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Administrative

This class is being recorded

Reminder: Problem Set #2 due Tuesday at noon.



Breaking RC4

There are other similar biases and correlations in the output 
stream of RC4.  This means that for many uses, RC4 can be 
broken, even in practical situations.

Moral: Cryptography is hard!

While advances in computing power helped defeat RC4, 
primarily advances in algorithms and a better understanding of the 
structure of RC4 led to its defeat.  Moreover, ad hoc 
modifications of cryptographic protocols are extremely 
dangerous.
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In WEP, RC4 is modified to use an IV (to enable multiple 
messages with the same key, as we will discuss next) by 
substituting the public IV for the first 3 bytes of the key.  This 
enables even stronger attacks, making WEP completely insecure.

Because of these various attacks, RC4 is no longer widely used.



Multiple Messages

One problem with unmodified RC4 and similar stream ciphers 
(ones without an IV) is that they always produce the same 
output when started with a given key k.

This produces the same vulnerability as when the key for 
the one-time pad is used twice.

This means that if we want to use the same key repeatedly, 
something else has to change.  This is where the IV comes in:
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• IV could be a counter that increments with each message 
sent.  This can work, but Alice and Bob must keep track 
how many messages were sent and if one gets lost, that 
causes problems.

• Or IV can be random each time and transmitted along 
with the ciphertext.  This makes the ciphertext longer 
than the message.



Complications of Multiple Messages

To define security for an encryption protocol that is supposed to 
work for multiple messages, we need a new threat model.  
Presumably we should imagine that Eve has access to 
encryptions of more than one message.

But what if Eve happens to know — or guess — the 
contents of one or more of those messages?

We should include this possibility in the threat model.  
Sometimes the content of a message becomes obvious 
later, for instance if the message contains your plans for the 
day.  At the end of the day, those plans have been revealed, 
but your encrypted plans for tomorrow are still relevant 
and an attractive target for Eve to break.
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How can we formalize the idea that Eve knows some messages?  
Which messages and how similar or different might they be from 
the messages we are still trying to hide?



Chosen Plaintext Attack
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Solution: Let Eve pick the plaintext of the other messages!

We will assume Eve can pick some polynomial number of 
plaintext messages and see ciphertexts corresponding to 
those messages.

This is the conservative assumption.  It is hard to quantify exactly 
which combinations of messages are likely, and also hard to 
quantify which ones will be most dangerous in terms of helping 
Eve break the protocol.  But letting Eve pick the plaintexts 
guarantees the worst case, which means that all other cases 
where Eve knows some of the plaintexts are covered too.

Obviously, I am not suggesting that Eve is telling Alice what 
to encrypt.

Well …



Battle of Midway
During WW II, American cryptographers had partially broken the 
Japanese codes.  In mid-1942, the U.S. intercepted 
communications indicating that Japan was planning a surprise 
attack against a U.S. target, but they were not initially able to 
decode the location “AF.”  They suspected that the target was 
Midway Island, but the stakes were high if they guessed wrong.
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Battle of Midway
During WW II, American cryptographers had partially broken the 
Japanese codes.  In mid-1942, the U.S. intercepted 
communications indicating that Japan was planning a surprise 
attack against a U.S. target, but they were not initially able to 
decode the location “AF.”  They suspected that the target was 
Midway Island, but the stakes were high if they guessed wrong.

So they had the U.S. garrison on Midway send an 
unencrypted message saying they had a problem with their 
water distillation system and needed fresh water.  And then 
they intercepted a Japanese message that decrypted to “AF 
is short of water.”

The Battle of Midway is one of the major Pacific naval battles of 
WWII, and the U.S. victory is partially attributable to a chosen 
plaintext attack.
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Oracles

So how do we define a chosen plaintext attack?

Recall that for EAV security, we used a game where Eve picked a 
pair of messages and then tried to guess which one Alice chose 
to encrypt.

We need some way for Eve to pick the plaintext and get a 
ciphertext, but we don’t want to give her the key.  We will 
instead model this as an oracle, a black box to which Eve 
can ask questions but whose insides she cannot access.

Enc(k,x)

Eve
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x

c

Eve can query this oracle 
up to polynomially many 
times at any time during 
the game.



Definition of CPA Security

Alice Eve

c

𝒜(c)
i

mi key k

c

Definition: (Enc, Dec) with security parameter s is CPA-secure if, 
for any pair of messages  and  chosen by the adversary 
(using  and oracle access to Enc(k,x)) and for any efficient 
attack  (also with oracle access to Enc(k,x))

m0 m1
ℬ(s)
𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1)) = 1) | ≤ ϵ(s)

for negligible  and probability taken over k and randomness 
of Enc.

ϵ(s)
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:  and .ℬ(s) m0 m1
, m0 m1

i

Enc(k,x)



Achieving CPA Security

In order to achieve CPA security, we need to make sure the 
ciphertext for the current message is in some way independent 
of the previous messages.  For instance, using the one-time pad, 
we could have a list of keys and use a different key for each 
message sent.

, , , …m0 m1 m2

This class is being recorded

, , , …k0 k1 k2

c0 = m0 ⊕ k0

c1 = m1 ⊕ k1

c2 = m2 ⊕ k2

The first message 
sent or requested 
by Eve uses the 
first key , the 
second message 
uses , and so 
forth.

k0

k1

The messages being requested by Eve don’t help her at all: the 
next key  to be used is unrelated to the previous ones.ki



Random Functions

We can view this strategy using different terminology as a 
random function indexed by a key k = ( , , , …):k0 k1 k2

Fk(r) = kr

The function simply looks at the input r, picks the rth block of 
the key k, and outputs it.

Notice that for using this with the one-time pad, it doesn’t 
actually matter that we use r in order, just that we don’t repeat 
r’s between different messages.
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Using r in order 0, 1, 2, … works here, but it runs a risk that 
if Alice and Bob fall out of sync, then Bob will no longer be 
able to decode Alice’s messages.

In fact, if we have a long enough list, it is good enough to pick a 
random r each time and announce it (so that Bob knows it).



Birthday Paradox
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How many messages can we send before we are likely to see a 
random r repeated?

This can be analyzed using the “birthday paradox”: There are 
about 100 people in this class.  Even though not everyone is 
here and there are many more days than that in the year, the 
odds are extremely high that two of us have the same 
birthday.  (In fact, there are almost certainly many such pairs 
and a number of triplets, maybe some days with 4 or more.)

Let’s go around and compare.



Birthday Paradox
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How many messages can we send before we are likely to see a 
random r repeated?

This can be analyzed using the “birthday paradox”: There are 
about 100 people in this class.  Even though not everyone is 
here and there are many more days than that in the year, the 
odds are extremely high that two of us have the same 
birthday.  (In fact, there are almost certainly many such pairs 
and a number of triplets, maybe some days with 4 or more.)

Let’s go around and compare.

The point is that with t people and N possible days for birthdays, 

there are  pairs of people, and each pair has 

probability 1/N of being a match, so we start to get matches 
when  (which for N = 365 gives t in the mid-20s).

( t
2) = t(t − 1)/2

t ≈ 2N



Pseudorandom Functions Motivation

If we want to choose a random r, we should therefore have a 
large pool to choose from.  Say r is an n-bit number.  Then we 
have  possible values of r, so we should be OK up to about  
messages.  That seems safe.

2n 2n/2
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Of course, if we do this with a truly random function , 
it is incredibly wasteful: the key k will need to be  times 
the length of each message, and most values of r will never 
be used.

Fk(r)
2n

But if we can come up with a pseudorandom function  that is 
hard to distinguish from a random function, perhaps we can do 
this with a much smaller key.

Fk(r)



Pseudorandom Functions

To define pseudorandom functions, we want to play another 
distinguishing game.  We have to give Eve somehow a “copy” of 

 and ask her to determine if it is from a uniformly random 
ensemble of functions or from the pseudorandom ensemble.
Fk(r)
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A list of all possible input-output pairs would be far too 
long, so instead we imagine Alice constructing an oracle for 

, a black box Eve can query using inputs r but which 
she cannot look inside.  (And in particular, she doesn’t know 
k.)

Fk(r)

Fk(r)

Alice

For simplicity and to make 
sure everything is 
polynomial, assume 

 and 
.

|Fk(r) | = |r | = n
|k | = s = poly(n)



Pseudorandom Functions
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Definition: Let  be a deterministic 
efficiently computable function with  and

.  Then  is a pseudorandom function if, for 
any efficient attack  that accesses an oracle and outputs a bit,

F : {0,1}* × {0,1}* → {0,1}*
|Fk(r) | = |r | = n

|k | = s = poly(n) Fk(r)
𝒜n

|Prk(𝒜
Fk(r)
n = 1) − Prf(𝒜f

n = 1) | ≤ ϵ(s)
with  a negligible function and probabilities averaged over 
randomness of , as well as over uniformly random keys k (left 
probability) and truly random functions f (right probability).

ϵ(s)
𝒜

Alice Eve

𝒜n

non-random if 
random if 

𝒜𝒪
n = 1

𝒜𝒪
n = 0

n
𝒪O = Fk(r) or f(r) 𝒪



Pseudorandom Permutations
For some applications, it is better to consider pseudorandom 
permutations rather than arbitrary pseudorandom functions.  
Consider  which is, for each k, a permutation, meaning it is 
invertible.  Because it is a permutation, .  We 
require that  and  be efficiently computable and 

.  Such an  is a pseudorandom 
permutation if it is computationally indistinguishable from a 
random permutation.

Fk(r)
|Fk(r) | = |r | = n

Fk(r) F−1
k (r)

|k | = s = poly(n) Fk(r)

Note that a pseudorandom permutation is also a 
pseudorandom function by the Birthday Paradox: Eve would 
need  queries to notice that outputs are not 
repeating.

O(2n/2)
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Why use them?  For instance, pseudorandom permutations can 
be used to directly encrypt (ECB mode), i.e., ciphertext 

 since we can apply  to decrypt.  (Note, though, 
that this scheme is not CPA-secure.  Why?)
c = Fk(m) F−1

k



Breaking ECB Mode
ECB mode is not CPA-secure because if Eve wants to decide 
between  and , she can just query the oracle on those two 
messages and compare the ciphertext with the two outputs.  
More generally, Eve can tell if two messages are the same or not.

m0 m1
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Let us look at an example ECB ciphertext and use this fact to 
break the protocol:
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Let us look at an example ECB ciphertext and use this fact to 
break the protocol:

From Wikipedia, copyright Larry Ewing and User:Lunkwill

https://en.wikipedia.org/wiki/User:Lunkwill


Breaking ECB Mode
ECB mode is not CPA-secure because if Eve wants to decide 
between  and , she can just query the oracle on those two 
messages and compare the ciphertext with the two outputs.  
More generally, Eve can tell if two messages are the same or not.

m0 m1
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Let us look at an example ECB ciphertext and use this fact to 
break the protocol:

From Wikipedia, copyright Larry Ewing and User:Lunkwill

Decrypts to Tux Linux mascot by visual inspection.

https://en.wikipedia.org/wiki/User:Lunkwill


Pseudorandomness and CPA Security
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Putting all the pieces together, we get the following protocol 
based on a pseudorandom function .Fk(r)

Enc: Takes as input key k (of length s) and message m (of 
length n).  Choose random r (of length n) and output 
ciphertext .c = (r, Fk(r) ⊕ m)

Dec: Takes as input key k and ciphertext c = (r, q).  Outputs 
.m′ := q ⊕ Fk(r)

Correctness is straightforward.  Soundness (CPA-security) 
follows from the arguments we have made plus a reduction 
similar to the security proof for the pseudo one-time pad: The 
chance of repeating a random r is small.  Therefore, if  is a 
truly random function, the protocol is secure.  But a 
pseudorandom function should give the same results as a 
random function and we can show this via a reduction.

Fk(r)



Block Cipher CTR Mode
In practice, practical constructions of pseudorandom functions 
and permutations have a fixed size.  This means that we need 
some way of expanding them to longer messages.

One option: break the message up into pieces of size n and run 
the protocol from the last slide with a new random r for each 
block.  Or we can save on randomness and length of the 
ciphertext by using a counter for the blocks.  But we also need a 
random component to get security for multiple messages:
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Enc: Input key k, message .  Choose 
random IV.  Output ciphertext c = (IV, , 

, …).

m = (m1 | |m2 | |m3 | |…)
m1 ⊕ Fk(IV | |1)

m2 ⊕ Fk(IV | |2)

(Here || denotes concatenation.)

This is also CPA-secure since r=(IV||i) is unlikely to repeat within 
or between messages.



Block Cipher CBC Mode
Another popular option is known as CBC mode.  It requires  
which is a pseudorandom permutation.  It is CPA-secure.

Fk

Fk Fk Fk

m1

As with CTR mode, break the message up into blocks of size n 
and use a single IV. 

m2 m3
IV
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c1IVCiphertext: c2 c3

To decrypt, Bob must invert  on block i and XOR with .Fk ci−1

Vote: Which is more secure?  (CTR/CBC/the same)



Block Cipher CBC Mode
Another popular option is known as CBC mode.  It requires  
which is a pseudorandom permutation.  It is CPA-secure.

Fk

Fk Fk Fk

m1

As with CTR mode, break the message up into blocks of size n 
and use a single IV. 

m2 m3
IV
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c1IVCiphertext: c2 c3

To decrypt, Bob must invert  on block i and XOR with .Fk ci−1

Vote: Which is more secure?  (CTR/CBC/the same)




