
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 9
Daniel Gottesman

Administrative

This class is being recorded

Reminder: Problem Set #3 is due Thursday (Sep. 29) at noon.

Some notes about the problem set:
• Remember to name your file “attack.py”
• The IV and key are lists of independent random bytes of

an appropriate length. In particular, it is possible for values
to repeat.

• There were some bugs in the autograder which have been
fixed. The autograder has been rerun and some scores
changed.

• Hint: In order to solve problem 1 for all lengths, your
attack function will need to look at the IV provided to it,
not just the list x.

Solution set #2 is available on ELMS.

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Answer: A cryptographer will tell you how they did it.

Let us now perform a cryptographic magic trick.

Key Exchange

Alice Bob

Eve

secret a secret b

This class is being recorded

Key Exchange

Alice Bob

Eve

secret a secret b
g(b)

f(a)

This class is being recorded

Key Exchange

Alice Bob

Eve

secret a secret b
g(b)

f(a)

f(a)g(b)

f(a), g(b)

This class is being recorded

Key Exchange

Alice Bob

Eve

secret a secret b
g(b)

f(a)

f(a)g(b)

f(a), g(b)

This class is being recorded

h(a, g(b)) h’(f(a), b)

h(a,g(b)) = h’(f(a),b)

Key Exchange

Alice Bob

Eve

secret a secret b
g(b)

f(a)

f(a)g(b)

f(a), g(b)

This class is being recorded

h(a, g(b)) h’(f(a), b)

h(a,g(b)) = h’(f(a),b)
Attack

???

Key Exchange

Alice Bob

Eve

secret a secret b
g(b)

f(a)

f(a)g(b)

f(a), g(b)

This class is being recorded

h(a, g(b)) h’(f(a), b)

f, g, h, h’

h(a,g(b)) = h’(f(a),b)
Attack

???

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b

This class is being recorded

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

This class is being recorded

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

gagb

ga, gb

This class is being recorded

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

gagb

ga, gb

This class is being recorded

(gb)a = gab (ga)b = gab

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

gagb

ga, gb

This class is being recorded

(gb)a = gab (ga)b = gab

Attack

???

Public choice of p, g

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65.

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65.

Alice: Choose & record a secret number a from 0 to 70.
Compute

A = 65a mod 71
Bob: Choose &record a secret number b from 0 to 70.
Compute

B = 65b mod 71

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65.

Alice: Choose & record a secret number a from 0 to 70.
Compute

A = 65a mod 71
Bob: Choose &record a secret number b from 0 to 70.
Compute

B = 65b mod 71

Alice and Bob: announce A and B to the class.

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65.

Alice: Choose & record a secret number a from 0 to 70.
Compute

A = 65a mod 71
Bob: Choose &record a secret number b from 0 to 70.
Compute

B = 65b mod 71

Alice and Bob: announce A and B to the class.

Alice: Compute and write it down secretly.Ba mod 71
Bob: Compute and write it down secretly.Ab mod 71

Do not reveal them until I say to.

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition:

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction:

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication:

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same. E.g.:

36 * 58 mod 71 = 29 = 58 * 36 mod 71

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same. E.g.:

36 * 58 mod 71 = 29 = 58 * 36 mod 71
Division:

Modular Arithmetic

This class is being recorded

To understand what is going on with Diffie-Hellman and how
one might attack it or make it harder to attack, we need to know
a lot more about modular arithmetic.

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same. E.g.:

36 * 58 mod 71 = 29 = 58 * 36 mod 71
Division: There are some issues. E.g.:

35/58 mod 60 = ?
This question has no answer. /∃x s . t . 58 * x = 35 mod 60

Modular Divison

But is well-defined:36/58 mod 71

58 * 60 = 1 mod 71

Thus,

36/58 mod 71 = 36 * 60 mod 71 = 30

This class is being recorded

How do we determine if division is allowed or not?

a /b = c mod N a = bc + kN

Suppose there is some p such that and . Then the right-
hand side of the equation on the right is also a multiple of p.
Thus, division by b is only possible if a is a multiple of p as well.

p |b p |N

What about if b and N are relatively prime? (I.e., they have no
common factors.)

Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive
integers a and b: namely, the largest integer c such that and

. Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a

c |b

Theorem: For any two positive integers a and b, there exists a
polynomial-time algorithm to find X and Y such that

aX + bY = gcd(a, b)

Note: If , then for any integers X, Y.d < gcd(a, b) aX + bY ≠ d

This class is being recorded

Proof: The proof is an analysis of the algorithm to find X and Y.
This is Euclid’s algorithm.

Euclid’s algorithm appeared in Euclid’s Elements in around 300
BCE. That makes it one of the world’s oldest algorithms!

Euclid’s Algorithm Concept

This class is being recorded

Suppose we want to find c = gcd(a,b). Example:

We know and . Can we
find another smaller number that
is also a multiple of c?

c |a c |b a = 58
b = 36
c = 2 (but we don’t
know that yet)

If , then a’ = a-b is smaller
than a and must still be a multiple
of c.

a > b
a-b = 22
(still a multiple of c)

If we keep subtracting one number
from the other, our pair of
numbers will get steadily smaller
until eventually we get down to c.

36 - 22 = 14

22 - 14 = 8
14 - 8 = 6
8 - 6 = 2

6 is a multiple of 2,
so we are done.

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′ = a − Y0b

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′ = a − Y0b
At each step, this will allow us to write our current replacements
for a and b in the form .aXi + bYi

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′ = a − Y0b
At each step, this will allow us to write our current replacements
for a and b in the form .aXi + bYi

In particular, if our current pair is and
, and we subtract copies of , then

ai = aXi + bYi
bi = aX′ i + bY′ i mi bi

ai+1 = ai − mibi = a(Xi − miX′ i) + b(Yi − miY′ i)

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′ = a − Y0b
At each step, this will allow us to write our current replacements
for a and b in the form .aXi + bYi

In particular, if our current pair is and
, and we subtract copies of , then

ai = aXi + bYi
bi = aX′ i + bY′ i mi bi

ai+1 = ai − mibi = a(Xi − miX′ i) + b(Yi − miY′ i)

We don’t need to keep and separate: We can combine them
into a single sequence .

ai bi
ri

Euclid’s Algorithm

Let and . Assume .r0 = a r1 = b a > b

This class is being recorded

Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 57 r1 = 22

,
,

r2 = 13
X2 = 1 Y2 = − 2

,
,

r3 = 9
X3 = − 1 Y3 = 3

,
,

r4 = 4
X4 = 2 Y4 = − 5

,
,

r5 = 1
X5 = − 5 Y5 = 13

r6 = 0

,gcd(57,22) = 1
1 = − 5 ⋅ 57 + 13 ⋅ 22

Euclid’s Algorithm Analysis

This class is being recorded

At every iteration of the algorithm, the following statements are
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true
for i+1 (by the arguments before). They are true for i=0 and
thus we prove by induction that the statements are true for all i.

Euclid’s Algorithm Analysis

This class is being recorded

At every iteration of the algorithm, the following statements are
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true
for i+1 (by the arguments before). They are true for i=0 and
thus we prove by induction that the statements are true for all i.

Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with . At
that point, . But that means

and so on. By induction, we also have for all j.

ri
ri = 0 i − 1 = if

rif |rif−1 rif |rif−2 = mif−1rif−1 + rif
rif |rj

Euclid’s Algorithm Analysis

This class is being recorded

At every iteration of the algorithm, the following statements are
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true
for i+1 (by the arguments before). They are true for i=0 and
thus we prove by induction that the statements are true for all i.

Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with . At
that point, . But that means

and so on. By induction, we also have for all j.

ri
ri = 0 i − 1 = if

rif |rif−1 rif |rif−2 = mif−1rif−1 + rif
rif |rj

In particular, and . But , sorif |a rif |b gcd(a, b) |rif
rif = gcd(a, b)

Efficiency of Euclid’s Algorithm

This class is being recorded

How quickly does decrease in Euclid’s algorithm?ri

If , then .ri ≥ ri−1/2 ri+1 ≤ ri−1/2
If , then .ri ≤ ri−1/2 ri+1 ≤ ri ≤ ri−1/2

Either way, .ri+1 ≤ ri−1/2

Since is at least halved every 2 steps, the algorithm can run at
most steps before halting.

ri
2 log2 a

Meaning of Efficient

This class is being recorded

It’s important to remember that efficient (or polynomial time)
means polynomial time as a function of the input size.

When doing arithmetic or finding the gcd, the input size is
the length (i.e., number of bits) of the numbers being
computed with.

Not polynomial in the numbers themselves!

Integer addition, subtraction, multiplication, division (with
remainder) are all efficient in this sense using standard grade
school algorithms. Still true for modular +, -, *.

 is the input size, so Euclid’s algorithm has a polynomial
number of steps, each of which is efficient. Therefore it is
efficient overall.

log2 a

Modular Division

If , then we can always divide by b in mod N
arithmetic:

gcd(b, N) = 1

Using Euclid’s algorithm, find X, Y such that

bX + NY = 1

Then .bX = 1 mod N

X is then the multiplicative inverse of b:

(aX)b = a(Xb) = a mod N

This class is being recorded

so .a/b = aX mod N

And moreover, we can divide in polynomial time.

Example: 1 = − 5 ⋅ 57 + 13 ⋅ 22
Thus, . E.g., a/22 mod 57 = 13a mod 57 5/22 = 8 mod 57

Dos and Don’ts of Division

This class is being recorded

When b and N are relatively prime, it is OK to cancel b from an
equation:

ab = cb mod N a = c mod N

But this is not OK in general if .gcd(b, N) ≠ 1

Examples:

 but .2 ⋅ 4 = 2 ⋅ 9 mod 10 4 ≠ 9 mod 10

3 ⋅ 4 + 3 ⋅ 4 = 4 mod 10 = 3 ⋅ 8 mod 10
4 + 4 = 8 mod 10

Diffie-Hellman Security Idea

This class is being recorded

In Diffie-Hellman, Alice and Bob must perform modular
exponentiation: Alice announces and Bob
announces for secret a and b chosen by Alice and
Bob respectively and not shared with each other or Eve. Then
they do another pair of modular exponentiations and to
calculate the key.

A = ga mod p
B = gb mod p

Ba Ab

• Therefore, Alice and Bob need efficient algorithms to
compute modular exponentials.

Eve can break Diffie-Hellman if she can calculate the discrete log
for (g,p): That is, if given y, she can find x such that .gx = y mod p

• So, for security, we need that calculating the discrete log is
hard.

Efficiency of Modular Exponentiation

In order to run Diffie-Hellman, we need to perform modular
exponentiation. Can we do this efficiently as a function of the
length of the numbers involved?

This class is being recorded

To calculate , we could:ga mod p

• Start with .
• Multiply by g a total of a times, each time reducing mod

p after the multiplication.

g mod p

However, this takes a total of a multiplications, which is too many:
.a = O(exp(log a))

Since Eve can also find the discrete log in O(a) multiplications by
computing all the powers of g, we definitely need a better
algorithm for modular exponentiation.

Repeated Squaring

This class is being recorded

We can get large exponents quickly by
repeated squaring:

From , we can calculate
 using 1 multiplication by

squaring it.

gi mod p
g2i mod p

Doing this repeatedly gives us , , ,
, …, , with only c multiplications.

g g2 g4

g8 g2c

To calculate for general a,
first write a in binary:

ga mod p

a = a02c + a12c−1 + ⋯ + ac−12 + ac

Then ga =
c

∏
i=0

gac−i2i

This needs multiplications.O(log a)

Example:

Calculate :6512 mod 71

652 = 36 mod 71
654 = 362 = 18 mod 71
658 = 182 = 40 mod 71

Then

6512 = 658 ⋅ 654 mod 71
= 40 ⋅ 18 mod 71
= 10 mod 71

How Many Powers Are There?

This class is being recorded

For discrete log to be hard, we need for to take on many
different possible values for fixed g.

ga

How many can it take? The answer depends on both g and p.

Since there are only p-1 possible values mod p, eventually
must repeat, . Let us assume g and p are
relatively prime so we can cancel g. Then .

ga

gr+1 = g mod p
gr = 1 mod p

Definition: If r is the lowest power for which ,
then r is the order of g, ord(g).

gr = 1 mod p

After r, powers of g start to repeat:

ga = gord(g)ga−ord(g) = 1 ⋅ ga−ord(g) = ga−ord(g) mod p

Or more generally,

 iff ga = gb mod p a = b mod ord(g)

Modular Exponentiation Example 1

This class is being recorded

Mod 10: We will focus only on g which are relatively prime to 10.

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10
ord(3) = 4

71 = 7 mod 10
72 = 9 mod 10
73 = 3 mod 10
74 = 1 mod 10

ord(7) = 4

91 = 9 mod 10
92 = 1 mod 10

ord(9) = 2

Notice that all numbers
relatively prime to 10 appear as
exponents of 3 and 7.

Modular Exponentiation Example 2

This class is being recorded

Mod 11: Now every g is relatively prime to 11.

31 = 3 mod 11
32 = 9 mod 11
33 = 5 mod 11
34 = 4 mod 11
35 = 1 mod 11
ord(3) = 5

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11

ord(7) = 10

The order can be much
higher mod 11 than
mod 10.

Exponentiation and GCD

This class is being recorded

Proposition: If , then as well:gcd(g, p) = 1 gcd(ga mod p, p) = 1

We can assume . Thena < r = ord(g)
gagr−a = ga = 1 mod p

But this implies that is the multiplicative inverse of .gr−a ga

Notice that for all k and , so
. In particular, if , then

there is no k such that .

gcd(h, p) |hk gcd(h, p) |p
gcd(h, p) | (hk mod p) gcd(h, p) ≠ 1

hk = 1 mod p

Since has a multiplicative inverse, it follows that
.

ga

gcd(ga mod p, p) = 1

Proof:

