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Administrative

This class is being recorded

Reminder: Problem Set #3 is due Thursday (Sep. 29) at noon.

Some notes about the problem set:
• Remember to name your file “attack.py”
• The IV and key are lists of independent random bytes of 

an appropriate length.  In particular, it is possible for values 
to repeat.

• There were some bugs in the autograder which have been 
fixed.  The autograder has been rerun and some scores 
changed.

• Hint: In order to solve problem 1 for all lengths, your 
attack function will need to look at the IV provided to it, 
not just the list x.

Solution set #2 is available on ELMS.
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Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Answer: A cryptographer will tell you how they did it.

Let us now perform a cryptographic magic trick.
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h(a, g(b)) h’(f(a), b)

f, g, h, h’

h(a,g(b)) = h’(f(a),b)
Attack

???
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Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

gagb

ga, gb

This class is being recorded

(gb)a = gab (ga)b = gab

Attack

???

Public choice of p, g
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Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65. 

Alice: Choose & record a secret number a from 0 to 70.  
Compute 

A = 65a mod 71
Bob: Choose &record a secret number b from 0 to 70.  
Compute 

B = 65b mod 71

Alice and Bob: announce A and B to the class.

Alice: Compute  and write it down secretly.Ba mod 71
Bob: Compute  and write it down secretly.Ab mod 71

Do not reveal them until I say to.
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To understand what is going on with Diffie-Hellman and how 
one might attack it or make it harder to attack, we need to know 
a lot more about modular arithmetic.

Addition: Works the same.  E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same.  E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same.  E.g.:

36 * 58 mod 71 = 29 = 58 * 36 mod 71
Division: There are some issues.  E.g.:

35/58 mod 60 = ?
This question has no answer.  /∃x s . t . 58 * x = 35 mod 60



Modular Divison

But  is well-defined:36/58 mod 71

58 * 60 = 1 mod 71

Thus,

36/58 mod 71 = 36 * 60 mod 71 = 30

This class is being recorded

How do we determine if division is allowed or not?

a /b = c mod N a = bc + kN

Suppose there is some p such that  and .  Then the right-
hand side of the equation on the right is also a multiple of p.  
Thus, division by b is only possible if a is a multiple of p as well.

p |b p |N

What about if b and N are relatively prime?  (I.e., they have no 
common factors.)



Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive 
integers a and b: namely, the largest integer c such that  and 

.  Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a

c |b

Theorem: For any two positive integers a and b, there exists a 
polynomial-time algorithm to find X and Y such that 

aX + bY = gcd(a, b)

Note: If , then  for any integers X, Y.d < gcd(a, b) aX + bY ≠ d

This class is being recorded

Proof: The proof is an analysis of the algorithm to find X and Y.  
This is Euclid’s algorithm.

Euclid’s algorithm appeared in Euclid’s Elements in around 300 
BCE.  That makes it one of the world’s oldest algorithms!



Euclid’s Algorithm Concept
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Suppose we want to find c = gcd(a,b). Example:

We know  and .  Can we 
find another smaller number that 
is also a multiple of c?

c |a c |b a = 58
b = 36
c = 2 (but we don’t 
know that yet)

If , then a’ = a-b is smaller 
than a and must still be a multiple 
of c.

a > b
a-b = 22
(still a multiple of c)

If we keep subtracting one number 
from the other, our pair of 
numbers will get steadily smaller 
until eventually we get down to c.

36 - 22 = 14

22 - 14 = 8
14 - 8 = 6
8 - 6 = 2

6 is a multiple of 2, 
so we are done.
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less than b, so next time we reduce b instead. 

a mod b
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Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger 
than b.  Instead we should take , which means subtract 
off as many b’s as we can.  This will give us a number a’ which is 
less than b, so next time we reduce b instead. 

a mod b

To get the coefficients X and Y, we should also keep track of 
how many b’s we subtracted:

a′ = a − Y0b
At each step, this will allow us to write our current replacements 
for a and b in the form .aXi + bYi

In particular, if our current pair is  and 
, and we subtract  copies of , then

ai = aXi + bYi
bi = aX′ i + bY′ i mi bi

ai+1 = ai − mibi = a(Xi − miX′ i) + b(Yi − miY′ i)

We don’t need to keep  and  separate: We can combine them 
into a single sequence .

ai bi
ri



Euclid’s Algorithm

Let  and .  Assume .r0 = a r1 = b a > b

This class is being recorded

Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 57 r1 = 22

, 
, 

r2 = 13
X2 = 1 Y2 = − 2

, 
, 

r3 = 9
X3 = − 1 Y3 = 3

, 
, 

r4 = 4
X4 = 2 Y4 = − 5

, 
, 

r5 = 1
X5 = − 5 Y5 = 13

r6 = 0

,gcd(57,22) = 1
1 = − 5 ⋅ 57 + 13 ⋅ 22



Euclid’s Algorithm Analysis
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At every iteration of the algorithm, the following statements are 
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true 
for i+1 (by the arguments before).  They are true for i=0 and 
thus we prove by induction that the statements are true for all i.
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Euclid’s Algorithm Analysis
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At every iteration of the algorithm, the following statements are 
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true 
for i+1 (by the arguments before).  They are true for i=0 and 
thus we prove by induction that the statements are true for all i.

Since  strictly decreases, the algorithm must eventually 
reach , at which point it terminates with .  At 
that point, .  But that means  

and so on.  By induction, we also have  for all j.

ri
ri = 0 i − 1 = if

rif |rif−1 rif |rif−2 = mif−1rif−1 + rif
rif |rj

In particular,  and .  But , sorif |a rif |b gcd(a, b) |rif
rif = gcd(a, b)



Efficiency of Euclid’s Algorithm

This class is being recorded

How quickly does  decrease in Euclid’s algorithm?ri

If , then .ri ≥ ri−1/2 ri+1 ≤ ri−1/2
If , then .ri ≤ ri−1/2 ri+1 ≤ ri ≤ ri−1/2

Either way, .ri+1 ≤ ri−1/2

Since  is at least halved every 2 steps, the algorithm can run at 
most  steps before halting.

ri
2 log2 a



Meaning of Efficient
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It’s important to remember that efficient (or polynomial time) 
means polynomial time as a function of the input size.

When doing arithmetic or finding the gcd, the input size is 
the length (i.e., number of bits) of the numbers being 
computed with.

Not polynomial in the numbers themselves!

Integer addition, subtraction, multiplication, division (with 
remainder) are all efficient in this sense using standard grade 
school algorithms.  Still true for modular +, -, *.

 is the input size, so Euclid’s algorithm has a polynomial 
number of steps, each of which is efficient.  Therefore it is 
efficient overall.

log2 a



Modular Division

If , then we can always divide by b in mod N 
arithmetic:

gcd(b, N) = 1

Using Euclid’s algorithm, find X, Y such that

bX + NY = 1

Then .bX = 1 mod N

X is then the multiplicative inverse of b:

(aX)b = a(Xb) = a mod N

This class is being recorded

so .a/b = aX mod N

And moreover, we can divide in polynomial time.

Example: 1 = − 5 ⋅ 57 + 13 ⋅ 22
Thus, .  E.g., a/22 mod 57 = 13a mod 57 5/22 = 8 mod 57



Dos and Don’ts of Division

This class is being recorded

When b and N are relatively prime, it is OK to cancel b from an 
equation:

ab = cb mod N a = c mod N

But this is not OK in general if .gcd(b, N) ≠ 1

Examples:

 but .2 ⋅ 4 = 2 ⋅ 9 mod 10 4 ≠ 9 mod 10

3 ⋅ 4 + 3 ⋅ 4 = 4 mod 10 = 3 ⋅ 8 mod 10
4 + 4 = 8 mod 10



Diffie-Hellman Security Idea
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In Diffie-Hellman, Alice and Bob must perform modular 
exponentiation: Alice announces  and Bob 
announces  for secret a and b chosen by Alice and 
Bob respectively and not shared with each other or Eve.  Then 
they do another pair of modular exponentiations  and  to 
calculate the key.

A = ga mod p
B = gb mod p

Ba Ab

• Therefore, Alice and Bob need efficient algorithms to 
compute modular exponentials.

Eve can break Diffie-Hellman if she can calculate the discrete log 
for (g,p): That is, if given y, she can find x such that .gx = y mod p

• So, for security, we need that calculating the discrete log is 
hard.



Efficiency of Modular Exponentiation

In order to run Diffie-Hellman, we need to perform modular 
exponentiation.  Can we do this efficiently as a function of the 
length of the numbers involved?

This class is being recorded

To calculate , we could:ga mod p

• Start with .
• Multiply by g a total of a times, each time reducing mod 

p after the multiplication.

g mod p

However, this takes a total of a multiplications, which is too many: 
.a = O(exp(log a))

Since Eve can also find the discrete log in O(a) multiplications by 
computing all the powers of g, we definitely need a better 
algorithm for modular exponentiation.



Repeated Squaring
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We can get large exponents quickly by 
repeated squaring:

From  , we can calculate 
 using 1 multiplication by 

squaring it.

gi mod p
g2i mod p

Doing this repeatedly gives us , , , 
, …, , with only c multiplications.

g g2 g4

g8 g2c

To calculate  for general a, 
first write a in binary:

ga mod p

a = a02c + a12c−1 + ⋯ + ac−12 + ac

Then ga =
c

∏
i=0

gac−i2i

This needs  multiplications.O(log a)

Example:

Calculate :6512 mod 71

652 = 36 mod 71
654 = 362 = 18 mod 71
658 = 182 = 40 mod 71

Then

6512 = 658 ⋅ 654 mod 71
= 40 ⋅ 18 mod 71
= 10 mod 71



How Many Powers Are There?
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For discrete log to be hard, we need for  to take on many 
different possible values for fixed g.

ga

How many can it take?  The answer depends on both g and p.

Since there are only p-1 possible values mod p, eventually  
must repeat, .  Let us assume g and p are 
relatively prime so we can cancel g.  Then .

ga

gr+1 = g mod p
gr = 1 mod p

Definition: If r is the lowest power for which , 
then r is the order of g, ord(g).

gr = 1 mod p

After r, powers of g start to repeat:

ga = gord(g)ga−ord(g) = 1 ⋅ ga−ord(g) = ga−ord(g) mod p

Or more generally,

 iff ga = gb mod p a = b mod ord(g)



Modular Exponentiation Example 1
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Mod 10: We will focus only on g which are relatively prime to 10.

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10
ord(3) = 4

71 = 7 mod 10
72 = 9 mod 10
73 = 3 mod 10
74 = 1 mod 10

ord(7) = 4

91 = 9 mod 10
92 = 1 mod 10

ord(9) = 2

Notice that all numbers 
relatively prime to 10 appear as 
exponents of 3 and 7.



Modular Exponentiation Example 2
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Mod 11: Now every g is relatively prime to 11.

31 = 3 mod 11
32 = 9 mod 11
33 = 5 mod 11
34 = 4 mod 11
35 = 1 mod 11
ord(3) = 5

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11

ord(7) = 10

The order can be much 
higher mod 11 than 
mod 10.



Exponentiation and GCD
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Proposition: If , then  as well:gcd(g, p) = 1 gcd(ga mod p, p) = 1

We can assume .  Thena < r = ord(g)
gagr−a = ga = 1 mod p

But this implies that  is the multiplicative inverse of .gr−a ga

Notice that  for all k and , so 
.  In particular, if , then 

there is no k such that .

gcd(h, p) |hk gcd(h, p) |p
gcd(h, p) | (hk mod p) gcd(h, p) ≠ 1

hk = 1 mod p

Since  has a multiplicative inverse, it follows that 
.

ga

gcd(ga mod p, p) = 1

Proof:




