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Using Live Streaming to Evade Internet Censorship

Abstract: We design, implement, and evaluate CovertCast,
a censorship circumvention system that broadcasts the content
of popular websites in real-time, encrypted video streams on
common live-streaming services such as YouTube. CovertCast
does not require any modifications to the streaming service and
employs the same protocols, servers, and streaming software
as any other user of the service. Therefore, CovertCast cannot
be distinguished from other live streams by IP address filtering
or protocol fingerprinting, raising the bar for censors.
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1 Introduction

Existing technologies for circumventing Internet censor-
ship [5, 25, 29] are not robust against technically competent
censors. The network protocols and connection endpoints used
by circumvention systems are distinct from those used by any
other Internet service. Therefore, ISP-level censors can easily
recognize and block them at the network level at a very low
cost, without disrupting any other Internet activities.

We believe that censorship circumvention systems can
take advantage of the fact that many popular online services
already provide encryption and are therefore opaque to censor-
ing ISPs. By using such services to transmit censored content,
a circumvention system can make it much more difficult for
network-level censors to distinguish permitted and censored
content. At the very least, basic censorship techniques such as
blocking the IP addresses of circumvention servers and rec-
ognizing the distinct protocols that carry circumvention traffic
will no longer work.

In this paper, we investigate how to use live streaming as
a censorship circumvention medium. Live streaming has be-
come an extremely popular way to broadcast gameplays, e-
sports competitions, podcasts, live-music and sports events,
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pirated TV shows and movies, etc. Live-streaming platforms
such as Twitch boast over 100 million unique monthly view-
ers' and new platforms emerge every year. Unlike conven-
tional online video services, which primarily support view-
ing of previously uploaded media files, live streaming enables
real-time, high-bandwidth one-to-one and one-to-many trans-
mission of video content.

Our contributions. We design, implement, and evaluate
CovertCast, a new system that distributes digital content (in
particular, news websites) by encoding it as a sequence of
images and transmitting these images to users via a live-
streaming service such as YouTube. The design and imple-
mentation of CovertCast are service-agnostic and can be de-
ployed with any live-streaming service. We chose YouTube
because, unlike some other services, it protects all streams us-
ing HTTPS. This ensures that censors can neither inspect the
contents of any stream, nor tamper with it.

A CovertCast server, located outside the censored net-
work, initiates a live stream. For each website being served,
the server crawls the site, encodes its content into images, and
broadcasts the images via the live stream. A CovertCast client
consists of a local Web proxy and the code that downloads
and demodulates images from live streams. The user simply
changes his or her browser’s proxy settings to use the Covert-
Cast proxy. After the CovertCast client demodulates an image
back into Web content, it intercepts any requests sent via the
proxy and responds to them locally. Because live-streaming
services are engineered to support a large number of clients
“watching” a single stream, CovertCast scales easily and one
CovertCast server can handle many clients.

To the censor controlling the user’s network, CovertCast
traffic looks like any other traffic from a given live-streaming
platform (e.g., users watching someone broadcasting from
their webcam, which is a very popular use of live streaming).
CovertCast uses exactly the same video codecs, network pro-
tocols, and video servers, all supplied by the live-streaming
platform, as any other stream on the same platform. HTTPS-
encrypted YouTube streams produced by CovertCast exhibit
the same traffic patterns as many other YouTube streams and,
to the best of our knowledge, cannot be accurately distin-
guished using previously proposed traffic analysis techniques.

1 http://www.twitch.tv/year/2014
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Encoding Web content into live video streams presents
several technical challenges. The main challenge is the initial
lag between the time the “caster” initiates his live stream and
the time the service starts displaying the stream to the sub-
scribers. Depending on the platform, this delay ranges from 25
to 50 seconds. Because of this latency, CovertCast broadcasts
websites instead of using the normal HTTP request-response
model. This sidesteps the latency issue and allows a server to
scale to any number of clients at the cost of reduced browsing
options for CovertCast’s users.

We evaluate CovertCast by loading various news sites,
which is reportedly the most frequent use of censorship cir-
cumvention software [4]. Although CovertCast takes a rela-
tively long time to load a page (one to two minutes for most
news sites we examined), this latency is due to ensuring that
the streaming service broadcasts images without visual arti-
facts and is not an inherent limitation of CovertCast. We also
evaluate CovertCast under various network conditions, includ-
ing low bandwidth and high packet-drop rates.

2 Related Work

Proxying. Filtering certain Internet destinations by IP address
is the simplest, most widely deployed censorship technology.
Consequently, many circumvention systems relay users’ traffic
through a proxy server. Examples of proxy services include
Psiphon [25], UltraSurf [29], and Anonymizer [1].

Users must trust proxy operators to not reveal users’ ad-
dresses. Furthermore, proxies’ own IP addresses are easily dis-
coverable by insider attackers, i.e., censors who pretend to be
users of the system [19, 20, 27, 32]. There is no robust de-
fense against this attack because proxies cannot reliably distin-
guish genuine and fake users. Once censors learn the proxy’s
address(es), they can blacklist them, identify past users from
network traces, or even leave the proxy accessible to identify
its future users [21].

Tor is a network of relays that can be used to construct
overlay routes to Internet destinations without trusting every
individual relay. These routes can then be used, for example,
for anonymous Web browsing. The addresses of Tor relays are
public, thus censors can and do block them. A Tor bridge is a
hidden proxy that clients can use as a gateway to the Tor net-
work [5]. As with other proxy-based services, censors use in-
sider attacks and active probes [34, 35] to discover and black-
list the bridges’ IP addresses, identify their users, and even
block access to other bridges via a zig-zag attack [28].
Steganography. Several proposed systems for censorship cir-
cumvention rely on covert communications. In Infranet [7],
the client pretends to normally browse an unblocked website

that has secretly volunteered to serve censored content. The
client uses a secret codebook that it shares with the server to
generate a sequence of HTTP requests encoding its request for
censored content. The server returns the requested content by
embedding it in image objects on the unblocked site. As soon
as the censors become aware that a certain site is being used
for censorship circumvention (e.g., via an insider attack), they
can easily block it.

Collage [3] aims to mitigate this issue by utilizing pub-
lic, oblivious websites that share user-generated content such
as photos and tweets. Clients’ requests, as well as censored
content, are hidden steganographically inside images hosted
on the content-sharing site. These images are tagged in a cer-
tain way, which is known only to the participants, so that they
are easily retrievable. Collage has low bandwidth and is not
suitable for tasks such as Web browsing.

Parrots. In addition to blacklisting the IP addresses of known
circumvention servers, censors also analyze network traffic
and look for content identifiers and patterns characteristic of
circumvention systems. In response, a new class of circum-
vention proposals aim to generate traffic that looks like pop-
ular Internet protocols. Examples include SkypeMorph [23],
StegoTorus [33], and CensorSpoofer [31] that imitate proto-
cols such as Skype, HTTP, and SIP-based VolIP.

Houmansadr et al. [11] demonstrate a range of attacks of
different types and complexity that distinguish the traffic of
parrot systems from the genuine traffic of the Internet proto-
cols they attempt to imitate, and argue that perfect imitation of
complex network protocols is fundamentally infeasible.

Hide-within systems. Unlike parrot systems that only imi-
tate popular network protocols, hide-within systems tunnel cir-
cumvention traffic using the actual protocols. FreeWave [13]
modulates traffic into acoustic signals carried via VoIP, while
SWEET [15] hides traffic in email messages. Both FreeWave
and SWEET have very low bandwidth. By contrast, Covert-
Cast encodes circumvention traffic into video streams, result-
ing in much higher throughput and enabling the broadcast
model of content distribution. CloudTransport [2] tunnels traf-
fic via cloud storage services. Using commercial services such
as Amazon S3 for CloudTransport has monetary costs and may
not be affordable for users in many countries.

CovertCast’s design is similar to hide-within systems in
that CovertCast also tunnels circumvention traffic through a
widely used network protocol (live video streaming). Covert-
Cast’s broadcast model, however, lets it scale easily with the
number of circumvention users, in contrast to the hide-within
systems like Freewave where the bandwidth and computation
costs of circumvention servers grow linearly with the number
of users. Superior scalability also makes CovertCast robust to
denial-of-service (DoS) attacks on circumvention servers. For
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Fig. 1. Architecture of CovertCast.

instance, censors can launch a Sybil-based DoS attack against
a FreeWave server by setting up large numbers of FreeWave
clients and using them to send HTTP requests for big web-
pages. This attack does not work against CovertCast because
the server workload in CovertCast is independent of the num-
ber of clients receiving its live streams.

Domain fronting. Domain fronting [8] is a new technique for
setting up proxies in proxy-based circumvention systems in
a way that makes them resistant to IP address blocking. The
main idea of domain fronting is to run circumvention proxies,
e.g., Tor bridges [5], on Web services that share their IP ad-
dresses with (many) other services. Therefore, any blocking
of the circumvention proxies’ addresses will cause collateral
damage by also blocking co-located services.

Domain fronting has been adopted by several proxy-based
circumvention systems, including Tor, Psiphon [25], Fire-
Fly Proxy,2 and Flashlight HTTP proxy.3 Tor’s meek plug-
gable transport [22] implements domain fronting on Google
App Engine, Microsoft Azure cloud infrastructure, and Cloud-
Front CDN. Wang et al. [30] demonstrate that censors can
detect meek with high accuracy and low false positives us-
ing decision-tree-based classifiers trained on the distinguish-
ing features of circumvention and non-circumvention traffic.

With CacheBrowser [10], users directly download cen-
sored content from an arbitrary edge server of the hosting
CDN. Similar to meek and other domain fronting systems,

2 https://github.com/yinghuocho/firefly-proxy
3 https://github.com/getlantern/flashlight
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CacheBrowser assumes that censors will not block CDNs’
IP addresses due to high collateral damage to other services.
CacheBrowser is limited to serving only CDN-hosted content.

Facet. Facet [18] is a special-purpose circumvention system
for watching blocked videos. Facet downloads videos from
a blocked service such as YouTube, Vine, or Vimeo and re-
sends them to users via a Skype videoconferencing call, at a
significantly lower resolution. In contrast to Facet, CovertCast
is a generic, content-agnostic circumvention system. Covert-
Cast encodes arbitrary Internet content into video streams and
thus supports key circumvention tasks such as Web browsing,
which is not possible in Facet.

Decoy routing. Decoy routing [12, 16, 37] aims to incorporate
censorship circumvention into inter-domain routing. Cooper-
ating ISPs are supposed to have their routers identify covert,
steganographically marked traffic generated by users in the
censorship region and deflect it to the destinations specified
by the senders. Schuchard et al. [26] showed that a state-level
adversary capable of controlling the routing policies of ISPs in
the censorship region can force them to route traffic so that it
does not pass through the known decoy routers. Houmansadr
et al. [14] demonstrate that such a rerouting-based attack will
impose significant monetary and social costs on the censor-
ing ISPs. In any case, deploying decoy routing systems is very
challenging because ISPs have no incentive to actively assist
censorship circumvention.


https://github.com/yinghuocho/firefly-proxy
https://github.com/getlantern/flashlight

CovertCast: Using Live Streaming to Evade Internet Censorship = 4

et i | Headless | [rpiinews com
<HTML>.. 3
—=HTTPIL1 200/ Browser | |<mTmi>

Modulate p At ] Broadcast

Images

': P rTvp %*

«=[GET / HTTP/L.1 -’

H http://news.com
Client &< -
<__ Proxy </HTML>

Demodulate

b el = Scrape Screen

<. -

Check Metadata|

Region

Censored

Fig. 2. The individual parts of a CovertCast client and server. Web content is downloaded by a server, modulated into images, and then
uploaded to a live-streaming service as video. A client monitors the video and demodulates the image back into content, which it uses to

respond to the requests to its proxy.

3 Threat Model

We assume that a CovertCast user is connecting to the Inter-
net from a region that is subject to state-level Internet censor-
ship. The user’s ISP (or some higher-level autonomous system
controlling the traffic of the user’s ISP) monitors all network
traffic and attempts to enforce some restrictions, e.g., prevent
users from reaching certain Internet destinations.

To this end, the censoring ISP can block prohibited IP
addresses, terminate prohibited network protocols, and selec-
tively perturb network flows (e.g., by dropping or delaying
packets) in order to identify and/or disrupt users who attempt
to circumvent censorship. Censors can also perform traffic
analysis to identify circumvention traffic.

For the purposes of this paper, we assume that censors
are rational and refrain from actions that would inconvenience
the large fraction of users who are not engaging in circumven-
tion. For example, we assume that the censors are not blocking
all encrypted traffic and permit certain protocols, in particu-
lar, popular live-streaming services that are used to watch live
sports, gaming competitions, pirated movies, etc.

CovertCast uses the live-streaming service “as is.” We as-
sume that the service is neutral: it neither cooperates with
CovertCast, nor actively tries to block streams generated by
CovertCast servers, nor helps censors discover CovertCast
streams or the users receiving these streams.

4 System Overview

4.1 Live-streaming services

Live-streaming video services allow anyone with a computer
and an Internet connection to record and broadcast videos to
online viewers in real time. Many of these services, such as
YouTube, carry a wide variety of streams, from talk shows and
TV programs to live music and sports; other services focus on
a single type of stream, as Twitch.tv? does with video games.

Live-streaming services are rapidly growing in popular-
ity. In 2014, Twitch was acquired by Amazon for $970 mil-
lion.” In August of 2015, Google launched YouTube Gam-
ing to cater to live video-game streamers.® That same month
Twitch reported over 10.2 million unique visitors, with an av-
erage viewer watching 106 minutes a day.”

To use a live-streaming service, an aspiring “caster” sim-
ply has to begin recording a video, typically of their screen or
webcam, and stream it to the service using a protocol such as
Adobe’s RTMP. Anyone wanting to view the stream can then
go to the service’s website and watch the live stream on its
own page or channel.

The streaming service is an intermediary between the
caster and the viewers, enabling massive scaling of content
distribution. The caster only needs sufficient bandwidth to

4 http://www.twitch.tv/

5 http://gamasutra.com/view/news/224090/Amazon_to_acquire_Twitch.
php

6 http://www.theverge.com/2015/8/26/9212071/youtube-gaming-app-
hands-on

7 http://www.bloomberg.com/features/2015-the-big-business-of-twitch
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stream his or her video to the service. The service provides
the bandwidth and connections to broadcast this stream to the
viewers, who can number in millions for popular streams.

Another common feature of live-streaming services is
their support for the interaction between casters and viewers,
with chatrooms or live comments that viewers can use to talk
to each other and to the caster.

While many live streams are open for anyone to watch and
comment on, several services allow a caster to restrict who
can watch their channel, via passwords or lists of approved
viewers. Coupled with the use of HTTPS by some of the ser-
vices (in particular, YouTube), these options give casters con-
trol over access to their content.

Live-streaming services offer videos of much higher reso-
lution and quality than one-to-one chat services such as Skype
and Google Hangouts. The latter services aim to enable de-
vices of any computational power and bandwidth to com-
municate in real time. This requires video-compression algo-
rithms that work best on mostly static videos with incremen-
tal changes, i.e., talking heads on infrequently changing back-
grounds. Another optimization involves automatic, incremen-
tal changes in video resolution over time as the user’s band-
width fluctuates. Because of the higher bandwidth, scalability,
and control that live-streaming services offer in comparison
to online video-chat services, we chose to base CovertCast on
live streaming rather than Skype or Google Hangouts.

4.2 Architecture of CovertCast

CovertCast is designed to broadcast Web content by modu-
lating it into a video and streaming the resulting video on-
line. CovertCast software consists of two parts, the client and
the server. The server communicates with one or more clients
through the live-streaming service. The video stream between
the server and the clients forms a tunnel that allows each con-
nected client to receive data from outside of the censored re-
gion. Clients “watching” the channel demodulate the video
into individual files that make up a website. The user’s Web
browser can then access the content via a local proxy.

Live-streaming channel. From the client’s perspective, a
live-streaming channel is an HTML page that contains an
embedded video player. The video player is often Adobe’s
Flash Player streaming Flash Video using Adobe’s Real Time
Messaging Protocol (RTMP) or RTMP over SSL (RTMPS).
YouTube has an option to play its videos with Flash Player or
HTMLS and uses its own streaming protocol instead of RTMP.

Although we use YouTube in this paper, the live-
streaming service is essentially a “dumb pipe” between the
client and the server. CovertCast can be easily adopted to use
a different live-streaming platform.

Fig. 3. A modulated CovertCast image for use in YouTube. Every
colored block is 8 x8 pixels and encodes 6 bits of data.

Client. The client part of CovertCast is run by a user located
inside a censorship region. The client behaves like a normal
user of the live-streaming service who is “watching” a video
stream. The CovertCast client software constantly monitors
the stream for new images. When it detects one, it demodu-
lates the image and saves the extracted Web content. When the
user’s Web browser sends a request through the client’s proxy,
it is intercepted, and a response with the corresponding Web
content is created locally and returned to the browser.

The client’s demodulation code consists of two parts.
The first part communicates with the screen scraper (see Sec-
tion 5.1), crops the CovertCast image from the scraper’s out-
put, and demodulates the image’s metadata (Section 4.3). If
the image has already been seen or is blank, it is ignored. If
the image is the next expected image, it is passed to the other
part of the client, which fully demodulates it and sends the ex-
tracted raw data to the proxy. Splitting the CovertCast client
into two parts lets it continuously check the live stream for
new images and not slow down while demodulating.

The client includes a simple HTTP/1.1 proxy. CovertCast
also supports an HTTP/2 proxy, but Firefox and Chrome still
have some bugs related to HTTP/2 SSL/TLS proxies, thus
our prototype relies on HTTP/1.1. The proxy intercepts all re-
quests sent through it and responds with the requested content
if it previously demodulated it. If it doesn’t have the content,
it replies with a 404. The proxy never forwards requests to the
Internet lest it leaks information to censors.

Server. The server resides outside of the censored region and
acts as a caster, creating and managing password-protected
channel(s) on the live-streaming service. It also crawls web-
sites and modulates their content into images that it broadcasts
over the live-streaming service. Because the server doesn’t
rely on any communication from the clients and its workload
is independent of the number of clients, one CovertCast server
can broadcast to any number of clients, subject to the scalabil-
ity of the live-streaming platform.
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Fig. 4. Every two bits are translated into one of the RGB color
channels.

The server, like the client, consists of two parts. The
first part manages Web crawling. Using a headless browser,
it loads a webpage and downloads all content requested by the
page, including any resources fetched with JavaScript. Once
the page’s DOM has finished loading, the data is sent to the
other part of the server, which modulates it into images (Sec-
tion 4.3). Twice a second, it updates the image being broadcast
to the live-streaming service via RTMP. When there are no
new images to send, the server broadcasts white images and
instructs the headless browser to download the next webpage.

4.3 Video modulation

The stream sent by the caster to the streaming service is not
identical to the stream received by online viewers. Streaming
services process and store the video before it is shown on a
channel. YouTube does a relatively large amount of prepro-
cessing, which—we conjecture—includes format conversion.

CovertCast modulates HTTP content into images that are
sent as frames in the streaming video. For robustness against
compression and format conversions, CovertCast encodes bits
into colored 8x8 pixel blocks (Fig. 3). In our experience,
all live-streaming services allow videos to be uploaded using
RTMP, thus CovertCast uses RTMP.

Even with 8x8 pixel blocks, slight color variations in
online videos restricted us to encoding only 2 bits per color
channel per block, or 6 bits for every set of 8x8 pixels (see
Fig. 4). However, because live-streaming services allow high-
resolution videos, CovertCast is able to stream 720p videos
with the resolution of 1280x720. This means CovertCast is
able to encode over 86,400 bits in each modulated image.

Because the video player may clip the outer pixels, we
convert the outermost boxes of each frame into a black border.
This reduces the number of bits per image to 84,906.

To create an image, CovertCast splits a piece of Web con-
tent into sets of 6 bits. The color of the image’s i-th pixel block
is determined by the ¢-th set of bits. The first two bits deter-
mine the values of the red color component, the next two bits

Algorithm 1 Modulation
Require: A is an array of bits
1: function MODULATE(A)

2: Img < create 1280 x 720 array of 3-tuples
3: 10

4: while i < len(A) do

5: r <+ 160 - A[i]+32- A[i + 1]

6: g« 160- Al +2] +32- Ali + 3]

7: b <« 160 Ali +4] +32- Ali + 5]

8: blk, + (i/6) (mod 1280)

9: blk, < |(i/6)/720]

10: forx €0...8 do

11: for yc0...8do

12: Img(8-blky,+x,8-blky+y] < [r,g,b]
13: end for

14: end for

15: 1< 1+6

16: end while

17: return I'mg

18: end function

Alg. 1. Pseudocode to modulate an array of bits into an RGB
image. Every six bits are encoded as the red, green, and blue
color channels of an 8 x 8 block of pixels. bik, and blk, determine
the location of the pixel block.

determine the green component, and the final two bits deter-
mine the blue component. The bits 00 correspond to the com-
ponent value of 32, 01 to 96, 10 to 160, and 11 to 225. See
Alg. 1 for the pseudocode.

The content’s length, URL, and HTTP status are sent
alongside the data. If a piece of content is larger than 84,906
bits, it is split into multiple images. Similarly, if there is space
left in an image, the next piece of content is added to it.

The demodulation algorithm (see Alg. 2) is the reverse of
the modulation algorithm. For every colored block, the average
values of the red, green, and blue color components are calcu-
lated. If a color component is closest to 32, it corresponds to
the 00 bits, if it is closest to 96, it corresponds to 01, etc. To
increase the speed of demodulation, CovertCast only samples
the innermost 4 pixels. This has a secondary effect of also in-
creasing the accuracy of demodulation as the inner pixels are
less susceptible to color bleeding from a neighboring pixel.

To ensure that the client receives the modulated image
correctly, the server must send the same image for hundreds
of milliseconds before switching to the next image. We found
that sending 2 images per second achieves the best speed with-
out sacrificing reliability, yielding effective bandwidth of over
169,000 bits per second. As technology evolves, we expect
live-streaming services to offer more accurate video streams.
CovertCast’s bandwidth will increase correspondingly.
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Each image starts with 5 bytes of metadata specifying the
image number and the amount of modulated data in the image.
The image number is used by the client to quickly check if
it has already read an image and to determine whether it has
missed an image. One bit of the image’s metadata is used by
the client for synchronization (Section 5.2).

4.4 Bootstrapping

To use CovertCast, a user in the censorship region needs to
obtain the CovertCast client software via an out-of-band chan-
nel (e.g., file sharing or online social networks) and install it on
his or her machine. The user then needs to discover the URL or
name of the live-streaming channel that is broadcasting a web-
site he or she wants to view. They may also need to establish
appropriate credentials (i.e., password or approved username)
to access the channel. Again, this can be done via out-of-band
channels. For example, the user can send the request by email
to the public address of a CovertCast provider. Alternatively,
a user can request this information via a trusted friend who is
already using CovertCast.

As in many similar systems, there are risks involved in us-
ing out-of-band channels for distribution. Unencrypted chan-
nels such as email or social networks can leak URLSs of Covert-
Cast channels and potentially help censors discover and track
CovertCast users (e.g., by following friends of known users,
learning who has sent or seen the URLs, etc.). This puts the
onus of operational security for URL and credential distribu-
tion on CovertCast users and providers.

Unlike Tor and other censorship circumvention systems
that tunnel all connections over the same circuit, CovertCast
needs to distribute a separate URL for each broadcaster. If a
provider broadcasts multiple channels, he can advertise them
together (e.g., in the video description), but this makes it eas-
ier for a censor to discover all of them at once. Separating
the channels would increase resistance to censorship, but also
require more out-of-band communication to distribute their
URLs. A broadcaster of multiple channels thus faces the trade-
off between ease of use and security.

4.5 Content availability within channel

CovertCast only broadcasts a limited number of webpages.
This raises the issue of how a client knows what webpages
they can browse for a specific broadcaster. We have imple-
mented a particular solution, but each broadcaster is free to
use a different strategy.

In our prototype of CovertCast, we focus on distribut-
ing news websites. For each site, our server sends the main

Algorithm 2 Demodulation

Require: I'mg is an 1280 x 720 array of [r, g, b
values between 0 and 255

1: function DEMODULATE(Img)
2: A+ H
3: for y€0...90 do
4: for z €0...160 do
5: r,g, b+ 0
6: fori€0...8do
7 for j€0...8do
8: r < r+Img[8*xx+i,8xy+j][0]
9: g < g+Img[8*x+1,8*xy+j][1]
10: b« b+Img[8xx+1i,8xy+j][2]
11: end for
12: end for
13: forcer, g, bdo
14: if ¢ <8:64 then
15: A.append(]0, 0])
16: else if ¢ < 8-128 then
17: A.append([0,1])
18: else if ¢ < 8-192 then
19: A.append([1,0])
20: else
21: A.append([1,1])
22: end if
23: end for
24: end for
25: end for
26: return A

27: end function

Alg. 2. Pseudocode to demodulate an RGB image into an array of
bits.

page (e.g., http://www.bbc.com/news) and a number of sto-
ries. Each transmitted story is linked from the main page, thus
a user can load the site and browse it normally.

An alternative strategy involves using a “site map™: a
caster can put the list of available pages into the YouTube
stream description or send this map in place of the main page.
Other approaches involve sending the list of available pages
along with the main page or sending multiple main pages (e.g.,
one each for U.S. news, European news, Asian news, etc.).

5 Implementation Issues

5.1 Reading the video feed

Different streaming services show live video in different ways,
and it is difficult to design a uniform method for extracting
frames from the players used by different services. In the
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case of services that use RTMP for their live video, there
are programs that can bypass the video player and download
RTMP feeds directly. Using such programs, however, is typi-
cally against the terms of service and, in our experience, can
easily result in a ban, locking the user out of a live-streaming
service and consequently out of CovertCast. Furthermore, ac-
cessing the feed directly instead of through the service’s video
player may provide a behavioral fingerprint that can help an
active censor find CovertCast users.

Therefore, instead of accessing the feed directly, Covert-
Cast uses screen-scraping to read the video frames. We thus
avoid making CovertCast dependent on the specific implemen-
tation of live streaming and reduce the risk of CovertCast users
being banned from the service.

5.2 Recovering from errors

Normal network perturbations, such as dropped or delayed
packets, can create visual artifacts that corrupt the video.
These visual artifacts can cause a CovertCast client to misread
data and to fail to correctly demodulate Web content. Network
errors between the server, the streaming service, and the client
can also cause images to not be displayed to the client at all.
In this case, the client may not know where the next piece of
Web content begins and become desynchronized. In this case,
all further images in the stream become unusable.

Distorted or dropped image errors rarely happened in our
experiments. To help protect against visual artifacts, Covert-
Cast can use error-correcting codes (ECCs) in its video encod-
ing, at the cost of reduced bandwidth available for the actual
tunnelled Web content. Because most of our tests used a high-
bandwidth, low-latency network, we opted not to use ECCs in
our experiments, but we also tested CovertCast in more chal-
lenging network environments.

To help a client recover from missed images, the server
can indicate when the start of an image aligns with the start of a
new piece of content. The server indicates this alignment with
a flag in the image’s metadata. Because the server is constantly
sending data, the chance that a piece of content aligns with the
start of an image is small. To increase the number of chances
for a client to resynchronize, every time the CovertCast server
sends a new HTML page, it uses a new image and sets the flag
in the image’s metadata. The frequency can be increased even
further, for example, to every n images, but this also increases
the number of images sent by the server.

5.3 Removing unnecessary content

Although CovertCast has higher bandwidth than other hide-
within systems, it still takes a non-negligible time to broadcast
larger websites. To help mitigate this latency, CovertCast uses
several techniques to reduce the amount of Web content sent,
as well the size of the content.

First, the server proxies all requests through an ad blocker.
Because many ads are big, this can significantly reduce the
amount of data that needs to be sent, freeing up the video-
encoding capacity for the actual content that users want to see.

Second, CovertCast uses a mobile user agent when fetch-
ing content so as to receive smaller pages from websites. Com-
bined with the ad blocker, these heuristics greatly reduce the
number and size of the responses. In our testing, using an ad
blocker and requesting the mobile version of the front page of
The New York Times prevented sending around 150 pieces of
unneeded content and reduced the amount of sent data from 4
MB to 1.6 MB. Most of the other news sites in our evaluation
saw similar reductions.

Third, CovertCast compresses all responses before modu-
lating them into images.

5.4 Interactive and dynamic Web content

Due to the one-way nature of CovertCast, websites that make
heavy use of Ajax or user input cannot be broadcast. A pre-
vious version of CovertCast sought to address this by allow-
ing clients to send requests as comments and receive HTML
responses interactively via live streams, but this introduced a
large amount of latency and did not scale with the number of
clients. Similarly, websites that wait until after the DOM is
fully loaded to fetch images will fail to to display these im-
ages when broadcast via CovertCast.

6 Performance

6.1 Implementation

We implemented a fully working prototype of CovertCast. The
server is written in Python 3.5. We used Ghost.py8 for fetch-
ing Web content, Privoxy9 as our ad blocker, and ffmpeg10 to
create the video and send it to YouTube.

8 http://jeanphix.me/Ghost.py/
9 http://www.privoxy.org/
10 https://www.ffmpeg.org/
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Most of the server’s code is agnostic to the content being
sent over CovertCast, but a small amount of custom code is
needed for each site. This code guides the server by keeping
a list of news stories to broadcast and updating the list if the
main page is updated (e.g., a new story appears on the front
page). In the future, this code could be generated automatically
from the DOM of a page.

The server first loads and broadcasts the main page of a
news site. It also parses the main page’s DOM for specific
HTML attributes to find the URLs of other pages a user might
click. For example, the mobile version of the New York Times
assigns the sfgAsset—1ink class to all stories listed on the
main page. The server creates a list of the found stories and
then begins to broadcast them. Our code also has the option for
the main page to be re-broadcast once every x stories. None of
the site-specific code involves more then 30 lines of Python.

The CovertCast client is also implemented primarily in
Python. The client views the streaming channel on YouTube
using Firefox (although any modern browser would work as
well). Its screen scraper, written in C++, continuously sends
images to the client’s proxy, which serves them over HTTP.

For all of our experiments, the server ran on a Linux ma-
chine with an Intel 1.73 GHz i7 processor and 8GB of RAM.
The client ran on a Windows machine with an Intel 1.90 GHz
i7 processor and 4GB of RAM. Both the client and the server
were on a wireless network. Their Internet connection had la-
tency of around 22ms, with download and upload bandwidths
both above 15 Mbps.

6.2 System resources

To measure CovertCast’s resource consumption, we ran it un-
der normal network conditions with the server broadcasting
the BBC News website to one client. The server used 15-20%
of its total CPU and 180MB of memory. The client peaked at
40% of its CPU and 480MB of memory. The client’s screen
scraper peaked at 15% of its CPU and 31MB of memory.

6.3 Normal network conditions

According to OpenlITP, one of the primary reasons Chinese
users want to bypass the Great Firewall is “to read foreign
news, like The New York Times” [4]. We used CovertCast to
broadcast major news sites to a prototype CovertCast client,
measuring the time between the client receiving the first and
last images associated with each webpage. We picked five
news sites and loaded the main page and three articles from
each site. This experiment was repeated five times for each
site. The results are shown in Fig. 5.
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Fig. 5. The average loading time for news sites using CovertCast

over YouTube. The time to load the site’s main page and the time

to load three news articles were measured. Each site was loaded
five times. The variance for USA Today is due to non-determinism
in Ghost.py deciding when a page is fully loaded.

The time it takes to stream a site is directly proportional to
the total amount of data sent. The front pages of the majority
of news sites we examined were under 1.8MB, with The Wall
Street Journal being the one exception at SMB. The Wall Street
Journal’s much larger size is probably due to it being the only
site without a dedicated front page for mobile browsers.

During testing, BBC News and The Guardian failed to
correctly display images, though for different reasons. BBC
News first loads low-resolution images and later attempts to
load higher-resolution images. Therefore, the page would load
correctly and display the low-resolution images, but then, af-
ter requesting and failing to receive higher-resolution images,
it would display blank images. The Guardian’s images are
hosted on a separate CDN which uses TLS. CovertCast’s
proxy is unable to respond to requests for these images with-
out using a custom root certificate (since the CovertCast server
effectively acts as a man-in-the-middle for all Web content
served over CovertCast). Asking CovertCast users to trust such
certificates would open them to possible man-in-the-middle at-
tacks, which we wished to avoid.

6.4 Poor network conditions

Not all users inside censored networks have high-quality Inter-
net connections. Some may be located in areas with poor con-
nectivity, while others might have censors actively disrupting
their connections to live-streaming sites. To test these condi-
tions, we loaded news sites using CovertCast while simulating
low bandwidth and high packet-drop rates.
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Fig. 6. Time to load the front pages of five news sites with a 800
Kbps connection.

We ran CovertCast using NetBalancer!! to restrict the
client’s connection to the live-streaming service. When sim-
ulating low bandwidth, we restricted CovertCast to only 800
Kbps download bandwidth. The average Internet connection
in China has bandwidth of 3.4 Mbps,? thus 800 Kbps repre-
sents relatively poor bandwidth for a Chinese user. 800 Kbps
is also less than half of YouTube’s minimum 720p bitrate (1.5
Mbps).13 In our tests we found that latency up to 300ms had
no effect on CovertCast quality and thus report only on band-
width constraints. When simulating an active adversary, we set
NetBalancer to drop 10% of all packets.

Both experiments used the same five news sites from Sec-
tion 6.3. Each was loaded five times. The results for the low-
bandwidth simulation are shown in Fig. 6 and the results for
the high-drop-rate scenario are in Fig. 7. Due to changing news
articles, different measurements involved loading different sto-
ries. We believe that the loading time for the sites’ front pages
yields the best comparison metric.

The low-bandwidth conditions caused YouTube videos to
frequently pause and buffer, increasing load times by a fac-
tor of 2-3. After buffering, the video would often “speed up”
and show many images in quick succession before returning
to the correct speed. Unfortunately, this speed-up can result
in images either being displayed too fast for CovertCast to
scrape, or not being displayed at all. This experiment involved
over 4000 images, but 20 of them were dropped or missed by
CovertCast. The displayed images were mostly correct, with

11 http://seriousbit.com/netbalancer/

12 https://www.stateoftheinternet.com/downloads/pdfs/2015-q2-state-of-
the-internet-report-infographic-asia.pdf

13 https://support.google.com/youtube/answer/2853702

some errors that we believe were caused by the spinning icon
that YouTube displays while buffering.

With 10% packet loss, CovertCast performed better than
in the low-bandwidth conditions, but not as well as under the
normal network conditions. Buffering occurred often and 35
images were missed by CovertCast due to YouTube temporar-
ily increasing the video speed. We also experimented with a
20% drop rate, but found that under those conditions a 720p
video could not be loaded.

We explain how CovertCast can recover from missing
packets and image errors in Section 5.2.

7 Censorship Resistance

7.1 Disrupting bootstrapping

As described in Section 4.4, a CovertCast client has to obtain
some information from the server (in particular, the URL of the
covert streaming channel) in order to use CovertCast. The in-
formation itself need not be secret since the knowledge of the
channel’s URL does not reveal the IP addresses of its view-
ers, but the bootstrapping process should be unobservable to
the censors, otherwise they may disrupt it or punish identified
CovertCast users. Since bootstrapping need not be interactive,
there are many secure channels available to users, e.g., popular
email services that encrypt messages.

7.2 Blocking and disrupting live streams

An effective way to disable CovertCast is to block all live-
streaming services in the censored network. Given the mas-
sive popularity of live streaming, this may cause significant
discontent among regular, non-circumvention users. We be-
lieve that rational censors, as discussed in our threat model
(Section 3), will refrain from blocking all live streaming. Fur-
thermore, CovertCast is not unique in being vulnerable to this
threat. Relying on a single type of service or application is
common to censorship circumvention systems, including Free-
Wave [13] and Facet [18].

Censors may also tamper with encrypted streams, e.g., by
dropping or delaying packets. Since video streams use TCP
and are latency-sensitive, this will disrupt not only CovertCast,
but also non-circumvention users of video streaming.

Collateral damage to non-circumvention users of live-
streaming services raises potential ethical issues. We believe
that these issues are inherent in the design of any censor-
ship circumvention system, including Tor pluggable transports
such as meek. Any such system faces the choice between (1)
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Fig. 7. Time to load the front pages of five news sites with 10%
packet drop rate.

hiding within some popular Internet service and thus expos-
ing its non-circumvention users to collateral damage, and (2)
being distinct from any other service and thus easy to cen-
sor. Since (2) defeats the entire purpose of censorship circum-
vention, we believe that (1) is the more ethical choice. Fur-
thermore, the operators of live-streaming services can easily
opt out of CovertCast participation by disabling the accounts
of CovertCast broadcasters. While distinguishing CovertCast
streams from regular streams is hard for censors (Section 7.5),
operators of streaming services can easily do this if they be-
lieve CovertCast is harming their users.

7.3 IP address blocking

Unlike traditional circumvention systems such as Tor [6] and
its pluggable transports [23, 24, 33], CovertCast clients do not
establish direct network connections with CovertCast servers.
Instead, CovertCast connections are tunnelled via the servers
of a live-streaming service such as YouTube. Therefore, even
if the censors discover the IP addresses of CovertCast servers,
blacklisting these IP addresses will not help them identify and
disrupt CovertCast connections.

7.4 Content analysis

If the streaming service used by CovertCast encrypts video
streams to its clients (like YouTube does), censors will not be
able to detect CovertCast by analyzing video contents. The use
of encryption, however, degrades quality of service. For exam-
ple, YouTube has a bigger start delay than the streaming ser-
vices that do not use encryption. If the service does not encrypt
its streams, censors may be able to detect CovertCast traffic

through content analysis techniques of varying complexity and
accuracy. For example, censors can render the suspected video
stream, using standard video processing, to check if it con-
tains characteristic CovertCast images, as shown in Figure 3.
Performing such analysis at line speeds over a large numbers
of video streams is likely to impose significant computation
and storage overheads on the censors’ network monitors.

To increase the cost of content analysis in the absence of
encryption, CovertCast can use steganography to hide circum-
vention traffic in the frames of actual videos. This will reduce
the bandwidth available to the tunnelled circumvention traffic.

7.5 Passive attacks

Passive attacks aim to identify circumvention traffic through
monitoring of network activity, without modifying or generat-
ing traffic.

Protocol analysis. Previous work [9, 11, 30] showed that cen-
sors can identify circumvention traffic by inspecting the under-
lying network protocols. For example, Houmansadr et al. [11]
showed that censors can identify SkypeMorph [23], a system
that tries to mimic Skype, since SkypeMorph traffic does not
contain some essential Skype messages; Wang et al. [30] used
a large set of network traces to identify Tor obfuscation tech-
niques such as obfsproxy and meek.

CovertCast is not detectable by such attacks because it
embeds circumvention traffic into genuine video streams, thus
CovertCast traffic uses exactly the same protocols and al-
gorithms as any other live-streaming traffic. In particular, a
CovertCast connection over YouTube uses the same video
codecs, same streaming protocol, same endpoints, etc., as any
other YouTube live stream.

Traffic analysis. Even if the live stream is encrypted, traffic
patterns such as packet sizes and inter-packet intervals may
allow a censor to distinguish between CovertCast traffic and
regular streaming traffic.

There has been little work on traffic analysis and con-
tent fingerprinting for streaming video. Our evaluation showed
that basic categorical tests such as decision trees cannot distin-
guish CovertCast traffic from regular video streams. To design
a more sophisticated classifier, we adopted ideas from the sta-
tistical classifier proposed by Wright et al. [36] to detect spo-
ken language in VoIP calls.

The core of our classifier is the Kullback-Leibler (KL)
divergence metric [17], which is a measure of relative en-
tropy between two discrete probability distributions. The
KL distance between distributions P and @ is given by
Dir(P||Q) = >, P(i)In (ggg) Our classifier uses two
sets of probability distributions, A and B. Each of these sets
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Video Set Total Accuracy | True Positives | True Negatives
YouTube Set 1 65.6% 33.3% 97.8%
YouTube Set 2 65.0% 44.4% 85.6%
Webcam Set 1 65.0% 77.8% 97.8%
Webcam Set 2 71.1% 65.6% 85.6%

(a) Packet sizes

Video Set Total Accuracy

True Positives | True Negatives

YouTube Set 1 68.3% 41.1% 95.6%
YouTube Set 2 57.2% 36.7% 77.8%
Webcam Set 1 46.7% 61.1% 95.6%
Webcam Set 2 60.0% 60.0% 77.8%

(b) Inter-packet timings

Table 1. Classifying CovertCast streams vs. non-CovertCast streams using packet sizes (a) and inter-packet timings (b). Accuracy for

CovertCast streams is highlighted.

contain N discrete probability distributions of features from
I-minute long video streams, quantized into 100 levels. For
every distribution in A, our classifier computes the Dy, dis-
tance from all other distributions in A, as well as the D,
distance from all distributions in B and vice versa. The classi-
fier returns a success metric, which is the number of times the
KL distance between two members of one set is smaller than
the KL distance from a member of the other set, divided by the
total number of KL distances.

We used our classifier to distinguish between CovertCast
traffic and regular video streams, based on both packet sizes
and inter-packet timings of QUIC14 packets. One set con-
tained probability distributions of CovertCast connections tun-
nelled via YouTube, the other set contained actual YouTube
streams, namely, two subsets of ten 720p live streams featured
on the front page of YouTube and two subsets of ten 720p live
footage from a webcam in our lab.

Table 1 shows the success metric of our classifier for the
YouTube videos, webcams, and CovertCast streams. While the
overall accuracy of our classifier for YouTube videos is around
65%, the true positive rate, that is, the accuracy of correctly
identifying a CovertCast stream, is between 33% and 45%,
less than random guessing. Our classifier has a higher true
positive rate when classifying CovertCast videos vs. webcam
videos. This might indicate that it may be possible to classify
encrypted YouTube videos by their content type (i.e., webcam
footage, video games, sports, news, etc.), but a much larger
study is needed before we can establish this for certain. If the
content of encrypted YouTube videos can be classified in such

14 Google’s Quick UDP Internet Connections

a way, this raises privacy concerns for YouTube users that are
unrelated to censorship circumvention.

Our tests examined only the size and inter-packet timings
of QUIC packets. It may be possible to build a more accurate
classifier using other features. Audio and user comments are
two components of many live video streams that are absent
in CovertCast. A deeper examination of QUIC and YouTube’s
architecture may inform the design of a classifier capable of
recognizing silent, comment-less streams.

CovertCast does not currently include audio or comments,
but it is easy to add them in order to mimic interactive live
streams. For example, it would be trivial to add audio to ffm-
peg when the server sends a video to the streaming service.
This audio could be pre-recorded, generated on the fly, or taken
from other streams. We leave the in-depth analysis and imple-
mentation of these features to future work.

In any case, accurate classification of encrypted video
streams requires much more than deep packet inspection. In
particular, it involves large-scale collection and analysis of
traffic, thus significantly raising the technical bar for censors.
To the best of our knowledge, no real-world censor performs
this kind of analysis today, and existing censorship technolo-
gies are do not support this functionality.

7.6 Active attacks

Today’s censors increasingly use active attacks. They can se-
lectively perturb some network connections, e.g., by dropping
and delaying packets, change routing policies, etc. Active at-
tacks serve two purposes. First, these attacks can identify cir-
cumvention connections (and users) that are otherwise unde-
tectable. For instance, Houmansadr et al. [11] show that cen-
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sors can identify SkypeMorph [23] connections by selectively
dropping a small number of UDP packets from a suspected
Skype conversation. As with passive attacks discussed above,
CovertCast is resistant to this kind of attack because a Covert-
Cast connection uses exactly the same protocols as a regular
video stream, thus its reaction to traffic manipulation will be
the same as that of regular video streams.

The second use of active attacks is to disable potential cir-
cumvention connections even if they are not detectable. For in-
stance, Geddes et al. [9] show that strategically dropping UDP
packets from traffic that looks like Skype will not impact gen-
uine Skype conversations, but it will disable FreeWave [13], a
circumvention system that encodes traffic into Skype conver-
sations, by dropping parts of FreeWave content that are essen-
tial for decoding the circumvention traffic. This attack does not
work against CovertCast. Because CovertCast does not inter-
act with the streaming service outside of scraping the video,
any active attack that disrupts CovertCast would disrupt the
streaming service as well.

8 Conclusion

CovertCast is a new censorship circumvention system that en-
codes censored Web content into live video streams and broad-
casts them over popular streaming services such as YouTube.
CovertCast is highly scalable, with the server workload inde-
pendent of the number of clients receiving content. CovertCast
resists common censorship techniques such as IP address fil-
tering, protocol fingerprinting, and deep packet inspection.
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