Even though not everyone is
here and there are many more days than that in the year, the
odds are extremely high that two of us have the same
birthday. (In fact, there are almost certainly many such pairs
and a number of triplets, maybe some days with 4 or more.)

Let’s go around and compare.

The point is that with t people and N possible days for birthdays,

there are pairs of people, and each pair has

probability 1/N of being a match, so we start to get matches
when (which for N = 365 gives t in the mid-20s).

(t
2) = t(t − 1)/2

t ≈ 2N

Pseudorandom Functions Motivation

If we want to choose a random r, we should therefore have a
large pool to choose from. Say r is an n-bit number. Then we
have possible values of r, so we should be OK up to about
messages. That seems safe.

2n 2n/2

This class is being recorded

Of course, if we do this with a truly random function ,
it is incredibly wasteful: the key k will need to be times
the length of each message, and most values of r will never
be used.

Fk(r)
2n

But if we can come up with a pseudorandom function that is
hard to distinguish from a random function, perhaps we can do
this with a much smaller key.

Fk(r)

Pseudorandom Functions

To define pseudorandom functions, we want to play another
distinguishing game. We have to give Eve somehow a “copy” of

 and ask her to determine if it is from a uniformly random
ensemble of functions or from the pseudorandom ensemble.
Fk(r)

This class is being recorded

A list of all possible input-output pairs would be far too
long, so instead we imagine Alice constructing an oracle for

, a black box Eve can query using inputs r but which
she cannot look inside. (And in particular, she doesn’t know
k.)

Fk(r)

Fk(r)

Alice

For simplicity and to make
sure everything is
polynomial, assume

 and
.

|Fk(r) | = |r | = n
|k | = s = poly(n)

Pseudorandom Functions

This class is being recorded

Definition: Let be a deterministic
efficiently computable function with and

. Then is a pseudorandom function if, for
any efficient attack that accesses an oracle and outputs a bit,

F : {0,1}* × {0,1}* → {0,1}*
|Fk(r) | = |r | = n

|k | = s = poly(n) Fk(r)
𝒜n

|Prk(𝒜
Fk(r)
n = 1) − Prf(𝒜f

n = 1) | ≤ ϵ(s)
with a negligible function and probabilities averaged over
randomness of , as well as over uniformly random keys k (left
probability) and truly random functions f (right probability).

ϵ(s)
𝒜

Alice Eve

𝒜n

non-random if
random if

𝒜𝒪
n = 1

𝒜𝒪
n = 0

n
𝒪O = Fk(r) or f(r) 𝒪

Pseudorandom Permutations
For some applications, it is better to consider pseudorandom
permutations rather than arbitrary pseudorandom functions.
Consider which is, for each k, a permutation, meaning it is
invertible. Because it is a permutation, . We
require that and be efficiently computable and

. Such an is a pseudorandom
permutation if it is computationally indistinguishable from a
random permutation.

Fk(r)
|Fk(r) | = |r | = n

Fk(r) F−1
k (r)

|k | = s = poly(n) Fk(r)

Note that a pseudorandom permutation is also a
pseudorandom function by the Birthday Paradox: Eve would
need queries to notice that outputs are not
repeating.

O(2n/2)

This class is being recorded

Why use them? For instance, pseudorandom permutations can
be used to directly encrypt (ECB mode), i.e., ciphertext

 since we can apply to decrypt. (Note, though,
that this scheme is not CPA-secure. Why?)
c = Fk(m) F−1

k

Breaking ECB Mode
ECB mode is not CPA-secure because if Eve wants to decide
between and , she can just query the oracle on those two
messages and compare the ciphertext with the two outputs.
More generally, Eve can tell if two messages are the same or not.

m0 m1

This class is being recorded

Let us look at an example ECB ciphertext and use this fact to
break the protocol:

Breaking ECB Mode
ECB mode is not CPA-secure because if Eve wants to decide
between and , she can just query the oracle on those two
messages and compare the ciphertext with the two outputs.
More generally, Eve can tell if two messages are the same or not.

m0 m1

This class is being recorded

Let us look at an example ECB ciphertext and use this fact to
break the protocol:

From Wikipedia, copyright Larry Ewing and User:Lunkwill

https://en.wikipedia.org/wiki/User:Lunkwill

Breaking ECB Mode
ECB mode is not CPA-secure because if Eve wants to decide
between and , she can just query the oracle on those two
messages and compare the ciphertext with the two outputs.
More generally, Eve can tell if two messages are the same or not.

m0 m1

This class is being recorded

Let us look at an example ECB ciphertext and use this fact to
break the protocol:

From Wikipedia, copyright Larry Ewing and User:Lunkwill

Decrypts to Tux Linux mascot by visual inspection.

https://en.wikipedia.org/wiki/User:Lunkwill

Pseudorandomness and CPA Security

This class is being recorded

Putting all the pieces together, we get the following protocol
based on a pseudorandom function .Fk(r)

Enc: Takes as input key k (of length s) and message m (of
length n). Choose random r (of length n) and output
ciphertext .c = (r, Fk(r) ⊕ m)

Dec: Takes as input key k and ciphertext c = (r, q). Outputs
.m′ := q ⊕ Fk(r)

Correctness is straightforward. Soundness (CPA-security)
follows from the arguments we have made plus a reduction
similar to the security proof for the pseudo one-time pad: The
chance of repeating a random r is small. Therefore, if is a
truly random function, the protocol is secure. But a
pseudorandom function should give the same results as a
random function and we can show this via a reduction.

Fk(r)

Block Cipher CTR Mode
In practice, practical constructions of pseudorandom functions
and permutations have a fixed size. This means that we need
some way of expanding them to longer messages.

One option: break the message up into pieces of size n and run
the protocol from the last slide with a new random r for each
block. Or we can save on randomness and length of the
ciphertext by using a counter for the blocks. But we also need a
random component to get security for multiple messages:

This class is being recorded

Enc: Input key k, message . Choose
random IV. Output ciphertext c = (IV, ,

, …).

m = (m1 | |m2 | |m3 | |…)
m1 ⊕ Fk(IV | |1)

m2 ⊕ Fk(IV | |2)

(Here || denotes concatenation.)

This is also CPA-secure since r=(IV||i) is unlikely to repeat within
or between messages.

Block Cipher CBC Mode
Another popular option is known as CBC mode. It requires
which is a pseudorandom permutation. It is CPA-secure.

Fk

Fk Fk Fk

m1

As with CTR mode, break the message up into blocks of size n
and use a single IV.

m2 m3
IV

This class is being recorded

c1IVCiphertext: c2 c3

To decrypt, Bob must invert on block i and XOR with .Fk ci−1

Vote: Which is more secure? (CTR/CBC/the same)

Block Cipher CBC Mode
Another popular option is known as CBC mode. It requires
which is a pseudorandom permutation. It is CPA-secure.

Fk

Fk Fk Fk

m1

As with CTR mode, break the message up into blocks of size n
and use a single IV.

m2 m3
IV

This class is being recorded

c1IVCiphertext: c2 c3

To decrypt, Bob must invert on block i and XOR with .Fk ci−1

Vote: Which is more secure? (CTR/CBC/the same)

