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Abstract

We describe a new technique for finding potential buffer
overrun vulnerabilities in security-critical C code. The key
to success is to use static analysis: we formulate detec-
tion of buffer overruns as an integer range analysis prob-
lem. One major advantage of static analysis is that secu-
rity bugs can be eliminated before code is deployed. We
have implemented our design and used our prototype to find
new remotely-exploitable vulnerabilities in a large, widely
deployed software package. An earlier hand audit missed
these bugs.

1. Introduction

Buffer overrun vulnerabilities have plagued security ar-
chitects for at least a decade. In November 1988, the in-
famous Internet worm infected thousands or tens of thou-
sands of network-connected hosts and fragmented much of
the known net [17]. One of the primary replication mecha-
nisms was exploitation of a buffer overrun vulnerability in
the fingerd daemon.

Since then, buffer overruns have been a serious, continu-
ing menace to system security. If anything, the incidence of
buffer overrun attacks has been increasing. See Figure 1 for
data extracted from CERT advisories over the last decade.
Figure 1 shows that buffer overruns account for up to 50%
of today’s vulnerabilities, and this ratio seems to be increas-
ing over time. A partial examination of other sources sug-
gests that this estimate is probably not too far off: buffer
overruns account for 27% (55 of 207) of the entries in one
vulnerability database [29] and for 23% (43 of 189) in an-
other database [33]. Finally, a detailed examination of three
months of the bugtraq archives (January to March, 1998)
shows that 29% (34 of 117) of the vulnerabilities reported
are due to buffer overrun bugs [7].

Buffer overruns are so common because C is inherently
unsafe. Array and pointer references are not automatically
bounds-checked, so it is up to the programmer to do the
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checks herself. More importantly, many of the string op-
erations supported by the standard C library—strcpy(),
strcat(), sprintf(), gets(), and so on—are un-
safe. The programmer is responsible for checking that these
operations cannot overflow buffers, and programmers often
get those checks wrong or omit them altogether.

As a result, we are left with many legacy applications that
use the unsafe string primitives unsafely. Programs written
today still use unsafe operations such as strcpy() be-
cause they are familiar. Even sophisticated programmers
sometimes combine the unsafe primitives with some ad-
hoc checks, or use unsafe primitives when they somehow
“know” that the operation is safe or that the source string
cannot come under adversarial control.

Unfortunately, programs that use just the “safe” subset of
the C string API are not necessarily safe, because the “safe”
string primitives have their own pitfalls [43]:

• The strn*() calls behave dissimilarly. For instance,
strncpy(dst, src, sizeof dst) is correct
but strncat(dst, src, sizeof dst) is
wrong. Inconsistency makes it harder for the program-
mer to remember how to use the “safe” primitives
safely.

• strncpy()may leave the target buffer unterminated.
In comparison, strncat() and snprintf() al-
ways append a terminating ’\0’ byte, which is an-
other example of dissimilarity.

• Using strncpy() has performance implications, be-
cause it zero-fills all the available space in the tar-
get buffer after the ’\0’ terminator. For example,
a strncpy() of a 13-byte buffer into a 2048-byte
buffer overwrites the entire 2048-byte buffer.

• strncpy() and strncat() encourage off-by-
one bugs. For example, strncat(dst, src,
sizeof dst - strlen(dst) - 1) is correct,
but don’t forget the -1!

• snprintf() is perhaps the best of the “safe” primi-
tives: it has intuitive rules, and it is very general. How-
ever, until recently it was not available on many sys-
tems, so portable programs could not rely on it.
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Figure 1. Frequency of buffer overrun vulnerabilities, derived from a classification of CERT advisories. The
left-hand chart shows, for each year, the total number of CERT-reported vulnerabilities and the number that
can be blamed primarily on buffer overruns. The right-hand chart graphs the percentage of CERT-reported
vulnerabilities that were due to buffer overruns for each year.

In all cases, the programmer must still keep track of buffer
lengths accurately, which introduces another opportunity
for mistakes.

In short, today’s C environments make it easy to do the
wrong thing, and, worse still, hard to do the right thing with
buffers. This suggests that an automated tool to help de-
tect this class of security-relevant coding errors may be of
considerable benefit.

1.1. Overview

This paper describes a tool we developed to detect buffer
overruns in C source code. Though this is only a first
prototype, early results look promising. For example, the
tool found several serious new vulnerabilities in one large
security-critical application, even though it had been hand-
audited previously.

This work involves a synthesis of ideas from several
fields, including program analysis, theory, and systems se-
curity. The main idea is to apply standard static analy-
sis techniques from the programming languages literature
to the task of detecting potential security holes. We focus
specifically on static analysis so that vulnerabilities can be
proactively identified and fixed before they are exploited.
We formulate the buffer overrun detection problem as an
integer constraint problem, and we use some simple graph-
theoretic techniques to construct an efficient algorithm for
solving the integer constraints. Finally, security knowl-
edge is used to formulate heuristics that capture the class of
security-relevant bugs that tend to occur in real programs.

Others have applied runtime code-testing techniques to
the problem, using, e.g., black-box testing [41, 42] or soft-
ware fault injection [21] to find buffer overruns in real-world
applications. However, runtime testing seems likely to miss

many vulnerabilities. Consider the following example:

if (strlen(src) > sizeof dst)
break;

strcpy(dst, src);

Note that off-by-one errors in buffer management, such
as the one shown above, have been exploited in the past
[36, 48]. The fundamental problem with dynamic testing is
that the code paths of greatest interest to a security auditor—
the ones which are never followed in ordinary operation—
are also the ones that are the hardest to analyze with dy-
namic techniques. Therefore, in this work we focus on static
analysis.

A theme in this work is the trade-off between precision
and scalability. If scalability is not addressed from the start,
program analyses often have trouble handling large appli-
cations. Since we wish to analyze large programs, such as
sendmail (tens of thousands of lines of code), we explicitly
aim for scalability even if it comes at some cost in preci-
sion. This motivates our use of several heuristics that trade
off precision for scalability.

As a result of imprecision, our analysis may miss some
vulnerabilities (false negatives) and produce many false
alarms (false positives), but it is still a useful tool. In our
experience, even though our relatively imprecise analysis
generates many false alarms, it still reduces the number of
unsafe string operations to be checked by hand by an order
of magnitude or more; see Section 5.5.

We introduce two fundamental, new insights in this paper:

1. We treat C strings as an abstract data type. In C,
pointers are the bane of program analysis, and any
code fragments that manipulate buffers using pointer
operations are very difficult to analyze. However,
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Figure 2. The architecture of the buffer overflow detection prototype.

most C buffer overruns are in string buffers, and most
string operations use the standard C library functions.
This suggests modelling C strings as an abstract data
type with operations like strcpy() (copy strings),
strcat() (concatenate strings), and so on. Any
buffer overruns caused by manipulating strings using
primitive pointer operations cannot be detected, but
such code won’t otherwise interfere with the analysis.

2. We model buffers as pairs of integer ranges. Rather
than tracking the contents of each string variable di-
rectly, we summarize each string with two integer
quantities: the number of bytes allocated for the string
buffer (its allocated size), and the number of bytes cur-
rently in use (its length). The standard C library func-
tions can be modelled by what they do to the allocated
size and length of strings without regard to the strings’
contents.

We formulate the problem of detecting buffer over-
flows in terms of integer range tracking. Any algorithm
for integer range analysis will work: we just check, for
each string buffer, whether its inferred allocated size is
at least as large as its inferred maximum length.

These two ideas provide a conceptual framework for buffer
overrun analysis.

Our formulation of the problem suggests a natural divi-
sion of labor for the implementation: a front end models
string operations as integer range constraints, while a back
end solves the resulting constraint system. See Figure 2 for
a diagram of the system organization.

A secondary contribution of this research is a scalable and
very fast integer range analysis. One novel feature of this
analysis is the ability to handle cyclic data dependencies
without loss of precision by invoking a fixpoint theorem.
However, we could easily replace this algorithm with some
other technique for integer range analysis.

The organization of the first half of this paper parallels the
structure of our implementation. First, we need to define
a constraint language (see Section 2). Given this mathe-
matical foundation, we generate constraints from the source
code (see Section 3), solve the resulting constraint system
(see Section 4), and check all of the string variables for over-
flow.

The second half of this paper focuses on analysis of our
approach, including our initial experience with the proto-
type (Section 5), a review of related work (Section 6), and a
few concluding remarks (Section 7). Appendix A presents

the proofs for all of our theoretical results, and Appendix B
expands on more details of the constraint solver.

2. The constraint language

In this section we describe the language of constraints we
use to model string operations.

Let
�

denote the set of integers and write
�

∞ =
�
∪

{−∞, +∞} for the extended integers. The subsets of
�

∞

form a complete lattice with ⊆ as the partial order.
We restrict our attention to integer ranges. However,

many of the comments here also apply more generally to
arbitrary subsets of

�
∞. A range is a set R ⊆

�
∞ of

the form [m, n] = {i ∈
� ∞ : m ≤ i ≤ n}. When

S is a subset of
�

∞, we write inf S and supS for the
minimum and maximum element (with respect to ≤) of
S; in particular, for ranges we have inf[m, n] = m and
sup[m, n] = n. The range closure of any set S ⊆

�
∞ is

the minimal range R (with respect to ⊆) containing S, i.e.,
R = [inf S, sup S]. For example, the set S = {−1, 0, 4}
has range closure [−1, 4], since inf S = −1 and sup S = 4;
note that the range notation [−1, 4] is shorthand for the set
{−1, 0, 1, 2, 3, 4} ⊆

�
∞.

We extend the usual arithmetic operators to act on sets
S, T ⊆

�
∞ in the natural way:

S + T = {s + t : s ∈ S, t ∈ T}

S − T = {s − t : s ∈ S, t ∈ T}

S × T = {s × t : s ∈ S, t ∈ T}

For notational convenience we often write n as shorthand
for the singleton set {n}, when n ∈

�
∞. Thus, the expres-

sion 2T acquires its natural interpretation 2T = {2}× T =
{2t : t ∈ T}.

When the result of an operation is not a range, we take
its range closure. When this rule is followed, the ex-
tended arithmetical operators obey most of the usual alge-
braic laws. For instance, S + T = T + S, S + 0 = S,
S + S = 2S, S × T = T × S, 0 × S = 0, and so on.
However, the distributive rule does not hold (in general we
only have S× (T +U) ⊆ S×T +S×U ; see [32]) and the
rule for subtraction introduces a slightly ugly feature since
in general S − S 6= 0.

In practice, it is useful to extend the constraint language
to include min and max operators:

min(S, T ) = {min(s, t) : s ∈ S, t ∈ T}

max(S, T ) = {max(s, t) : s ∈ S, t ∈ T}



C code Interpretation
char s[n]; n ⊆ alloc(s)
strlen(s) len(s) − 1
strcpy(dst,src); len(src) ⊆ len(dst)
strncpy(dst,src,n); min(len(src), n) ⊆ len(dst)
s = "foo"; 4 ⊆ len(s), 4 ⊆ alloc(s)
p = malloc(n); n ⊆ alloc(p)
p = strdup(s); len(s) ⊆ len(p), alloc(s) ⊆ alloc(p)
strcat(s,suffix); len(s) + len(suffix) − 1 ⊆ len(s)
strncat(s,suffix,n); len(s) + min(len(suffix) − 1, n) ⊆ len(s)
p = getenv(...); [1,∞] ⊆ len(p), [1,∞] ⊆ alloc(p)
gets(s); [1,∞] ⊆ len(s)
fgets(s,n,...); [1, n] ⊆ len(s)
sprintf(dst,"%s",src); len(src) ⊆ len(dst)
sprintf(dst,"%d",n); [1, 20] ⊆ len(dst)
snprintf(dst,n,"%s",src); min(len(src), n) ⊆ len(dst)
p[n] = ’\0’; min(len(p), n + 1) ⊆ len(p)
p = strchr(s,c); p = s+n; [0, len(s)] ⊆ n
h = gethostbyname(...); [1,∞] ⊆ len(h->h name),

[−∞,∞] ⊆ h->h_length

Table 1. Modelling the effects of string operations: some examples.

For example, when S = {1, 2, 3, 4} = [1, 4] and T =
{3, 4, 5, 6} = [3, 6], then inf T = 3, min(S, T ) = [1, 4],
and S − T = [−5, 1].

We define an integer range expression e as

e ::= v | n | n × v | e + e | e − e
| max(e, . . . , e) | min(e, . . . , e)

where n ∈
�

and v ∈ Vars, a set of range variables. An
integer range constraint has the form e ⊆ v. Notice we
require the right-hand side to be a variable.

Note that equality constraints of the form v + n = w fit
within this framework, since they can be equivalently ex-
pressed as the pair of simultaneous constraints v + n ⊆ w,
w − n ⊆ v. Equality constraints are useful for unifying
variables that are discovered (during constraint generation)
to refer to the same memory location.

An assignment α : v 7→ α(v) ⊆
�

∞ satisfies a sys-
tem of constraints if all of the constraint assertions are true
when the formal variable names v are replaced by the corre-
sponding values α(v). For assignments α and β, we say that
α ⊆ β if α(v) ⊆ β(v) holds for all variables v. The least
solution to a constraint system is the smallest assignment α
that satisfies the system, i.e., a satisfying assignment α such
that any other satisfying assignment β obeys α ⊆ β.

Theorem 1. Every constraint system has a unique least so-
lution.

Proof. See the Appendix A for the proof.

In fact, as we shall see later, these constraint systems usu-
ally can be solved efficiently.

3. Constraint generation

The first step is to parse the source code; we use the
BANE toolkit [2]. Our analysis proceeds by traversing the
parse tree for the input C source code and generating a sys-
tem of integer range constraints. With each integer program
variable v we associate a range variable v. As discussed be-
fore, with each string variable s we associate two variables,
its allocated size (the number of bytes allocated for s), de-
noted alloc(s), and its length (the number of bytes currently
in use), denoted len(s). We model each string operation in
terms of its effect on these two quantities.

For convenience, the length of a string is defined to in-
clude the terminator ’\0’. Thus, the safety property to be
verified is

len(s) ≤ alloc(s) for all string variables s.

For each statement in the input program, we generate
an integer range constraint. Integer expressions and inte-
ger variables are modelled by corresponding range opera-
tions. For an assignment v = e, we generate the constraint
e ⊆ v. For example, for the assignment i = i+j, we gen-
erate the constraint i + j ⊆ i. We ignore assignments with
dereferenced pointers on the left; see below for a discussion.

For string operations, we pattern-match to determine what
kind of constraint to generate. Some sample constraints are
summarized in Table 1. The left column shows the C code
for a string operation of interest, and the right column shows
the generated constraints. For example, the second line says
that the return value of the strlen() library call is the
length of the string passed as its first argument, minus one



(for the string terminator). The third line in the table says
that the effect of the strcpy() operation is to overwrite
the first argument with the second argument, and thus af-
ter the strcpy() the length of the first argument is equal
to the length of the second argument. Note that although
strncpy() may leave its target unterminated, we do not
model this behavior.

For scalability and simplicity of implementation, we use a
flow-insensitive analysis, i.e., we ignore all control flow and
disregard the order of statements. Flow-insensitive analy-
ses sacrifice some precision for significant improvements
in scalability, efficiency, and ease of implementation. We
do not claim that flow-insensitive analysis is necessarily the
best approach for a production-quality buffer overrun tool;
instead, we merely observe that its advantages (ease of im-
plementation, scalability) mapped well to our initial goals
(construction of a proof-of-concept prototype that can ana-
lyze large, real-world applications).

Note that the strcat() operation is difficult to model
accurately in a flow-insensitive model, because we must as-
sume that it can execute arbitrarily often (for instance, in-
side a loop). As a result, in a flow-insensitive analysis every
non-trivial strcat() operation is flagged as a potential
buffer overrun. This is a price we have to pay for the better
performance of flow-insensitive analyses. Fortunately, most
of the C library string operations are idempotent, which
means that they do not present any intrinsic problems for
a flow-insensitive analysis.

Finally, we model function calls monomorphically, i.e.,
we merge information for all call sites of the same func-
tion. Let f() be a function defined with the formal in-
teger parameter formal. We add a variable f_return
to denote the return value of f(). A return statement
in f() is treated as an assignment to f_return. Each
function call b = f(a) is treated as an assignment of
the actuals to the formals (i.e., formal = a) followed
by an assignment that carries the return value of f() (i.e.,
b = f\_return). Note that the body of each function is
processed only once, so this strategy is simple and efficient,
but not necessarily precise.

After the possible ranges of all variables are inferred, we
may check the safety property for each string s. Suppose
the analysis discovers that len(s) and alloc(s) take on val-
ues only in [a, b] and [c, d], respectively. There are three
possibilities:

1. If b ≤ c, we may conclude that the string s never over-
flows its buffer.

2. If a > d, then a buffer overrun always occurs in any
execution that uses s.

3. If the two ranges overlap, then we cannot rule out the
possibility of a violation of the safety property, and we

char s[20], *p, t[10];
strcpy(s, "Hello");
p = s + 5;
strcpy(p, " world!");
strcpy(t, s);

Figure 3. A buffer overrun that the analysis would
not find due to the pointer aliasing. In this exam-
ple, a 13-byte string is copied into the 10-byte
buffer ttt.

conservatively conclude that there is the potential for a
buffer overrun vulnerability in s.

3.1. Handling pointers

Ideally, we would like the constraint generation algorithm
to be sound: if α is a satisfying assignment for the constraint
system generated by this algorithm on some program, then
α(v) should contain every possible value that the integer
program variable v can take on during the execution of the
program. Our algorithm is, however, unsafe in the presence
of pointers or aliasing.

Table 1 is deliberately vague about pointer operations.
This is because, in the simplistic model used in the pro-
totype, pointer aliasing effects are largely ignored, and the
rules for dealing with pointer expressions are highly ad-
hoc. For example, the statement q = p+j; is interpreted
as alloc(p) − j ⊆ alloc(q), len(p) − j ⊆ len(q). This
interpretation is correct in the absence of writes to *p and
*q, but due to the implicit aliasing of p and q a write to one
string is not reflected when the other string is read in some
subsequent program statement. Figure 3 gives an example
of a code segment with a static buffer overrun that is unde-
tected by the analysis. Thus, ignoring pointer aliasing can
cause the analysis to miss some vulnerabilities and, as we
shall see later, can occasionally cause false alarms.

Doubly-indirected pointers (e.g., char **) are hard to
handle correctly with our heuristics and thus are ignored in
our tool. Arrays of pointers present the same problems and
are treated similarly. As an unfortunate result, command-
line arguments (char *argv[]) are not treated in any
systematic way.

Function pointers are currently ignored. We also ignore
union types. These simplifications are all unsound in gen-
eral, but still useful for a large number of real programs.

It seems that one can retain some benefits of static
analysis despite (largely) ignoring pointers and aliasing.
Nonetheless, in practice there is one related C idiom that
cannot be ignored: use of C struct’s. Structures form es-
sentially the only mechanism for abstraction or construction
of data structures, so it is not surprising that they are widely
used. Experience suggests that modelling structures prop-
erly is crucial to obtaining good results: an earlier analysis



tool that ignored structures was mostly useless for under-
standing real programs of any non-trivial complexity. One
aspect that complicates analysis of structures is that they
are commonly used in conjunction with pointers (for exam-
ple, we might want to know whether p->left->right
refers to the same object as q->right->right), yet one
of the goals of the prototype was to avoid the implementa-
tion complexity associated with a full treatment of pointers,
if possible.

This seeming paradox is resolved with a simple trick for
modelling structures: all structure objects with the same (or
compatible) C type are assumed to be potentially aliased and
are modelled with a single variable in the constraint sys-
tem (see also [16]). In addition, structure field references
are further disambiguated using lexical field names, so that
hp->h_length is not considered the same memory loca-
tion as hp->h_addr. This technique can introduce false
alarms (but doesn’t miss real vulnerabilities, unless the pro-
gram uses casts in unusual ways), yet it seems to work well
enough in practice, in lieu of a full pointer analysis.

4. Solving integer range constraints

The design of the constraint language is motivated by the
following intuition. Suppose we are analyzing a program
with k variables. Consider the statespace

�
k whose i-th

component records the value of the i-th program variable.
We may consider an execution of the program as a path
through the statespace. With this perspective, our goal is to
find a minimal bounding box that encloses all of the dynam-
ically possible paths through the k-dimensional state space.

In this section, we give an efficient algorithm for find-
ing a bounding box solution to a system of constraints. In
practice, our algorithm scales linearly on our benchmarks.
Notice that the solution to the constraint system gives us
bounds on the ranges of each program variable standing
alone, but cannot give us any information on relationships
that hold between multiple program variables. As an al-
ternative, we could imagine computing a minimal convex
polyhedron that encloses all the execution paths (using, e.g.,
the simplex method). This would return more precise re-
sults, but it would probably also scale up very poorly to
the large problem instances encountered when analyzing
real-world programs. For instance, sendmail contains about
32k non-comment, non-blank lines of C code, and it yields
a constraint system with about 9k variables and 29k con-
straints. The simplification to bounding boxes is what al-
lows the constraint solver to run very efficiently.

We develop a bounding box algorithm by beginning with
the simplest case: assume that arithmetic and min/max ex-
pressions are omitted, so that each constraint has the form
f(vi) ⊆ vj , where f ∈ AF = {x 7→ ax + b : a ∈

�
, b ∈

�
∞} is an affine function on

�
∞ extended to operate on

ranges in the natural way, i.e., f(R) = {f(r) : r ∈ R} ⊆

�
∞.
We form a directed graph whose vertices are the vari-

ables vi. For each constraint f(vi) ⊆ vj we add the la-

beled directed edge vi
f
→ vj . Each vertex vi is marked

with a range α(vi) giving the current estimate of the so-
lution. All ranges are initially set to α(vi) := ∅. Then
constraints of the form n ⊆ v are processed by setting
α(vi) := RANGE-CLOSURE(α(vi) ∪ {n}) and the solver
is called.

The solver works by propagating information in this

graph. We say that an edge vi
f
→ vj is active if

f(α(vi)) 6⊆ α(vj). To propagate information along such
an active edge (also known as relaxation), we set α(vj) :=
RANGE-CLOSURE(α(vj)∪f(α(vi))). An augmenting path
is one containing only active edges. (This wording is in
deliberate analogy to standard algorithms for shortest-paths
and network flow problems.) The goal of the algorithm is
to find augmenting paths and propagate information along
them by relaxing the upper bounds on the solution.

If the resulting directed graph is acyclic, we can trivially
solve the constraint system in linear time: we topologically
sort the graph and propagate information along each edge in
sorted order. Graphs with cycles are harder to handle.

The approach given above can be rephrased in the per-
haps more familiar language of fixpoints over lattices. Each
constraint f(vi) ⊆ vj induces a continuous function F on
assignments given by

(F (α))(vk) =

{

α(vj) ∪ f(α(vi)) if j = k
α(vk) otherwise,

and in this way the constraint system gives us a set of such
functions {F}. Now note that a satisfying assignment for
the constraint system forms a fixpoint for all the F ’s, and
vice versa. Therefore, we are seeking the least fixpoint of
the functions {F}, because it will be the least solution to
the constraint system.

We could search for the fixpoint using a standard worklist
algorithm that visits all the augmenting paths in breadth-first
order and propagates information along them by relaxation.
However, the basic worklist algorithm would exhibit serious
problems: in the presence of cycles, it might not terminate!
For instance, consider the constraint system containing the
two constraints 5 ⊆ v and v + 1 ⊆ v. A naive algorithm
would loop forever, revising its initial estimate α(v) = [5, 5]
to [5, 6], [5, 7], [5, 8], etc. This “counting to infinity” behav-
ior arises because the lattice of ranges has infinite ascending
chains, and thus the monotonicity of {F} is not enough to
ensure termination.

At this point, we have three options for restoring termina-
tion.

1. We could restrict attention to those programs that in-
duce acyclic constraint systems.



2. We could introduce a widening operator that raises
variables involved in cycles to the trivial solution
[−∞,∞], as pioneered in [10] and [11]. This avoids
infinite ascending chains.

3. We could directly solve the constraint subsystem asso-
ciated with each cycle, using domain-specific informa-
tion about the constraint language.

The first is not very attractive, because real programs of-
ten involve cycles, such as those created by loops and re-
cursion. Even worse, cycles are almost unavoidable for a
flow-insensitive analysis: for example, the C assignment
i = i1+ will always induce a cycle in the form of a con-
straint i + 1 ⊆ i. One disadvantage of the second option
is that it introduces imprecision, i.e., it will only provide an
approximate solution (an upper bound on the least satisfy-
ing assignment).

This paper follows the third option. We show how to
avoid divergent behavior, without introducing any impre-
cision, by directly solving for the fixpoint of the constraint
subsystem associated with each cycle.

A typical cycle looks like

f1(v1) ⊆ v2, . . . , fn−1(vn−1) ⊆ vn, fn(vn) ⊆ v1.

Transitively expanding this cycle, we find that f(v1) ⊆ v1

where f = fn ◦ · · · ◦ f1. (We may view f loosely as
Shostak’s loop residue [56] for the cycle.) The composition
of affine functions is affine, so f is affine. The observation
is that we can precisely solve this cyclic constraint system
without any divergence whatsoever, by using a simple fact
on the fixpoints of affine functions.

Lemma 1. Let f(x) = ax + b be an affine function in AF
with a > 0, let R be a range, and let S ⊆

�
∞ be the

minimal range satisfying R ⊆ S and f(S) ⊆ S. Then (1)
sup S = ∞ if sup f(R) > sup R; also, (2) inf S = −∞
if inf f(R) < inf R. If neither clause (1) nor clause (2)
applies, we have S = R. If both clauses apply, we have
S = [−∞,∞].

Theorem 2. We can solve the constraint subsystem associ-
ated with a cycle in linear time.

To restate the theorem intuitively: if we ever find an aug-
menting path that traverses an entire cycle, the theorem
shows us how to immediately apply a widening operator
without any loss of precision whatsoever. This provides a
simple way to avoid the “counting to infinity” behavior that
arises from traversing a cycle multiple times. Thus, the real
contribution of Theorem 2 is that it shows how to find the
fixpoint of the system precisely and efficiently; since we are
working in a lattice with infinite ascending chains, standard
techniques cannot provide this.

Figure 4 presents an algorithm that uses these ideas to
handle cycles efficiently. This time, we use a depth-first

CONSTRAINT-SOLVER

1. Set α(vi) := ∅ for all i, and set done := false.
2. For each constraint of the form n ⊆ w, do
3. Set α(w) := RANGE-CLOSURE(α(w) ∪ {n}).
4. While done 6= true, call ONE-ITERATION.

ONE-ITERATION

1. Set C(vi) := white for all i and set done := true.
2. For each variable v, do
3. If C(v) = white, do
4. Set prev(v) := null and call VISIT(v).

VISIT(v)
1. Set C(v) := gray.
2. For each constraint of the form f(v) ⊆ w, do
3. If f(α(v)) 6⊆ α(w), do
4. Set α(w) := RANGE-CLOSURE(α(w) ∪ f(α(v))).
5. Set done := false.
6. If C(w) = gray, call HANDLE-CYCLE(v,w,prev).
7. If C(w) = white, do
8. Set prev(w) := v and call VISIT(w).
9. Set C(v) := black.

RANGE-CLOSURE(S)
1. Return the range [inf S, supS].

Figure 4. An algorithm that efficiently solves sys-
tems of integer range constraints.

search so that we can recover the edges participating in
the cycle as soon as we see a back-edge. The HANDLE-
CYCLE procedure (left unspecified here, for space reasons)
retraces the cycle discovered in the depth-first search using
the predecessor pointers and then processes that cycle us-
ing the algorithm sketched in the proof of Theorem 2 (see
Appendix A).

In theory, this solution process could take O((n + m)k)
time in the worst case, where k counts the number of cycles
in the graph. In practice, though, k seems to be small, and
the algorithm usually runs in linear time, probably because
of sparsity and locality in the constraint systems that arise
during the analysis of typical programs.

This concludes our treatment of constraint solving for
simple constraints. We have extended the algorithm to han-
dle the full constraint language, including multi-variable ex-
pressions and min/max operators. See Appendix B for the
details.

5. Early experience with the prototype

This section details some early experience with the cur-
rent version of the overrun detection tool.

The experimental methodology was simple. The tool was
applied to several popular software packages. The tool typi-
cally produced a number of warnings about potential buffer



overruns, and one of us examined the source by hand to
screen out the false alarms. Some sample output is shown
in Figure 5.

We applied the tool to about a dozen software packages.
Due to lack of space, we omit the cases where the tool found
nothing of interest.

5.1. Linux net tools

The best success story so far arose from an analysis of the
Linux nettools package, which contains source for stan-
dard networking utilities such as netstat, ifconfig,
route, and so on. The programs themselves total about
3.5k lines of code, with another 3.5k devoted to a support
library1.

This package had already been audited by hand once
in 1996 after several buffer overruns were found in the
code [31], so it came as somewhat of a surprise when the
tool discovered several serious and completely new buffer
overrun vulnerabilities. One library routine trusts DNS
responses and blindly copies the result of a DNS lookup
into a fixed-length buffer, trusting both the hp->h_name
and hp->h_length values returned. In both cases, this
trust is misplaced. Another routine blindly copies the
result of a getnetbyname() lookup into a fixed-size
buffer. At first glance, this may appear harmless; how-
ever, getnetbyname() may issue a NIS network query
in some cases, and thus its response should not be trusted.
Several other places also perform unchecked strcpy()’s
into fixed-size buffers on the stack that can apparently be
overrun by spoofing DNS or NIS results or by simply regis-
tering a host with an unexpectedly long name.

These vulnerabilities seem likely to be remotely ex-
ploitable2. It is worth stressing that these holes were previ-
ously unknown, despite an earlier manual audit of the code.

5.2. Sendmail 8.9.3

The latest version of sendmail (about 32k lines of C code)
was one of the first programs analyzed. Some sample out-
put is shown in Figure 5, which shows (for example) that
solving the constraint system took less than two seconds;
also, Section 5.5 presents a more detailed study of the warn-
ings from the tool. Sendmail makes an especially interest-
ing test, because it has been extensively audited by hand for
buffer overruns and other vulnerabilities. Also, we feel that
it makes for a very thorough test of the applicability of the
tool to large, complex applications.

The testing session did not uncover any security vulnera-
bilities in sendmail-8.9.3. A few small bugs were identified
that could in theory lead to buffer overruns, but they do not

1Throughout this paper, we exclude comments and blank lines from our
counts of code sizes.

2We haven’t written exploit code to confirm this, but examination of the
source suggests that standard attacks are likely to work.

seem exploitable in practice because the relevant inputs are
not under adversarial control. Nonetheless, the new bugs
identified do demonstrate the potential to find subtle coding
errors in real code using automated analysis techniques.

The most important bug identified by the tool was a
complex off-by-one error in the management of string
buffers. This bug is hinted at by the warning about
‘dfname@collect()’: the tool discovered that 20
bytes were allocated for a buffer called dfname (defined
in the collect() procedure), and that a string containing
possibly as many as 257 bytes might be copied into the 20-
byte buffer. This is a potential violation of the safety prop-
erty. In this case, the tool suggests that the lengthy string
came from the return value of queuename(), but was not
able to identify any further dependencies of interest.

Upon further investigation, using other diagnostics from
the tool, we found that a complex sequence of invoca-
tions can cause queuename() to return a 21-byte string
(including the terminating ’\0’). (The 257-byte figure
is a result of imprecision in the analysis.) The trou-
blesome sequence is: orderq() reads a file from the
queue directory, and copies its filename (possibly as many
as 21 bytes long, including the ’\0’) into d->d_name
and then into w->w_name; then runqueue() calls
dowork(w->w_name+2,...), and dowork() stores
its first argument (which can be as long as 19 bytes)
into e->e_id; next queuename() concatenates "qf"
and e->e_id, returning the result, which is copied into
dfname; but queuename()’s return value might be as
long as 19+2=21 bytes long (including the ’\0’), which
will overflow the 20-byte dfname buffer.

This minor bug is the result of a common off-by-one
error: the programmer apparently forgot to include the
string terminator ’\0’ when counting the number of bytes
needed to store the return value from queuename(). The
very complex calling pattern needed to trigger this pattern
illustrates why this type of bug is so difficult for humans
to find on their own and why automated tools are so well
suited for this task.

We note that this coding error survived at least one man-
ual audit (the bug predates version 8.7.5, and survived an
extensive sweep of the code apparently inspired by CERT
advisory CA-96.20).

For completeness, we explain some of the other
warning messages in Figure 5. The warning about
‘from@savemail()’ is caused by imprecision in the
analysis. The relevant code looks something like this:

if (sizeof from
< strlen(e->e_from.q_paddr) + 1)
break;

strcpy(from, e->e_from.q_paddr);

A human would realize that the strcpy() is not reached



Warning: function pointers; analysis is unsafe...
1.74user 0.07system 0:01.99elapsed 90%CPU
Probable buffer overflow in ‘dfname@collect()’:

20..20 bytes allocated, -Infinity..257 bytes used.
<- siz(dfname@collect())
<- len(dfname@collect()) <- len(@queuename_return)

Probable buffer overflow in ‘from@savemail()’:
512..512 bytes allocated, -Infinity..+Infinity bytes used.
<- siz(from@savemail())
<- len(from@savemail()) <- len((unnamed field q_paddr))

Slight chance of a buffer overflow in ‘action@errbody()’:
7..36 bytes allocated, 7..36 bytes used.
<- siz(action@errbody())
<- len(action@errbody())

...

Figure 5. Some example output from the analysis tool. This example is a small sample of some of the more
interesting output from an analysis run of sendmail 8.9.3.

unless it is safe to execute. The tool does not find this proof
of safety because the range analysis is flow-insensitive and
thus blind to the if statement.

The warning about ‘action@errbody()’ (another
false alarm) is also instructive. The relevant section of code
has the following form:

char *action;
if (bitset(QBADADDR, q->q_flags))

action = "failed";
else if (bitset(QDELAYED, q->q_flags))

action = "delayed";

We can readily see that alloc(action) = len(action) al-
ways holds for this code segment, so there is no safety prob-
lem. However, the “bounding box” range analysis is funda-
mentally unable to detect invariants describing the possible
relationships between values of program variables—another
form of imprecision—so it is unable to detect and exploit
this invariant to prove the code safe.

In this case, the analysis can only assume that the string
action may have as few as 7 bytes allocated for it but
as many as 8 bytes copied into it. This happens fairly of-
ten: when a pointer can refer to multiple strings of different
lengths, the analysis usually reports that its size and length
both have the same range [d, e], and when e > d there is no
way to rule out the possibility of a problem. We use sev-
eral heuristics to try to detect this class of false alarms and
prioritize all warnings: this class of violations of the safety
property is labelled “Slight chance of a buffer overrun.”

One aspect of this trial that is not apparent from Figure 5
is the large number of false alarms encountered (see Sec-
tion 5.5). Weeding through the false alarms took a full day
of staring at warning messages and source code. A devel-
oper already experienced in sendmail internals might have

completed the task more quickly, but it would still undoubt-
edly be a time-consuming process.

5.3. Sendmail 8.7.5

Finding new security vulnerabilities is a compelling way
to validate the effectiveness of the tool, but it requires con-
siderable time with no guarantee of positive results. As a
time-saving alternative, we applied the tool to old software
known to contain serious vulnerabilities to see if the bugs
could have been detected. Sendmail is one of the classic ex-
amples of an application that has been vulnerable to buffer
overruns in the past. Since CERT reported several overruns
in sendmail 8.7.5 (see CA-96.20), and since the next ver-
sion was audited by hand to try to eliminate such bugs, we
decided to use this as a test platform.

The tool found many potential security exposures in send-
mail 8.7.5:

• An unchecked sprintf() from the results of a DNS
lookup to a 200-byte stack-resident buffer; exploitable
from remote hosts with long DNS records. (Fixed in
sendmail 8.7.6.)

• An unchecked sprintf() to a 5-byte buffer from
a command-line argument (indirectly, via several
other variables); exploitable by local users with
“sendmail -h65534 ...”. (Fixed in 8.7.6.)

• An unchecked strcpy() to a 64-byte buffer when
parsing stdin; locally exploitable by “echo /canon
aaaaa... | sendmail -bt”. (Fixed in 8.7.6)

• An unchecked copy into a 512-byte buffer from stdin;
try “echo /parse aaaaa... | sendmail
-bt”. (Fixed in 8.8.6.)



Improved analysis False alarms that could be eliminated

flow-sensitive 19/40 ≈ 48%
flow-sens. with pointer analysis 25/40 ≈ 63%
flow- and context-sens., with linear invariants 28/40 ≈ 70%
flow- and context-sens., with pointer analysis and inv. 38/40 ≈ 95%

Table 2. Expected reduction in false alarms from several potential improvements to the analysis.

• An unchecked sprintf() to a 257-byte buffer from
a filename; probably not easily exploitable. (Fixed in
8.7.6.)

• A call to bcopy() could create an unterminated
string, because the programmer forgot to explicitly add
a ’\0’; probably not exploitable. (Fixed by 8.8.6.)

• An unchecked strcpy() in a very frequently used
utility function. (Fixed in 8.7.6.)

• An unchecked strcpy() to a (static) 514-byte buffer
from a DNS lookup; possibly remotely exploitable
with long DNS records, but the buffer doesn’t live on
the stack, so the simplest attacks probably wouldn’t
work. Also, there is at least one other place where the
result of a DNS lookup is blindly copied into a static
fixed-size buffer. (Fixed in 8.7.6.)

• Several places where the results of a NIS network
query is blindly copied into a fixed-size buffer on the
stack; probably remotely exploitable with long NIS
records. (Fixed in 8.7.6 and 8.8.6.)

Most of these coding errors became a threat only because of
subtle interactions between many pieces of the program, so
the bugs would not be apparent from localized spot-checks
of the source. This seems to be a good demonstration of the
potential for finding real vulnerabilities in real software.

To our knowledge, none of the vulnerabilities found in
sendmail 8.7.5 by our tool have been described publicly be-
fore.

5.4. Performance

In our experience, the performance of the current imple-
mentation is sub-optimal but is usable. For example, the
analysis of sendmail (about 32k lines of C code) took about
15 minutes of computation on a fast Pentium III worksta-
tion: a few minutes to parse the source, the rest for con-
straint generation, and a few seconds to solve the resulting
constraint system.

The prototype generates extensive debugging output and
has not been optimized, so we expect that the analysis time
could be reduced with additional effort. On the other hand,
the time required to examine all the warnings by hand cur-
rently dwarfs the CPU time needed by the tool, so better
performance is not an immediate priority. For now, the most

important property of the system is that it scales up readily
to fairly large applications3.

5.5. Limitations

The main limitation of the prototype is the large number
of false alarms it produces, due to imprecision in the range
analysis. As a consequence, a human must still devote sig-
nificant time to checking each potential buffer overrun.

Our tool generates 44 warnings marked Probable for
sendmail 8.9.3. Four of these were real off-by-one bugs,
which leaves 40 false alarms. Despite the high success rate
(1 in 10 warnings indicated real bugs), eliminating the false
alarms by hand still requires a non-negligible level of human
effort.

One way to reduce the number of false alarms requir-
ing human attention is to trade off time for precision in
the integer analysis. For example, we could envision mov-
ing to a flow-sensitive or context-sensitive analysis. This
obviously raises the question of which improvements are
worth the effort and at what cost. To estimate the poten-
tial benefits of various possible improvements to the analy-
sis, we classified—by hand—the causes of each false alarm
in sendmail 8.9.3. See Table 2 for the results. (A linear
invariant is a simple, linear relationship between program
variables—such as x+ y < 5 or alloc(buf) ≥ buflen—
that holds in all program executions.)

These figures suggest that, in retrospect, it might have
been better to use a more precise but slower analysis. We
expect that standard analysis techniques (such as SSA form
[13], Pratt’s method [49] or Shostak’s loop residues [56],
and a points-to analysis) could be used to improve on our
current prototype by an order of magnitude or more. How-
ever, significant engineering effort is probably required to
get there.

Despite the unwieldy number of false alarms produced
by our tool, our approach is still a substantial improvement
over the alternative: in a typical code review, one would
identify all the potentially unsafe string operations (perhaps
using grep), trace back all execution paths leading to those
unsafe operations, and manually verify that none of them
lead to exploitable overruns. For comparison, there are
about 695 call sites to potentially unsafe string operations

3We have no experience with very large applications, e.g., programs
with hundreds of thousands of lines of code, so it remains unknown how
our techniques scale up to such program sizes.



in the sendmail 8.9.3 source which would need to be man-
ually checked in a typical code audit—15× more than the
number that must be examined with our tool—so we con-
clude that our tool is a significant step forward.

One important gap in our understanding of the prototype’s
limitations is that it is difficult to rigorously measure the
false negative rate. As a first approximation, we may ex-
amine all the buffer overruns in sendmail that have been
fixed in the three years since the release of version 8.7.5;
any such bug not reported by the tool is a false negative. To
our knowledge, the only publicly-reported overrun in send-
mail 8.7.5 is the chfn vulnerability [44], where a local user
can overflow a 257-byte buffer by changing their gecos field
in /etc/passwd. Due to pointer aliasing and primitive
pointer operations, our tool does not find the chfn bug,
although a better pointer analysis would have revealed the
problem. A detailed manual examination of the source code
revision history shows that a number of other buffer over-
runs in sendmail 8.7.5 have been quietly fixed without any
public announcements4. As far as we know, our tool finds
all of those vulnerabilities (see Section 5.3 for examples).
This evidence suggests that our tool’s false negative rate is
non-negligible but still acceptable.

A final problem with the tool is that it does not provide
as much information about each potential buffer overrun as
we might like. As can be seen from Figure 5, the output
shows only which buffer overflowed, not which statement
was at fault. This ambiguity is arguably an unfortunate con-
sequence of the constraint-based formulation. To improve
the situation somewhat, we extended the constraint solver
to report which variable(s) contributed to each violation of
the safety property. This heuristic is not always reliable, but
it does help.

6. Related work

LINEAR PROGRAMMING. Many papers have suggested us-
ing linear programming techniques to discover program in-
variants, including the simplex method, Fourier-Motzkin
variable elimination [53], the Omega method [50], the SUP-
INF method [5, 55], Shostak’s loop residues [56], and al-
gorithms for special classes of linear systems [30, 9, 38].
Typically, one combines linear programming with abstract
interpretation over some simple domain (convex polyhedra,
octagons, etc.) [10, 11, 23, 25, 26, 24, 52]. In this context,
linear programming algorithms provide a tool for manipu-
lating subsets of

�
k, with operations such as ∪, ∩, projec-

tion, widening, and testing for feasibility. See especially
[11] for an early example of a tool that infers linear invari-
ants of small programs using abstract interpretation and the

4We do not know whether these bugs were known to the sendmail
developers, or whether they were fortuitously eliminated by the more-
defensive programming style initiated in versions 8.7.6 and 8.8.0.

simplex method. Although the simplex-based techniques
offer more precision than our range analysis, it is not clear
how well they scale.

PARALLELIZING COMPILERS. One important application
for array reference analysis is in discovering implicit paral-
lelism in sequential Fortran programs [40, 4, 50]; however,
those techniques do not seem to help with the buffer over-
run problem because they focus too narrowly on the special
case of loop optimization.

ARRAY BOUNDS CHECKING. One way to avoid buffer
overruns is to use runtime array bounds checks. There
are several implementations of array bounds checking for
C, including SCC [3], gcc extensions [35], Purify [51],
and BoundsChecker [46]. However, many of these tools
impose a large performance overhead (instrumented pro-
grams are typically 2–3× slower than the original versions
[3, 35, 8, 22]). As a result, the tools are usually used only
for debugging, not for production systems.

To reduce the high cost of runtime bounds checking, sev-
eral researchers have studied optimization techniques for
eliminating redundant checks [22, 39, 57]. However, they
typically focus on moving bounds checks to less frequently
executed locations, rather than on eliminating all bounds
checks. For example, hoisting bounds checks out of loops
using loop invariants greatly reduces the performance im-
pact of the bounds checks but cannot reduce the number
of checks in the program’s source code. Therefore, these
optimization techniques are not well suited for proactively
finding buffer overruns.

Other works have concentrated on eliminating all bounds
checks for some type-safe languages. For example, Necula
and Lee develop a certifying compiler for a type-safe subset
of C that eliminates most bounds checks using Shostak’s
loop residues [45]. Also, Xi and Pfenning propose a method
to eliminate runtime array bounds checking for ML with
the help of some assertions added by the programmer to
capture certain program invariants [60, 61]. Of course, none
of these tools can eliminate buffer overruns in large legacy
applications written in C.

RANGE ANALYSIS. Our approach to range analysis builds
on much prior work in the literature, including early work
on abstract interpretation [10] and range propagation [27]
as well as more mature work on systems for static debug-
ging [6], generalized constant propagation [59], and branch
prediction [47]; however, our emphasis on analysis of large
programs spurred us to develop new techniques with better
scaling behavior.

CONSTRAINT-BASED ANALYSES. Philosophically, our
analysis may be viewed as a constraint-based analysis [1];
however, it is unusual to incorporate arithmetic expressions
in the set constraint language and solver (but see [28] for an
important partial exception).



Note also that techniques for solving integer constraint
systems may be found in the artificial intelligence literature
[14, 32, 37, 58]; however, their algorithms typically stress
generality for small problems (“hundreds of nodes and con-
straints” [14]) over scalability and thus are not directly ap-
plicable here.

LINT-LIKE TOOLS. Several commonly used tools [34, 18,
19] use static analysis and some heuristics to detect com-
mon programming errors (such as type errors, abstraction
violations, and memory management bugs), but these tools
don’t detect buffer overruns.

Many practitioners have noted that grep can be a use-
ful if crude test for finding buffer overruns by searching for
all uses of unsafe string operations; however, a substantial
time investment is often required to deal with the very large
number of false alarms. Our results demonstrate an 15×
improvement over grep for the case of sendmail 8.9.3 (see
Section 5.5).

PROGRAM VERIFICATION. ESC is an automated program
checker for Modula-3 and Java that catches many program-
ming errors at compile-time, using program verification
techniques [15]. One disadvantage of ESC is that it requires
coders to annotate module interfaces with information about
expected pre- and post-conditions, but it can use this infor-
mation to find a very large class of potential bugs.

STACKGUARD. Stackguard is a runtime tool which detects
buffer overruns on the stack before they cause harm [12].
Stackguard imposes very little performance overhead and
has been applied to large suites of applications, including
an entire Linux distribution. Stackguard is a powerful tool
that can serve as a strong deterrent against many existing
buffer overrun attacks; however, it does not stop all overrun
attacks, and thus should not be relied upon as the only line
of defense.

7. Conclusion

This paper introduces a simple technique for the auto-
mated detection of buffer overrun vulnerabilities. Of par-
ticular significance is its ability to analyze large, complex
programs. Because we trade off precision for scalability,
our tool generates a relatively large number of false alarms,
but it seems likely that a more sophisticated analysis could
reduce the frequency of false alarms. We also demonstrated
that our prototype implementation can find even very subtle
bugs that elude human auditors. Although the tool is cer-
tainly no substitute for defensive programming or a careful
code review, our experience suggests that it can complement
and reduce the burden of these approaches.

Our implementation hinges on two key design considera-
tions. First, treating strings as an abstract data type allows
us to recognize natural abstraction boundaries that are ob-
scured by the C string library. Second, formulating the prob-

lem in terms of integer range tracking allows us to build on
techniques from program analysis.

We conclude that this provides a powerful and success-
ful new approach to finding buffer overrun vulnerabilities.
We attribute its success to the new methodology introduced,
where we apply static analysis to security problems. One
major advantage of static analysis is that it allows us to
proactively eliminate security bugs before code is deployed.

Ideally, we would like a tool that could catch every buffer
overrun. Although our tool does not detect all exploitable
overruns, it still finds more than humans do, which shows
that we have made real progress toward this greater goal.
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A. Proofs of the theorems

Theorem 1. Every constraint system has a unique least so-
lution.

Proof. There is a natural intersection operator on assign-
ments, defined by (α ∩ β)(v) = α(v) ∩ β(v). The inter-
section of two satisfying assignments is also a satisfying
assignment, since if α(e) ⊆ α(v) and β(e) ⊆ β(v), then
(α ∩ β)(e) ⊆ (α ∩ β)(v). This means that if a constraint
system has a least solution, it is unique: supposing there are
two minimal satisfying assignments α 6= β, then α∩β is an-
other, smaller satisfying assignment, which contradicts the
assumption of non-uniqueness. To show that a least solution
exists, let α be the intersection of all satisfying assignments.
This intersection is non-empty, since the trivial assignment
v 7→ [−∞,∞] satisfies every constraint system. Clearly,
if β satisfies the system, then α ⊆ β. Therefore, α is a
satisfying assignment, and it is the least such.

Lemma 1. Let f(x) = ax + b be an affine function in AF
with a > 0, let R be a range, and let S ⊆

�
∞ be the

minimal range satisfying R ⊆ S and f(S) ⊆ S. Then (1)
sup S = ∞ if sup f(R) > sup R; also, (2) inf S = −∞
if inf f(R) < inf R. If neither clause (1) nor clause (2)
applies, we have S = R. If both clauses apply, we have
S = [−∞,∞].

Proof. Let R = [d, e], so that sup f(R) = f(e) (since f
is monotone and a ≥ 1). If f(e) > e, then f(x) > x for
all x ≥ e (since a ≥ 1), so that f(f(e)) > f(e) > e,
etc., and (1) is proved by induction. (2) follows similarly.
Finally, if neither clause applies, then f(R) ⊆ R, and by
the minimality of S we have S = R.

Theorem 2. We can solve the constraint subsystem associ-
ated with a cycle in linear time.

Proof. Let f(x) = ax + b be the affine function associated
with the cycle. It suffices to show that the claim is true for
a > 0. (If a = 0, the theorem is trivial; if a < 0, we tra-
verse the cycle twice and consider f ◦ f .) We show that it
suffices to simply compute f(α(v1)) and compare the re-
sult with α(v1). If f(α(v1)) ⊆ α(v1), the least solution is
α(v1), and we can stop traversing the cycle. Otherwise, one
or both of the clauses of the lemma apply. If both apply,
we are done: set α(v1) := [−∞,∞], and let the work-
list algorithm trace out the implications for the vj . If just
one applies—say, clause (1)—we simply apply the lemma
(a second time) to R′ = [inf R,∞], and we will be done
after this second application. Computing f requires time
linear in the length of the cycle, and propagating the result
of the analysis around the cycle also requires linear time, so
the whole process runs in linear time.

B. More on constraint solving

In this section, we extend the basic algorithm presented
in Section 4 to handle more general constraints. Let us first
review how far we have come. We have an efficient algo-
rithm that handles simple constraints, i.e., constraints of the
form avi +b ⊆ vj . We have precise techniques for handling
cycles. But the algorithms presented so far cannot handle
arithmetic or min/max expressions on the left hand side of
the constraint. Such constraints are relatively rare: for typi-
cal program analysis tasks, only about 2% of the constraints
use complex arithmetical expressions, and less than 1% use
min/max expressions. Nonetheless, they are still important
enough that they cannot be ignored: consider, e.g., the C
statement sprintf(dst, "foo: %s %s", s, t)
to see why we need complex arithmetical expressions;
also, modelling the standard library functions strncpy(),
snprintf(), etc., clearly requires support for min/max
expressions. We now describe how to extend the algorithm
to handle these more general types of constraints.



Let C be a constraint system consisting of a system of
simple constraints C ′ along with the complex constraint

a1v1 + · · · + anvn + b ⊆ w. (1)

We show how to construct a reduced constraint system
Rα(C) containing only simple constraints, where the least
solution to Rα(C) gives a useful lower bound on the solu-
tion to C. The idea is to note that, for each j, (1) implies
ajvj + bj ⊆ w, where the bj’s are given by

bj = b +
∑

i=1,...,n; i6=j

aiα(vi)

and α is any lower bound on the least satisfying assignment
to C. Thus we may take Rα(C) = C′ ∪ {ajvj + bj ⊆ w :
j = 1, . . . , n} ∪ {α(vj) ⊆ vj : j = 1, . . . , n}, where the
constants bj are defined in terms of α as above. By con-
struction, any satisfying assignment for C will then satisfy
Rα(C).

In principle, this immediately yields an algorithm for
solving a constraint system C containing complex arithmeti-
cal expressions: compute the least solution β to Rα(C)
(using the algorithm in Figure 4) and set α := α ∪ β, re-
peating these two steps iteratively until convergence. Ter-
mination is guaranteed since a cycle in C will induce a cy-
cle in Rα(C) and thus will be processed efficiently by the
HANDLE-CYCLE procedure.

In practice, our implementation exploits a more efficient
approach, where we update the reduced system Rα(C) in
place as α is updated. In the optimized algorithm, each
change to α(vi) in the algorithm of Figure 4 immediately
forces an update to Rα(C) whenever vi participates in the
left-hand side of some complex constraint. This technique
seems to work very well for our purposes, probably because
complex constraints are relatively rare.

The approach used to handle to min/max constraints is
currently very simplistic: the current implementation propa-
gates information through min/max constraints but does not
attempt to handle cycles containing min/max constraints. In
principle, this could introduce “counting to infinity”, but we
have yet to encounter this behavior. This simplification re-
flects implementation considerations more than any funda-
mental difficulty with handling this type of constraints. If
we ever encounter cycles containing min or max operations,
we will implement the following extension of Lemma 1 to
min/max constraints:
Lemma 2. Let f(x) = min{g1(x), . . . , gn(x), c} for
g1, . . . , gn ∈ AF and c ∈

�
∞, where each gj is of the

form gj(x) = ajx + bj for aj > 0. Let R be a range, and
let S ⊆

�
∞ be the minimal range satisfying R ⊆ S and

f(S) ⊆ S. Then (1) inf S = −∞ if inf f(R) < inf R;
also, (2) supS = c if sup f(R) > sup R. If neither clause
(1) nor clause (2) applies, we have S = R. If both clauses
apply, we have S = [−∞,∞].

Proof. Clause (1) is an immediate consequence of
Lemma 1: if inf gj(R) < inf R, then −∞ ∈ S, since
inf f(S) ≤ inf gj(S) for all S. To prove clause (2), note
that sup S ≤ c, so it suffices to prove that sup S ≥ c.
Suppose not, i.e., that sup S < c. Let e = sup R. Since
sup f(R) > sup R, we have gj(e) > e for all j. Also, by
Lemma 1, gj(x) > x for all x ≥ e and for each j. Since
f(S) ⊆ S, we must have min{g1(S), . . . , gn(S), c} ≤
sup S, and so gj(sup S) ≤ sup S for all j. At the same
time, R ⊆ S implies sup S ≥ e, so gj(sup S) > sup S, a
contradiction, which establishes clause (2). Finally, if nei-
ther clause applies, then f(R) ⊆ R, and by the minimality
of S we have S = R.

The algorithm could be further improved with slightly
more sophisticated techniques. For example, we could com-
pute the acyclic component graph (where each strongly con-
nected component is shrunk down to one vertex) and then
iteratively process each strongly connected component in
topologically sorted order, using a depth-first search to dis-
cover the cycles within each strongly connected component.
However, we have not explored these possibilities for opti-
mization, because the existing solver is already much faster
than necessary.


