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Abstract

Voice over IP (VoIP) has become a popular protocol for
making phone calls over the Internet. Due to the poten-
tial transit of sensitive conversations over untrusted net-
work infrastructure, it is well understood that the con-
tents of a VoIP session should be encrypted. However,
we demonstrate that current cryptographic techniques do
not provide adequate protection when the underlying au-
dio is encoded using bandwidth-saving Variable Bit Rate
(VBR) coders. Explicitly, we use the length of encrypted
VoIP packets to tackle the challenging task of identifying
the language of the conversation. Our empirical analysis
of 2,066 native speakers of 21 different languages shows
that a substantial amount of information can be discerned
from encrypted VoIP traffic. For instance, our 21-way
classifier achieves 66% accuracy, almost a 14-fold im-
provement over random guessing. For 14 of the 21 lan-
guages, the accuracy is greater than 90%. We achieve
an overall binary classification (e.g., “Is this a Spanish
or English conversation?”) rate of 86.6%. Our analysis
highlights what we believe to be interesting new privacy
issues in VoIP.

1 Introduction

Over the last several years, Voice over IP (VoIP) has
enjoyed a marked increase in popularity, particularly as
a replacement of traditional telephony for international
calls. At the same time, the security and privacy impli-
cations of conducting everyday voice communications
over the Internet are not yet well understood. For the
most part, the current focus on VoIP security has centered
around efficient techniques for ensuring confidentiality
of VoIP conversations [3, 6, 14, 37]. Today, because of
the success of these efforts and the attention they have re-
ceived, it is now widely accepted that VoIP traffic should
be encrypted before transmission over the Internet. Nev-
ertheless, little, if any, work has explored the threat of

traffic analysis of encrypted VoIP calls. In this paper,
we show that although encryption prevents an eavesdrop-
per from reading packet contents and thereby listening in
on VoIP conversations (for example, using [21]), traffic
analysis can still be used to infer more information than
expected—namely, the spoken language of the conversa-
tion. Identifying the spoken language in VoIP communi-
cations has several obvious applications, many of which
have substantial privacy ramifications [7].

The type of traffic analysis we demonstrate in this pa-
per is made possible because current recommendations
for encrypting VoIP traffic (generally, the application of
length-preserving stream ciphers) do not conceal the size
of the plaintext messages. While leaking message size
may not pose a significant risk for more traditional forms
of electronic communication such as email, properties of
real-time streaming media like VoIP greatly increase the
potential for an attacker to extract meaningful informa-
tion from plaintext length. For instance, the size of an en-
coded audio frame may have much more meaningful se-
mantics than the size of a text document. Consequently,
while the size of an email message likely carries little in-
formation about its contents, the use of bandwidth-saving
techniques such as variable bit rate (VBR) coding means
that the size of a VoIP packet is directly determined by
the type of sound its payload encodes. This informa-
tion leakage is exacerbated in VoIP by the sheer num-
ber of packets that are sent, often on the order of tens or
hundreds every second. Access to such large volumes of
packets over a short period of time allows an adversary to
quickly estimate meaningful distributions over the packet
lengths, and in turn, to learn information about the lan-
guage being spoken.

Identifying spoken languages is a task that, on the sur-
face, may seem simple. However it is a problem that
has not only received substantial attention in the speech
and natural language processing community, but has also
been found to be challenging even with access to full
acoustic data. Our results show an encrypted conversa-



Figure 1: Uncompressed audio signal, Speex bit rates, and packet sizes for a random sample from the corpus.

tion over VoIP can leak information about its contents,
to the extent that an eavesdropper can successfully in-
fer what language is being spoken. The fact that VoIP
packet lengths can be used to perform any sort of lan-
guage identification is interesting in and of itself. Our
success with language identification in this setting pro-
vides strong grounding for mandating the use of fixed
length compression techniques in VoIP, or for requiring
the underlying cryptographic engine to pad each packet
to a common length.

The rest of this paper is organized as follows. We be-
gin in Section 2 by reviewing why and how voice over IP
technologies leak information about the language spoken
in an encrypted call. In Section 3, we describe our design
for a classifier that exploits this information leakage to
automatically identify languages based on packet sizes.
We evaluate this classifier’s effectiveness in Section 4,
using open source VoIP software and audio samples from
a standard data set used in the speech processing com-
munity. We review related work on VoIP security and
information leakage attacks in Section 5, and conclude
in Section 6.

2 Information Leakage via Variable Bit
Rate Encoding

To highlight why language identification is possible in
encrypted VoIP streams, we find it instructive to first re-

view the relevant inner workings of a modern VoIP sys-
tem. Most VoIP calls use at least two protocols: (1)
a signaling protocol such as the Session Initiation Pro-
tocol (SIP) [23] used for locating the callee and estab-
lishing the call and (2) the Real Time Transport Proto-
col (RTP) [25, 4] which transmits the audio data, en-
coded using a special-purpose speech codec, over UDP.
While several speech codecs are available (including
G.711 [10], G.729 [12], Speex [29], and iLBC [2]),
we choose the Speex codec for our investigation as
it offers several advanced features like a VBR mode
and discontinuous transmission, and its source code is
freely available. Additionally, although Speex is not
the only codec to offer variable bit rate encoding for
speech [30, 16, 20, 35, 5], it is the most popular of those
that do.

Speex, like most other modern speech codecs, is based
on code-excited linear prediction (CELP) [24]. In CELP,
the encoder uses vector quantization with both a fixed
codebook and an adaptive codebook [22] to encode a
window of n audio samples as one frame. For example,
in the Speex default narrowband mode, the audio input is
sampled at 8kHz, and the frames each encode 160 sam-
ples from the source waveform. Hence, a packet contain-
ing one Speex frame is typically transmitted every 20ms.
In VBR mode, the encoder takes advantage of the fact
that some sounds are easier to represent than others. For
example, with Speex, vowels and high-energy transients
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Figure 2: Unigram frequencies of bit rates for English,
Brazilian Portuguese, German and Hungarian
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Figure 3: Unigram frequencies of bit rates for Indonesian,
Czech, Russian, and Mandarin

require higher bit rates than fricative sounds like “s” or
“f” [28]. To achieve improved sound quality and a low
(average) bit rate, the encoder uses fewer bits to encode
frames which contain “easy” sounds and more bits for
frames with sounds that are harder to encode. Because
the VBR encoder selects the best bit rate for each frame,
the size of a packet can be used as a predictor of the bit
rate used to encode the corresponding frame. Therefore,
given only packet lengths, it is possible to extract infor-
mation about the underlying speech. Figure 1, for exam-
ple, shows an audio input, the encoder’s bit rate, and the
resulting packet sizes as the information is sent on the
wire; notice how strikingly similar the last two cases are.

As discussed earlier, by now it is commonly accepted
that VoIP traffic should not be transmitted over the Inter-
net without some additional security layer [14, 21]. In-
deed, a number of proposals for securing VoIP have al-
ready been introduced. One such proposal calls for tun-
neling VoIP over IPSec, but doing so imposes unaccept-
able delays on a real-time protocol [3]. An alternative,
endorsed by NIST [14], is the Secure Real Time Trans-
port Protocol (SRTP) [4]. SRTP is an extension to RTP
and provides confidentiality, authenticity, and integrity
for real-time applications. SRTP allows for three modes
of encryption: AES in counter mode, AES in f8-mode,
and no encryption. For the two stream ciphers, the stan-
dard states that “in case the payload size is not an inte-
ger multiple of (the block length), the excess bits of the
key stream are simply discarded” [4]. Moreover, while
the standard permits higher level protocols to pad their
messages, the default in SRTP is to use length-preserving
encryption and so one can still derive information about
the underlying speech by observing the lengths of the en-
crypted payloads.

Given that the sizes of encrypted payloads are closely

related to bit rates used by the speech encoder, a perti-
nent question is whether different languages are encoded
at different bit rates. Our conjecture is that this is in-
deed the case, and to test this hypothesis we examine
real speech data from the Oregon Graduate Institute Cen-
ter for Speech Learning and Understanding’s “22 Lan-
guage” telephone speech corpus [15]. The data set con-
sists of speech from native speakers of 21 languages,
recorded over a standard telephone line at 8kHz. This
is the same sampling rate used by the Speex narrowband
mode. General statistics about the data set are provided
in Appendix A.

As a preliminary test of our hypothesis, we encoded
all of the audio files from the CSLU corpus and recorded
the sequence of bit rates used by Speex for each file. In
narrowband VBR mode with discontinuous transmission
enabled, Speex encodes the data set using nine distinct
bit rates, ranging from 0.25kbps up to 24.6kbps. Fig-
ure 2 shows the frequency for each bit rate for English,
Brazilian Portuguese, German, and Hungarian. For most
bit rates, the frequencies for English are quite close to
those for Portuguese; but Portuguese and Hungarian ap-
pear to exhibit different distributions. This results sug-
gest that distinguishing Portuguese from Hungarian, for
example, would be less challenging than differentiating
Portuguese from English, or Indosesian from Russian
(see Figure 3).

Figures 4 and 5 provide additional evidence that bi-
gram frequencies (i.e., the number of instances of con-
secutively observed bit rate pairs) differ between lan-
guages. The x and y axes of both figures specify ob-
served bit rates. The density of the square (x, y) shows
the difference in probability of bigram x, y between the
two languages divided by the average probability of bi-
gram x, y between the two. Thus, dark squares indicate
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Figure 4: The normalized difference in bigram frequencies
between Brazilian Portuguese (BP) and English (EN).
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Figure 5: The normalized difference in bigram frequencies
between Mandarin (MA) and Tamil (TA).

significant differences between the languages for an ob-
served bigram. Notice that while Brazilian Portuguese
(BP) and English (EN) are similar, there are differences
between their distributions (see Figure 4). Languages
such as Mandarin (MA) and Tamil (TA) (see Figure 5),
exhibit more substantial incongruities.

Encouraged by these results, we applied the χ2 test to
examine the similarity between sample unigram distribu-
tions. The χ2 test is a non-parametric test that provides
an indication as to the likelihood that samples are drawn
from the same distribution. The χ2 results confirmed
(with high confidence) that samples from the same lan-
guage have similar distributions, while those from dif-
ferent languages do not. In the next section, we explore
techniques for exploiting these differences to automati-
cally identify the language spoken in short clips of en-
crypted VoIP streams.

3 Classifier

We explored several classifiers (e.g., using techniques
based on k-Nearest Neighbors, Hidden Markov Models,
and Gaussian Mixture Models), and found that a variant
of a χ2 classifier provided a similar level of accuracy,
but was more computationally efficient. In short, the
χ2 classifier takes a set of samples from a speaker and
models (or probability distributions) for each language,
and classifies a speaker as belonging to the language for
which the χ2 distance between the speaker’s model and
the language’s model is minimized. To construct a lan-
guage model, each speech sample (i.e., a phone call), is
represented as a series of packet lengths generated by a
Speex-enabled VoIP program. We simply count the n-
grams of packet lengths in each sample to estimate the
multinomial distribution for that model (for our empiri-

cal analysis, we set n = 3). For example, if given a stream
of packets with lengths of 55, 86, 60, 50 and 46 bytes,
we would extract the 3-grams (55, 86, 60), (86, 60, 50),
(60, 50, 46), and use those triples to estimate the distri-
butions1. We do not distinguish whether a packet repre-
sents speech or silence (as it is difficult to do so with high
accuracy), and simply count each n-gram in the stream.

It is certainly the case that some n-grams will be more
useful than others for the purposes of language separa-
tion. To address this, we modify the above construc-
tion such that our models only incorporate n-grams that
exhibit low intraclass variance (i.e., the speakers within
the same language exhibit similar distributions on the
n-gram of concern) and high interclass variance (i.e.,
the speakers of one language have different distributions
than those of other languages for that particular n-gram).
Before explaining how to determine the distinguishabil-
ity of a n-gram g, we first introduce some notation. As-
sume we are given a set of languages, L. Let PL(g) de-
note the probability of the n-gram g given the language
L ∈ L, and Ps(g) denote the probability of the n-gram g
given the speaker s ∈ L. All probabilities are estimated
by dividing the total number of occurrences of a given
n-gram by the total number of observed n-grams.

For the n-gram g we compute its average intraclass
variability as:

VARintra(g) =
1
|L|

∑
L∈L

1
|L|
∑
s∈L

(Ps(g) − PL(g))2

Intuitively, this measures the average distance between
the probability of g for given a speaker and the probabil-
ity of g given that speaker’s language; i.e., the average
variance of the probability distributions PL(g). We com-



pute the interclass variability as:

VARinter(g) =(
(|L| − 1)

∑
L∈L

|L|
)−1

·
⎛
⎝∑

L1∈L

∑
s∈L1

∑
L2∈L\L1

(Ps(g) − PL2(g))2

⎞
⎠

This measures, on average, the difference between the
probability of g for a given speaker and the probability
of g given every other language. The second two sum-
mations in the second term measure the distance from
each speaker in a specific language to the means of all
other languages. The first summation and the leading
normalization term are used to compute the average over
all languages. As an example, if we consider the seventh
and eighth bins in the unigram case illustrated in Fig-
ure 2, then VARinter(15.0 kbps) < VARinter(18.2 kbps).

We set the overall distinguishability for n-gram g to
be DIS(g) = VARinter(g)/VARintra(g). Intuitively, if
DIS(g) is large, then speakers of the same language tend
to have similar probability densities for g, and these den-
sities will vary across languages. We choose to make our
classification decisions using only those g with DIS(g) >
1, we denote this set of distinguishing n-grams as G. The
model for language L is simply the probability distribu-
tion PL over G.

To further refine the models, we remove outliers
(speakers) who might contribute noise to each distribu-
tion. In order to do this, we must first specify a distance
metric between a speaker s and a language L. Suppose
that we extract N total n-grams from s’s speech samples.
Then, we compute the distance between s and L as:

∆(Ps, PL, G) =
∑
g∈G

(N · PL(g) − N · Ps(g))2

N · PL(g)

We then remove the speakers s from L for which
∆(Ps, PL, G) is greater than some language-specific
threshold tL. After we have removed these outliers, we
recompute PL with the remaining speakers.

Given our refined models, our goal is to use a speaker’s
samples to identify the speaker’s language. We assign the
speaker s to the language with the model that is closest
to the speaker’s distribution over G as follows:

L∗ = argmin
L∈L

∆(Ps, PL, G)

To determine the accuracy of our classifier, we apply
the standard leave-one-out cross validation analysis to
each speaker in our data set. That is, for a given speaker,
we remove that speaker’s samples and use the remaining

samples to compute G and the models PL for each lan-
guage in L ∈ L. We choose the tL such that 15% of the
speakers are removed as outliers (these outliers are elim-
inated during model creation, but they are still included
in classification results). Next, we compute the probabil-
ity distribution, Ps, over G using the speaker’s samples.
Finally, we classify the speaker using Ps and the outlier-
reduced models derived from the other speakers in the
corpus.

4 Empirical Evaluation

To evaluate the performance of our classifier in a realis-
tic environment, we simulated VoIP calls for many dif-
ferent languages by playing audio files from the Oregon
Graduate Institute Center for Speech Learning & Under-
standing’s “22 Language” telephone speech corpus [15]
over a VoIP connection. This corpus is widely used in
language identification studies in the speech recognition
community (e.g. [19], [33]). It contains recordings from
a total of 2066 native speakers of 21 languages2, with
over 3 minutes of audio per speaker. The data was orig-
inally collected by having users call in to an automated
telephone system that prompted them to speak about sev-
eral topics and recorded their responses. There are sev-
eral files for each user. In some, the user was asked to
answer a question such as “Describe your most recent
meal” or “What is your address?” In others, they were
prompted to speak freely for up to one minute. This type
of free-form speech is especially appealing for our eval-
uation because it more accurately represents the type of
speech that would occur in a real telephone conversation.
In other files, the user was prompted to speak in English
or was asked about the language(s) they speak. To avoid
any bias in our results, we omit these files from our anal-
ysis, leaving over 2 minutes of audio for each user. See
Appendix A for specifics concerning the dataset.

Our experimental setup includes two PC’s running
Linux with open source VoIP software [17]. One of the
machines acts as a server and listens on the network for
SIP calls. Upon receiving a call, it automatically answers
and negotiates the setup of the voice channel using Speex
over RTP. When the voice channel is established, the
server plays a file from the corpus over the connection
to the caller, and then terminates the connection. The
caller, which is another machine on our LAN, automati-
cally dials the SIP address of the server and then “listens”
to the file the server plays, while recording the sequence
of packets sent from the server. The experimental setup
is depicted in Figure 6.

Although our current evaluation is based on data col-
lected on a local area network, we believe that languages
could be identified under most or all network conditions
where VoIP is practical. First, RTP (and SRTP) sends in



Figure 6: Experimental setup.

the clear a timestamp corresponding to the sampling time
of the first byte in the packet data [25]. This timestamp
can therefore be used to infer packet ordering and iden-
tify packet loss. Second, VoIP is known to degrade sig-
nificantly under undesirable network connections with
latency more than a few hundred milliseconds [11], and
it is also sensitive to packet loss [13]. Therefore any net-
work which allows for acceptable call quality should also
give our classifier a sufficient number of trigrams to make
an accurate classification.

For a concrete test of our techniques on wide-area
network data, we performed a smaller version of the
above experiment by playing a reduced set of 6 lan-
guages across the Internet between a server on our LAN
and a client machine on a residential DSL connection.
In the WAN traces, we observed less than 1% packet
loss, and there was no statistically significant difference
in recognition rates for the LAN and WAN experiments.

4.1 Classifier Accuracy

In what follows, we examine the classifier’s performance
when trained using all available samples (excluding, of
course, the target user’s samples). To do so, we test each
speaker against all 21 models. The results are presented
in Figures 7 and 8. Figure 7 shows the confusion matrix
resulting from the tests. The x axis specifies the language
of the speaker, and the y axis specifies the language of
the model. The density of the square at position (x, y)
indicates how often samples from speakers of language
x were classified as belonging to language y.

To grasp the significance of our results, it is impor-
tant to note that if packet lengths leaked no information,
then the classification rates for each language would be
close to random, or about 4.8%. However, the confusion
matrix shows a general density along the y = x line.
The classifier performed best on Indonesian (IN) which

is accurately classified 40% of the time (an eight fold
improvement over random guessing). It also performed
well on Russian (RU), Tamil (TA), Hindi (HI), and Ko-
rean (KO), classifying at rates of 35, 35, 29 and 25 per-
cent, respectively. Of course, Figure 7 also shows that in
several instances, misclassification occurs. For instance,
as noted in Figure 2, English (EN) and Brazilian Por-
tuguese (BP) exhibit similar unigram distributions, and
indeed when misclassified, English was often confused
with Brazilian Portuguese (14% of the time). Nonethe-
less, we believe these results are noteworthy, as if VoIP
did not leak information, the classification rates would
be close to those of random guessing. Clearly, this is not
the case, and our overall accuracy was 16.3%—that is, a
three and a half fold improvement over random guessing.

An alternative perspective is given in Figure 8, which
shows how often the speaker’s language was among the
classifier’s top x choices. We plot random guessing as a
baseline, along with languages that exhibited the highest
and lowest classification rates. On average, the correct
language was among our top four speculations 50.2% of
the time. Note the significant improvement over random
guessing, which would only place the correct language
in the top four choices approximately 19% of the time.
Indonesian is correctly classified in our top three choices
57% of the time, and even Arabic—the language with the
lowest overall classification rates—was correctly placed
among our top three choices 30% of the time.

In many cases, it might be worthwhile to distinguish
between only two languages, e.g., whether an encrypted
conversation in English or Spanish. We performed tests
that aimed at identifying the correct language when sup-
plied only two possible choices. We see a stark improve-
ment over random guessing, with seventy-five percent of
the language combinations correctly distinguished with
an accuracy greater than 70.1%; twenty-five percent had
accuracies greater than 80%. Our overall binary classifi-
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Figure 8: CDF showing how often the speaker’s lan-
guage was among the classifier’s top x choices.

cation rate was 75.1%.
Our initial intuition in Section 2 are strongly correlated

to our empirical results. For example, rates for Russian
versus Italian and Mandarin versus Tamil (see Figure 5)
were 78.5% and 84%, respectively. The differences in
the histograms shown earlier (Figure 2) also have direct
implications for our classification rates in this case. For
instance, our classifier’s accuracy when tasked with dis-
tinguishing between Brazilian Portuguese and English
was only 66.5%, whereas the accuracy for English versus
Hungarian was 86%.

4.2 Reducing Dimensionality to Improve
Performance

Although these results adequately demonstrate that
length-preserving encryption leaks information in VoIP,
there are limiting factors to the aforementioned approach
that hinder classification accuracy. The primary diffi-
culty arises from the fact that the classifier represents
each speaker and language as a probability distribution
over a very high dimensional space. Given 9 different
observed packet lengths, there are 729 possible different
trigrams. Of these possibilities, there are 451 trigrams
that are useful for classification, i.e., DIS(g) > 1 (see
Section 3). Thus, speaker and language models are prob-
ability distributions over a 451-dimensional space. Un-
fortunately, given our current data set of approximately
7,277 trigrams per speaker, it is difficult to estimate den-
sities over such a large space with high precision.

One way to address this problem is based on the ob-
servation that some bit rates are used in similar ways
by the Speex encoder. For example, the two lowest bit
rates, which result in packets of 41 and 46 bytes, re-
spectively, are often used to encode periods of silence

or non-speech. Therefore, we can reasonably consider
the two smallest packet sizes functionally equivalent and
put them together into a single group. In the same way,
other packet sizes may be used similarly enough to war-
rant grouping them together as well. We experimented
with several mappings of packet sizes to groups, but
found that the strongest results are obtained by mapping
the two smallest packet lengths together, mapping all of
the mid-range packet lengths together, and leaving the
largest packet size in a group by itself.

We assign each group a specific symbol, s, and then
compute n-grams from these symbols instead of the orig-
inal packet sizes. So, for example, given the sequence of
packet lengths 41, 50, 46, and 55, we map 41 and 46 to
s1 and 50 and 55 to s2 to extract the 3-grams (s1, s2, s1)
and (s2, s1, s2), etc. Our classification process then con-
tinues as before, except that the reduction in the num-
ber of symbols allows us to expand our analysis to 4-
grams. After removing the 4-grams g with DIS(g) < 1,
we are left with 47 different 4-gram combinations. Thus,
we reduced the dimensionality of the points from 451
to 47. Here we are estimating distributions over a 47-
dimensional space using on average of 7,258 4-grams per
speaker.

Results for this classifier are shown in Figures 9 and
10. With these improvements, the 21-way classifier cor-
rectly identifies the language spoken 66% of the time—
a fourfold improvement over our original classifier and
more than 13 times better than random guessing. It rec-
ognizes 14 of the 21 languages exceptionally well, iden-
tifying them with over 90% accuracy. At the same time,
there is a small group of languages which the new clas-
sifier is not able to identify reliably; Czech, Spanish, and
Vietnamese are never identified correctly on the first try.
This occurs mainly because the languages which are not
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Figure 9: Confusion Matrix for the 21-way test using 4-
grams and reduced set of symbols. Darkest and lightest
boxes represent accuracies of 1.0 and 0.0, respectively.
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recognized accurately are often misidentified as one of
a handful of other languages. Hungarian, in particular,
has false positives on speakers of Arabic, Czech, Span-
ish, Swahili, Tamil, and Vietnamese. These same lan-
guages are also less frequently misidentified as Brazilian
Portuguese, Hindi, Japanese, Korean, or Mandarin. In
future work, we plan to investigate what specific acous-
tic features of language cause this classifier to perform so
well on many of the languages while failing to accurately
recognize others.

Binary classification rates, shown in Figure 11 and
Table 1, are similarly improved over our initial results.
Overall, the classifier achieves over 86% accuracy when
distinguishing between two languages. The median ac-
curacy is 92.7% and 12% of the language pairs can be
distinguished at rates greater than 98%. In a few cases
like Portuguese versus Korean or Farsi versus Polish, the
classifier exhibited 100% accuracy on our test data.

Interestingly, the results of our classifiers are compara-
ble to those presented by Zissman [38] in an early study
of language identification techniques using full acous-
tic data. Zissman implemented and compared four dif-
ferent language recognition techniques, including Gaus-
sian mixture model (GMM) classification and techniques
based on single-language phone recognition and n-gram
language modeling. All four techniques used cepstral co-
efficients as input [22].

The GMM classifier described by Zissman is much
simpler than the other techniques and serves primarily
as a baseline for comparing the performance of the more
sophisticated methods presented in that work. Its accu-
racy is quite close to that of our initial classifier: with
access to approximately 10 seconds of raw acoustic data,
it scored approximately 78% for three language pairs,
compared to our classifer’s 89%. The more sophisti-

cated classifiers in [38] have performance closer to that
of our improved classifier. In particular, an 11-way clas-
sifier based on phoneme recognition and n-gram lan-
guage modeling (PRLM) was shown to achieve 89% ac-
curacy when given 45s of acoustic data. In each case,
our classifier has the advantage of a larger sample, using
around 2 minutes of data.

Naturally, current techniques for language identifi-
cation have improved on the earlier work of Zissman
and others, and modern error rates are almost an order
of magnitude better than what our classifiers achieve.
Nevertheless, this comparison serves to demonstrate the
point that we are able to extract significant information
from encrypted VoIP packets, and are able to do so with
an accuracy close to a reasonable classifier with access
to acoustic data.

DISCUSSION

We note that since the audio files in our corpus were
recorded over a standard telephone line, they are sampled
at 8kHz and encoded as 16-bit PCM audio, which is ap-
propriate for Speex narrowband mode. While almost all
traditional telephony samples the source audio at 8kHz,
many soft phones and VoIP codecs have the ability to use
higher sampling rates such as 16kHz or 32kHz to achieve
better audio quality at the tradeoff of greater load on the
network. Unfortunately, without a higher-fidelity data
set, we have been unable to evaluate our techniques on
VoIP calls made with these higher sampling rates. Nev-
ertheless, we feel that the results we derive from using
the current training set are also informative for higher-
bandwidth codecs for two reasons.

First, it is not uncommon for regular phone conver-
sations to be converted to VoIP, enforcing the use of an
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Figure 11: CCDF for overall accuracy of the binary clas-
sifier using 4-grams and reduced set of symbols.

8kHz sampling rate. Our test setup accurately models the
traffic produced under this scenario. Second, and more
importantly, by operating at the 8kHz level, we argue
that we work with less information about the underly-
ing speech, as we are only able to estimate bit rates up
to a limited fidelity. Speex wideband mode, for example,
operates on speech sampled at 16kHz and in VBR mode
uses a wider range of bit rates than does the narrowband
mode. With access to more distinct bit rates, one would
expect to be able to extract more intricate characteristics
about the underlying speech. In that regard, we believe
that our results could be further improved given access to
higher-fidelity samples.

4.3 Mitigation

Recall that these results are possible because the default
mode of encryption in SRTP is to use a length-preserving
stream cipher. However, the official standard [4] does al-
low implementations to optionally pad the plaintext pay-
load to the next multiple of the cipher’s block size, so that
the original payload size is obscured. Therefore, we in-
vestigate the effectiveness of padding against our attack,
using several block sizes.

To determine the packet sizes that would be pro-
duced by encryption with padding, we simply modify
the packet sizes we observed in our network traces by
increasing their RTP payload sizes to the next multiple
of the cipher’s block size. To see how our attack is af-
fected by this padding, we re-ran our experiments us-
ing block sizes of 128, 192, 256, and 512 bits. Padding
to a block size of 128 bits results in 4 distinct packet
sizes; this number decreases to 3 distinct sizes with 192-
bit blocks, 2 sizes with 256-bit blocks, and finally, with
512-bit blocks, all packets are the same size. Figure 12
shows the CDF for the classifier’s results for these four

Lang. Acc. Lang. Acc

EN-FA 0.980 CZ-JA 0.544
GE-RU 0.985 AR-SW 0.549
FA-SD 0.990 CZ-HU 0.554
IN-PO 0.990 CZ-SD 0.554
PO-RU 0.990 MA-VI 0.565
BP-PO 0.995 JA-SW 0.566
EN-HI 0.995 HU-VI 0.575
HI-PO 0.995 CZ-MA 0.580
BP-KO 1.000 CZ-SW 0.590
FA-PO 1.000 HU-TA 0.605

Table 1: Binary classifier recognition rates for selected
language pairs. Languages and their abbreviations are
listed in Appendix A.

cases, compared to random guessing and to the results
we achieve when there is no padding.

Padding to 128-bit blocks is largely ineffective be-
cause there is still sufficient granularity in the packet
sizes that we can map them to basically to the same three
bins used by our improved classifier in Section 4.2. Even
with 192- or 256-bit blocks, where dimensionality reduc-
tion does not offer substantial improvement, the correct
language can be identified on the first guess over 27% of
the time—more than 5 times better than random guess-
ing. It is apparent from these results that, for encryp-
tion with padding to be an effective defense against this
type of information leakage, the block size must be large
enough that all encrypted packets are the same size.

Relying on the cryptographic layer to protect against
both eavesdropping and traffic analysis has a certain
philosophical appeal because then the compression layer
does not have to be concerned with security issues. On
the other hand, padding incurs significant overhead in the
number of bytes that must be transmitted. Table 2 lists
the increase in traffic volume that arises from padding to
each block size, as well as the improvement of the overall
accuracy of the classifier over random guessing.

Another solution for ensuring that there is no infor-
mation leakage is to use a constant bit rate codec, such
as Speex in CBR mode, to send packets of fixed length.
Forcing the encoder to use a fixed number of bits is an
attractive approach, as the encoder could use the bits that
would otherwise be used as padding to improve the qual-
ity of the encoded sound. While both of these approaches
would detract from the bandwidth savings provided by
VBR encoders, they provide much stronger privacy guar-
antees for the participants of a VoIP call.



Block Size Overhead Accuracy
Improvement
vs Random

none 0.0% 66.0% 13.8x
128 bits 8.7% 62.5% 13.0x
192 bits 13.8% 27.1% 5.7x
256 bits 23.9% 27.2% 5.7x
512 bits 42.2% 6.9% 1.4x

Table 2: Tradeoff of effectiveness versus overhead in-
curred for padding VoIP packets to various block sizes.

5 Related Work

Some closely related work is that of Wang et al. [31] on
tracking VoIP calls over low-latency anonymizing net-
works such as Tor [9]. Unlike our analysis, which is en-
tirely passive, the attack in [31] requires that the attacker
be able to actively inject delays into the stream of pack-
ets as they traverse the anonymized network. Other re-
cent work has explored extracting sensitive information
from several different kinds of encrypted network con-
nections. Sun et al. [27], for example, examined World
Wide Web traffic transmitted in HTTP over secure (SSL)
connections and were able to identify a set of sensitive
websites based on the number and sizes of objects in
each encrypted HTTP response. Song et al. [26] used
packet interarrival times to infer keystroke patterns and
ultimately crack passwords typed over SSH. Zhang and
Paxson [36] also used packet timing in SSH traffic to
identify pairs of connections which form part of a chain
of “stepping stone” hosts between the attacker and his
eventual victim. In addition to these application-specific
attacks, our own previous work demonstrates that packet
size and timing are indicative of the application protocol
used in SSL-encrypted TCP connections and in simple
forms of encrypted tunnels [34].

Techniques for autmatically identifying spoken lan-
guages were the subject of a great deal of work in the
mid 1990’s [18, 38]. While these works used a wide
range of features extracted from the audio data and em-
ployed many different machine learning techniques, they
all represent attempts to mimic the way humans differ-
entiate between languages, based on differences in the
sounds produced. Because our classifier does not have
direct access to the acoustic data, it is unrealistic to ex-
pect that it could outperform a modern language recog-
nition system, where error rates in the single digits are
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Figure 12: The effect of padding on classifier accuracy.

not uncommon. Nevertheless, automatic language iden-
tification is not considered a solved problem, even with
access to full acoustic data, and work is ongoing in the
speech community to improve recognition rates and ex-
plore new approaches (see, e.g., [32, 8, 1]).

6 Conclusions

In this paper, we show that despite efforts devoted to se-
curing conversations that traverse Voice over IP, an ad-
versary can still exploit packet lengths to discern con-
siderable information about the underlying spoken lan-
guage. Our techniques examine patterns in the output of
Variable Bit Rate encoders to infer characteristics of the
encoded speech. Using these characteristics, we evalu-
ate our techniques on a large corpus of traffic from dif-
ferent speakers, and show that our techniques can clas-
sify (with reasonable accuracy) the language of the tar-
get speaker. Of the 21 languages we evaluated, we are
able to correctly identify 14 with accuracy greater than
90%. When tasked with distinguishing between just two
languages, our average accuracy over all language pairs
is greater than 86%. These recognition rates are on par
with early results from the language identification com-
munity, and they demonstrate that variable bit rate cod-
ing leaks significant information. Moreover, we show
that simple padding is insufficient to prevent leakage of
information about the language spoken. We believe that
this information leakage from encrypted VoIP packets is
a significant privacy concern. Fortunately, we are able to
suggest simple remedies that would thwart our attacks.
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Notes

1Note that our classifier is not a true instance of a χ2 classifier
as the probability distributions over each n-gram are not indepedent.
Essentially, we just use the χ2 function as a multi-dimensional distance
metric.

2Due to problems with the data, recordings from the French speak-
ers are unavailable.

References

[1] NIST language recognition evaluation. http://www.nist.
gov/speech/tests/lang/index.htm.

[2] S. Andersen, A. Duric, H. Astrom, R. Hagen, W. Kleijn, and
J. Linden. Internet Low Bit Rate Codec (iLBC), 2004. RFC
3951.

[3] R. Barbieri, D. Bruschi, and E. Rosti. Voice over IPsec: Analysis
and solutions. In Proceedings of the 18th Annual Computer Se-
curity Applications Conference, pages 261–270, December 2002.

[4] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Nor-
rman. The secure real-time transport protocol (SRTP). RFC 3711.

[5] F. Beritelli. High quality multi-rate CELP speech coding for wire-
less ATM networks. In Proceedings of the 1998 Global Telecom-
munications Conference, volume 3, pages 1350–1355, November
1998.

[6] P. Biondi and F. Desclaux. Silver needle in the
Skype. In BlackHat Europe, 2006. http://www.
blackhat.com/presentations/bh-europe-06/
bh-eu-06-biondi/bh-e%u-06-biondi-up.pdf.

[7] M. Blaze. Protocol failure in the escrowed encryption standard.
In Proceedings of Second ACM Conference on Computer and
Communications Security, pages 59–67, 1994.

[8] L. Burget, P. Matejka, and J. Cernocky. Discriminative training
techniques for acoustic language identification. In Proceedings
of the 2006 IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 1, pages I–209–I–212, May 2006.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX
Security Symposium, pages 303–320, August 2004.

[10] International Telecommunications Union. Recommendation
G.711: Pulse code modulation (PCM) of voice frequencies, 1988.

[11] International Telecommunications Union. Recommendation
P.1010: Fundamental voice transmission objectives for VoIP ter-
minals and gateways, 2004.

[12] International Telecommunications Union. Recommendation
G.729: Coding of speech at 8 kbits using conjugate-structure
algebraic-code-excited linear prediction (CS-ACELP), 2007.

[13] W. Jiang and H. Schulzrinne. Modeling of packet loss and delay
and their effect on real-time multimedia service quality. In Pro-
ceedings of the 10th International Workshop on Network and Op-
erating System Support for Digital Audio and Video, June 2000.

[14] D. R. Kuhn, T. J. Walsh, and S. Fries. Security considerations
for voice over IP systems. Technical Report Special Publication
008-58, NIST, January 2005.

[15] T. Lander, R. A. Cole, B. T. Oshika, and M. Noel. The OGI
22 language telephone speech corpus. In EUROSPEECH, pages
817–820, 1995.

[16] S. McClellan and J. D. Gibson. Variable-rate CELP based on
subband flatness. IEEE Transactions on Speech and Audio Pro-
cessing, 5(2):120–130, March 1997.

[17] S. Morlat. Linphone, an open-source SIP video phone for Linux
and Windows. http://www.linphone.org/.

[18] Y. K. Muthusamy, E. Barnard, and R. A. Cole. Reviewing auto-
matic language identification. IEEE Signal Processing Magazine,
11(4):33–41, October 1994.
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A Data Set Breakdown

The empirical analysis performed in this paper is based
on one of the most widely used data sets in the lan-
guage recognition community. The Oregon Graduate In-
stitute CSLU 22 Language corpus provides speech sam-
ples from 2,066 native speakers of 21 distinct languages.
Indeed, the work of Zissman [38] that we analyze in Sec-
tion 4 used an earlier version of this corpus. Table 3 pro-
vides some statistics about the data set.

Language Abbr. Speakers
Minutes

per Speaker

Arabic AR 100 2.16
Br. Portuguese BP 100 2.52
Cantonese CA 93 2.63
Czech CZ 100 2.02
English EN 100 2.51
Farsi FA 100 2.57
German GE 100 2.33
Hindi HI 100 2.74
Hungarian HU 100 2.81
Indonesian IN 100 2.45
Italian IT 100 2.25
Japanese JA 100 2.33
Korean KO 100 2.58
Mandarin MA 100 2.75
Polish PO 100 2.64
Russian RU 100 2.55
Spanish SP 100 2.76
Swahili SW 73 2.26
Swedish SD 100 2.23
Tamil TA 100 2.12
Vietnamese VI 100 1.96

Table 3: Statistics about each language in our data
set [15]. Minutes of speech is measured how many of
minutes of speech we used during our tests.


