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ABSTRACT
An optimistic acknowledgment (opt-ack) is an acknowledgment
sent by a misbehaving client for a data segment that it has not
received. Whereas previous work has focused on opt-ack as a
means to greedily improve end-to-end performance, we study opt-
ack exclusively as a denial of service attack. Specifically, an at-
tacker sends optimistic acknowledgments to many victims in par-
allel, thereby amplifying its effective bandwidth by a factor of 30
million (worst case). Thus, even a relatively modest attacker can
totally saturate the paths from many victims back to the attacker.
Worse, a distributed network of compromised machines (“zom-
bies”) attacking in parallel can exploit over-provisioning in the In-
ternet to bring about wide-spread, sustained congestion collapse.

We implement this attack both in simulation and in a wide-area
network, and show it severity both in terms of number of packets
and total traffic generated. We engineer and implement a novel
solution that does not require client or network modifications al-
lowing for practical deployment. Additionally, we demonstrate the
solution’s efficiency on a real network.
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1. INTRODUCTION
Savage et al. [21] present three techniques by which a misbe-

having TCP receiver can manipulate the sender into providing bet-
ter service at the cost of fairness to other nodes. With one such
technique, optimistic acknowledgment (“opt-ack”), the receiver de-
ceives the sender by sending acknowledgments (ACKs) for data
segments before they have actually been received. In effect, the
connection’s round trip time is reduced and the total throughput in-
creased. Savage et al. observe that a misbehaving receiver could
use opt-ack to conceal data losses, thus improving end-to-end per-
formance at the cost of data integrity. They further suggest that
opt-ack could potentially be used for denial of service, but do not
investigate this further.

In this paper, we consider a receiver whosesole interestis ex-
ploiting opt-ack to mount a distributed denial of service (DoS) at-
tack against not just individual machines, butentire networks. In
this paper, we:

1. Demonstrate a previously unrealized and significant danger
from the opt-ack attack (one attacker, many victims) through
analysis (Section 2.2) and both simulated and real world ex-
periments.

2. Survey prevention techniques and present a novel, efficient,
andincrementally deployablesolution (Section 4.2) based on
skipped segments, whereas previous solutions ignored prac-
tical deployment concerns.

3. Argue that the distributed opt-ack attack (many attackers,
many victims) has potential to bring about sustained con-
gestion collapse across large sections of the Internet, thus
necessitating immediate action.

1.1 An Attack Based on Positive Feedback
Two significant components of transport protocols are the flow

and congestion control algorithms. These algorithms, by neces-
sity, rely on remote feedback to determine the rate at which packets
should be sent. This feedback can come directly from the network
[18, 11] or, more typically, from end hosts in the form of positive
or negative acknowledgments. These algorithms implicitly assume
that the remote entity generates correct feedback. This is typically
a safe assumption because incorrect feedback rapidly deteriorates
end-to-end performance [8].However, an attacker who does not
care about data integrity could violate this assumption to induce
the sender into injecting many packets into the network.While not
all of these packets may arrive at the receiver, they do serve to con-
gest the sender’s network and saturate the path from the sender to
the receiver.



Because acknowledgment packets are relatively small (40 bytes),
it is trivial for an attacker to target hundreds and even thousands of
victims in parallel. In effect, not only are each victims’ access links
saturated, but, due to over-provisioning, higher bandwidth links in
the upstream ISPs begin to suffer congestion collapse in aggregate
as well. In Section 2.4, we argue that sufficiently many attackers
can overwhelm backbone links in the core of the Internet, causing
wide-area sustained congestion collapse.

2. ATTACK ANALYSIS
In this section we describe pseudo-code for the attack, attack

variants, and the details of the distributed version of the opt-ack
attack. In Section 3, we present the observations we made in im-
plementing the attack and techniques for mitigating practical con-
cerns.

Algorithm 1 –Attack ({v1 . . . vn}, mss, wscale)

1: maxwindow← 65535× 2wscale

2: n← |{v1, . . . , vn}|
3: for i← 1 . . . n do
4: connect(mss,wscale) to vi , get isni
5: acki ← isni + 1 ; wi ← mss
6: end for
7: for i← 1 . . . n do
8: sendvi data request{ http get, ftp fetch, etc. . .}
9: end for

10: while truedo
11: for i← 1 . . . n do
12: acki ← acki + wi

13: send ACK for acki to vi { entire window}
14: if wi < maxwindowthen
15: wi ← wi + mss
16: end if
17: end for
18: end while

2.1 The Opt-Ack Attack
Algorithm 1 shows how a single attacker can target many vic-

tims at once. Typically, the attacker would employ a compromised
machine (a “zombie” [23]) rather than launch the attack directly.1

Consider a set of victims,v1 . . . vn, that serve files of various sizes.
The attacker connects to each victim, then sends an application
level request, e.g., an HTTP GET. The attacker then starts to ac-
knowledge data segmentsregardless of whether they arrived or not
(Figure 1). This causes the victim to saturate its local links by re-
sponding faster and faster to the attackers opt-acks. To sustain the
attack, the attacker repeatedly asks for the same files or iterates
through a number of files.

The crux of the attack is that the attacker must produce a seem-
ingly valid sequence of ACKs. For an ACK to be considered valid,
it must not arrive before the victim has sent the corresponding
packet. Thus, the attacker must estimate which packets are sent and
when, based only on the stream of ACKs the attacker has already
sent. At first this might seem a difficult challenge, but the victim’s
behavior on receiving an ACK is exactly prescribed by the TCP
congestion control algorithm! The attack takes three parameters: a
1This attack can also be mounted if the attacker is able to spoof
TCP connections, either by being on the path between the victim
and the spoofed address, or from guessing the initial sequence num-
ber, but we do not further consider it.
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Figure 1: Opt-Ack Attack: Single Victim w/ Packet Loss
(One of many victims)

list of n victims, the maximum segment size (mss), and the win-
dow scaling (wscale) factor. In the algorithm, the attacker keeps
track of each victim’s estimated window (wi) and sequence num-
ber to acknowledge (acki). The upper bound ofwi, maxwindow ,
is 65535 by default, but can be changed by the window scaling op-
tion (see Section 2.2). Note that the attacker can manipulate each
victim’s retransmission time out (RTO), because the RTO is a func-
tion of the round trip time, which is calculated by the ACK arrival
rate. So, in other words, the attack can completely manipulate the
victims in terms of how fast to send, how much to send, and when
to time out.

There is a near arbitrary number of potential victims, given the
pervasiveness of large files on the Internet. Any machine that is ca-
pable of streaming TCP data is a potential victim, including HTTP
servers, FTP servers, content distribution networks (CDN), P2P file
sharing peers (KaZaa[2], Gnutella[1]), NNTP servers, or even ma-
chines with the once common character generator (‘chargen’) ser-
vice.

The attack stream is difficult to distinguish from legitimate traf-
fic. To an external observer that is sufficiently close to the victim,
such as a network intrusion detection system (IDS), this stream is
in theory indistinguishable from a completely valid high speed con-
nection.2 While it is common for IDSs to send out alerts if a large
stream of packets enters the local network, the stream of ACKs
from the attacker is comparatively small (see Section 2.2 for exact
numbers). It is the stream of dataleaving the network that is the
problem.

Additionally, an attacker can further obscure the attack signature
by sending acknowledgments to more victims less often, with the
total amount of traffic generated staying constant. In other words,
by generating less traffic per host and staying under the detection
threshold, but increasing the total number of hostsit is not locally
obvious to the victims that they are participating in an DDoS at-
tack. As a result, short of globally coordination, it is difficult for
victims to locally determine which if any of their data streams are
malicious.

While Algorithm 1 works in theory, there are still challenges for
the adversary to keep ACKs synchronized with the segments the
victims actually send. We address these issues in the next section.

2Presumably, a monitoring system deployed closer to the attacker
could detect the asynchrony between ACKs and data segments, but
it is not practical to store per-flow state deep in the network.



2.2 Amplification
While it is not surprising that a victim can be induced to send

large amounts of data into the network, the actual opt-ack ampli-
fication factor is truly alarming. The upper bound on the traffic
induced across all victims from a single attacker is a function of
four items: the number of victims (n), and for each individual vic-
tim i, the rate at which ACKs arrive at each victim (αi), the max-
imum segment size (mssi ), and the size of the victim’s congestion
window (wi). Note that the attacker can use a single ACK to ac-
knowledge an entire congestion window of packets. If we assume
a standard TCP/IP 40 byte header with no options then the packet
size is40 + mssi bytes3. The rate of attack traffic in bytes/second
is simply the sum across each victim of the product of the ACK ar-
rival rate(αi), the number of packets(b wi/mssi c), and the size of
each packet (40 + mssi ). Given that the maximum windowwi is
65535×2wscale and the total ACK arrival rate over all victims can-
not exceed the attacker’s bandwidth (β) divided by the ACK size(
40), we derive the total attack trafficTmax in bytes/second as:

Tmax =

ź
β × 65535× 2wscale ×

ţ
1

mss
+

1

40

űž
(1)

As implied by (1), for typical Internet connections, i.e.,mss =
1460 andwscale = 0, the attacker has an amplification factor of
1683. However, in the worst case, i.e., ifmss = 88 (the minimum
mss for Linux and Windows XP[19]) andwscale = 14, then the
amplification factor can reach as high as 32,554,441. In real world
terms without window scaling, an attacker on a 56 Kilo-bits/s mo-
dem (β = 7000 B/s) can generate 9,351,145 B/s or approximately
8.9MB/s of flooding summed across all victims. This value is more
than the capacity of a T3 line, and close to the theoretical limit
of a 100Mb Ethernet connection. With window scaling and small
mss, an single attacker on a modem is capable of generating more
traffic per second than the Slammer worm at its peak [14]. Obvi-
ously there are practical limits on the amplification including the
maximum number of victims, their minimum bandwidth, and the
time required to maximize the congestion window. Due to space
considerations, an exploration of these constraints can be found in
[22].

2.3 Lazy Opt-Ack
Lazy opt-ack is a variant of the standard opt-ack attack. As we

will discuss in Section 3, the main difficulty in our implementa-
tion is in remaining synchronized with the sender’s sequence num-
ber. The synchronization issue can be totally avoided if the attacker
ACKs any segment that it actually receives, skipping missing seg-
ments. This lazy variant is malicious in that the attacker is effec-
tively concealing any packet loss, thereby creating a flow that does
not decrease its sending rate when faced with congestion ( i.e., a
non-responsive flow). Since the attacker is using the actualRTT
to the victim, it generates less traffic than the attack described in
Algorithm 1. However, it is well known [7] that in a congested
network, a non-responsive flow can cause compliant flows to back
off, creating a DoS. Note that the lazy variant is different from the
standard attack in that it is impossible for the attacker to overrun
the victim. This observation is precisely what makes many existing
solutions insufficient. The skipped segments solution we provide
in Section 4.2 protects against both the lazy and standard attacks.

3Additional header from the link layer may affect the packet size,
but we do not consider it further.

2.4 Distributed Opt-Ack Attack
In this section, we consider the distributed case wheremultiple

attackersrun the opt-ack attack in parallel, trivially, and with dev-
astating effect. The only coordination required is that each attacker
chooses a different set of victims. Because a single attacker can
solicit an overwhelming number of packets ( as shown in Section
2.2)a relatively small group of attackers can cause the Internet to
suffer widespread and sustained congestion collapse.

First, because opt-ack targets any TCP server, there aremil-
lions of potential victims on the Internet. Considering P2P file
distribution networks alone, Kazaa and Gnutella have over 2 mil-
lion[10, 9, 20] and 1.4 millions [12] users respectively that each
host large multimedia files. While P2P nodes are typically low
bandwidth home users, the popular content distributor Akamai runs
over 14,000 [4] highly provisioned, geographically distributed servers.

It is not immediately clear how much traffic is necessary to ad-
versely affect the wide-area Internet. One data point is the traffic
generated from the Slammer/Sapphire worm. In [14], Moore et
al. used sampling techniques to estimate the peak global worm
traffic at approximately 80 million packets per second. At 404
bytes/packet, the worm generated approximately 31GB/s of global
Internet traffic. Subsequent email exchanges by Internet operators
[15] noted that many access links were at full capacity, and com-
pletely unusable. As noted in Section 2.2, it is theoretically possi-
ble fora single attacker on a modemto generate more than enough
traffic to exceed this threshold using largewscale values. If using
largewscale values were infeasible (for example, if packets con-
taining thewscale option were firewalled), thenfive attackerson
T3 connections with more typical TCP options, i.e.,mss = 1460
andwscale = 0, would be sufficient to match the Slammer worm’s
traffic. If each attacker targeted sufficient number of victims, such
that the load on no one victim was notably high, it would be difficult
to locally distinguish malicious and valid data streams. So, unlike
Slammer, there would be no clear local rule to apply to thwart the
attack.

The traffic from the Slammer worm was not sufficient to push
the core of the Internet into congestion collapse. Because of the
inherent difficulty in modeling wide scale Internet phenomena, it is
not clear how to estimate the number of opt-ack attackers required
to induce such a collapse. However, a single attacker on a modem
or a small number of other attackers can induce traffic loads equiva-
lent to the Slammer worm. Recent studies[5] show that there exists
networks of compromised machines( “botnets”) with over 200,000
nodes. Since each of these nodes represents a possible attacker, a
large distributed opt-ack attack could easily be catastrophic.

3. IMPLEMENTING OPT-ACK
The main challenge in implementing the attack is to accurately

predict which segments the victim is sending and ensure that the
corresponding ACKs arrive at the correct time. In Figure 1, the at-
tacker injects ACKs into the network before the corresponding seg-
ments have even reached the attacker, so remaining synchronized
with the victim can be non-trivial. Maintaining this synchroniza-
tion of sequence numbers is crucial to the attack. If the attacker
falls behind, i.e., it starts to acknowledge segments slower than
they are sent, then the victim slows down, may time out, and the
effect of the attack is reduced. Similarly, if the attacker gets ahead
of the victim in the sequence space, i.e., the victim received ACKs
for segments that are not yet sent, the victim ignores these ACKs
and the stream stops making progress. We refer to this condition
asoverrunningthe victim. Overruns can occur in three different
ways: ACKs arriving too quickly, lost ACKs, and delays at the



server. Below, we describe a technique for the attacker to detect
this condition and recover.

In accordance with RFC793 [3], Section 3.4, when the sender
receives ACKs that are not in the window, it should not generate a
RST, but instead an empty packet with the correct sequence num-
ber. One of the tenets of the Internet design philosophy is the ro-
bustness principle: “be conservative in what you send, and liberal
in what you accept,” and it is this principle that opt-ack exploits.

There are many ways that an overrun condition may result, most
common being the sending application stalls its output because it
was preempted by another process. In general, there are a myriad
of factors that affect the sender’s actual output rate, including: the
victim’s load, application delay, the victim’s send buffer size, and
the victim’s hardware buffer. However, these factors are mitigated
when the number of victims is large. By sending ACKs to more
victims, each individual victim receives ACKs less often. This pro-
vides more time for the victim to flush its buffers, place the sending
application back into the run queue, etc.

It is worth noting that the implementation we developed is only
a demonstration of the potential severity of opt-ack. It is by no
means an optimal attack. There are a number of points where a
more thorough attacker might be able to mount a more efficient
attack. However, as we note in Section 5, the implementation is
sufficiently devastating as to motivate immediate action. Below, we
discuss further strategies to mitigate and recover from overrunning
the victim.
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Figure 4: Detail: Attacker and Victim Synchronized
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Figure 5: Artifact 1: Buffered ACKs

3.1 Recovery from Overruns
Compliant TCP streams are supposed to generate an empty seg-

ment upon receipt of an out of window ACK [3]. The attacker
could use this empty segment to detect overruns, but this technique
is unreliable because the incoming link is typically saturated, so
the empty segment will be dropped before it reaches the attacker.
Additionally, Linux’s TCP implementation does not send empty
segments, instead ignores an out of window ACK ( Other OSes,
specifically MacOS X 10.2 and Windows 2000, correctly generate
the empty packet). However, note that in a stream that is making
progress, i.e., not overrun, the sequence numbers of packets re-
ceived increase monotonically (barring packet reordering). Upon a
retransmission, or when an empty packet is received, the sequence
number is less than or equal to the previous packet, breaking mono-
tonicity. So, by monitoring the sequence numbers of packets actu-
ally received, the attacker can declare an overruns when the se-
quence numbers no longer increase. When an overrun is detected,
the attacker can resume slow start on the last received packet, thus
recovering from the overrun. This is an expensive process, as it po-
tentially requires waiting on the order of at least one second [6] for
the server to timeout.

Figure 2 shows the life cycle of an attack against a GNU/Linux
2.4.20 victim, across a wide area network, as measured at the vic-
tim. The “attacker” data points show the ACKs at the time the
victim received them, and the “victim” data points show the seg-
ments being sent by the victim. Note that for the majority of the
time the two lines are indistinguishable, i.e. the attacker is syn-
chronized with the victim (Figure 4). However, on three occasions
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the attacker overruns the victim’s sequence number, and is forced to
recover, as described above. The attacker blindly continues send-
ing ACKs that are ignored, as the victim stops making progress in
sending the stream (as demonstrated by the flat line). In the first
overrun, the victim actually retransmits three times before the at-
tacker recovered, because the retransmitted packets were also lost.
However, in the next two overruns, the attacker recovered faster,
each on the order of one second.

Recovery code must track the victim’s slowstart threshold (ssthreshi )
in addition to the estimated congestion window (wi ). The variable
ssthreshi is initialized to the maximum window size, is set to half
wi with every recovery, and grows with the congestion window, as
prescribed by [24].

3.2 Victim’s Processing Time
One of the most difficult challenges in keeping the attacker syn-

chronized is estimating the time spent for the victim to send the
packets, which we call the processing time. Obviously, an attacker
should not ACK segments faster than a victim is capable of gen-
erating them. If the attacker knows the victim’s processor speed,
server load, operating system, and local bandwidth, it may be able
to estimate the processing delay time. However, this information
is difficult to determine, and underestimating the delay time leads
to the attacker overruning the server which causes reduced attack
strength. To address this challenge, we introduce theTargetBandwidth
variable. With this variable, we can derive the processing delay:

processing delay =
bcwnd/mssc × (40 + mss)

TargetBandwidth

TheTargetBandwidth variable represents the rate of traffic the
attacker is trying to induce the server to generate (in bytes/second).
While the value ofTargetBandwidth can be determined adap-
tively based on how often the attacker is forced to recover, for the
purposes of the implementation code, we specify it as a runtime
parameter. Additionally, many TCP implementations will locally
invoke congestion control measures if the local hardware buffers
become full, so it is important to pick theTargetBandwidth to be
something feasible by the victim’s hardware.

The processing time of an idle server is significantly shorter than
that of a busy server. This implies that an attacker needs to estimate
a server’s load before attacking it. However, we noted that as the
attacker’s flow rate increases, the other connections are forced to
back off, which in turn decreases the processing time of the server.
Thus, we introduce the concept of adaptive delay. By overesti-

mating the initial processing time and the delay between ACKs,
i.e. sending ACKs slowly, and then progressively ramping up the
ACK speed to the desired rate, third party streams are “pushed” out
of the way with minimal overruns. How to do this effectively in
an aggressive manner, without causing the attacker to overrun and
restart, is an open question. However, in the implementation, we
start arbitrarily at 10 times the estimated processing time, and then
decrease down to the target processing time in steps of 500µs per
window.

Another variable affecting the processing time is the coarse grained
time slice in the victim’s scheduler. Periodically, the victim process
is suspended for a number of time slices, which can cause a delay
in sending if the kernel buffer is drained before the process can be
rescheduled. An example of this is the second artifact (Figure 2,
blown up as Figure 6), where the server actually pauses for 36 ms.
Note, it is less obvious from Figure 6, but the server starts sending
less than one millisecond before the buffered ACKs arrive. We do
not have a technique to predict these delays, and rely on the recov-
ery/restart mechanism.

3.3 Multiple ACKs Per Window and the Tran-
sition Phase

We noted that during congestion avoidance, the server rarely sent
a full 64KB window, even when the congestion window would oth-
erwise have allowed for it. The effect was that the number of seg-
ments in flight varied, and it became difficult for the attacker to
ACK the correct number of segments. We speculate this is due
to operating system buffering inefficiencies, and perhaps coarse
grained time slices. Whatever the reason, we changed the attack
algorithm to ACK half of the window at a time with the appropri-
ate delay instead of the full window all at once. By ACKing half
as much, twice as often, we were able to keep the amount of flood-
ing high, reducing the chance the attacker overruns the victim’s
sequence number. However, by sending twice as many ACKs, the
attacker is restricted to half of the amplification listed in Section
2.2.

An additional effect of sending two ACKs per window is resis-
tance to lost ACKs. The basic algorithm assumes that each ACK
successfully reaches the victim, which is obviously not true on
the general Internet. To maximize robustness, the implementation
sends two ACKs offset by onemss from each other twice per win-
dow for a total of four ACKs per window. The effect here is two
fold. First, the attacker can now lose three sequential ACKs in a
row without overrunning the server. Second, with more ACKs the
congestion window grows faster after recovery from overrun. Note
that sending four ACKs per window is we reduce the expected am-
plification by a factor of four.

In development, it was difficult to track the exact state of the
victim’s congestion window andssthresh, especially after recov-
ery. It was common for the attacker to stay correctly synchronized
with the victim through slow start and then get out of sync immedi-
ately when moving to the congestion avoidance algorithm. While
we speculate there are many factors that cause this behavior, i.e.
unpredictable server load, and the timing involved in the conges-
tion avoidance phase may need to be more accurate than the slow
start phase, it simply became easier to work around it. Thus, we
introduce a “transition” phase for the attacker between slow start
and congestion avoidance (see Figure 3). In this transition phase,
we ACK every expected packet in turn for the full window. Ef-
fectively, the transition phase allows for a larger margin of error in
estimating the victim’sssthresh variable. In practice, we ACK two
full windows in the transition phase before transitioning to the full
congestion avoidance portion of the attack.



3.4 The Attacker’s Local Bandwidth
Algorithm 1 does not take into account the attacker’s local band-

width. Given a local bandwidth ofβ in bytes per second, the sum
of all ACKs sent to all victims can be sent at at mostα = β/40
bytes/second. At speeds faster thanα, and the ACKs get buffered
or even dropped, which interferes with the timing of the attack.
When ACKs are buffered (as shown in the first artifact of Figure
2, and Figure 5) they arrive at the victim all at once. The victim
is not able to send fast enough to keep up with the sudden flood
of ACKs and this creates an overrun. To fix this, we limit the rate
of outgoing ACKs from the attacker as a function of the available
local bandwidth, which is specified at runtime. The main effect of
rate limiting the ACKs is to maintain even spacing when they arrive
at the victim, despite network jitter and buffering. Additionally, as
the number of victims increases, the difficulty from buffered ACKs
decreases because the time between when the server receives ACKs
increases.

4. DEFENDING AGAINST OPT-ACK
In this section, we present a simple framework for evaluating dif-

ferent defense mechanisms against the opt-ack attack, and evaluate
potential solutions within that framework. Finally, we present one
particular solution, randomly skipping segments, that efficiently
and effectively defends against opt-ack. We also describe an im-
plementation of randomly skipped segments in detail.

4.1 Solutions Overview
Any mechanism that defends against opt-ack should minimally

possess the following qualities:

1. Easy to DeployDue to the severity of the attack, any so-
lution should be practically and quickly deployable in the
global infrastructure. Minimally, the solution should allow
incremental deployment, i.e., unmodified clients should be
able to communicate with modified servers.

2. Efficient Compliant (i.e., non-attacking) TCP streams should
suffer minimal penalty under the proposed solution. Also,
low power embedded network devices do not have spare com-
putational cycles or storage space. Because the problem is
endemic to all implementations, the solution needs to be ef-
ficient on all devices that implement TCP.

3. Robust Any fix needs to defend against all variants (Section
2.3) of the opt-ack attack.

4. Easy to ImplementThis is a more pragmatic goal, leading
from the observation that TCP and IP are pervasive, and run
on an diverse range of devices. Any change in the TCP spec-
ification would affect hundreds (or thousands) of different
implementations. As such, a simpler solution is more likely
to be implemented.

In [22], we compare the costs and benefits of many defenses in-
cluding secure nonces, ACK alignment, bandwidth caps, in net-
work support, disallowing out of window ACKs, and random pauses.
Table 1 is a summary of the defenses, and we present the most rel-
evant of these solutions in detail below.

4.1.1 Secure Nonces
One possible solution is to require that the client prove receipt

of a segment by repeating an unguessable nonce. Assume each
outgoing segment contains a random nonce which the correspond-
ing ACK would have to return in order to be valid. Savage [21]

et al. improve on this solution withcumulativenonces. In their
system, the response nonce is a function of all of the packets being
acknowledged, i.e., a cumulative response, ensuring that the client
actually received the packets it claims to acknowledge.

Unfortunately, cumulative nonces are not practically deployable.
They requires both the client and server to be modified, preventing
incremental deployment. If deployment was attempted, updated
servers would be required to maintain backward compatibility with
non-nonce enabled clients, until all client software was updated.
As a result, updated servers would have to chose between being
vulnerable to attack or compatibility with unmodified clients. Ad-
ditionally, nonces require additional processing and storage for the
sender. Calling a secure pseudo-random generator once per packet
could prove expensive for devices with limited power and CPU re-
sources, violating our efficiency goal.

To aid deployment, one could consider implementing nonces in
existing, unmodified clients via the TCP timestamp option. The
sender could replace high order bits of the timestamp with a random
challenge, and any non-malicious client which implemented TCP
timestamps would respond correctly with the challenge. If a client
did not implement timestamps, the server could restrict throughput
to something small, e.g, 4Kb/s. While this improves on the de-
ployment of nonces, this solution still has problems. First, it loses
the critical cumulative ACK property of Savage’s solution. That is,
an acknowledgment for a set of packets does not necessarily imply
that all packets in the set were received, which opens itself to the
lazy opt-ack attack. Second, as we discuss in Section 4.1.2 below,
bandwidth caps are not effective.

4.1.2 Bandwidth Caps
The obvious solution to an attacker consuming too many re-

sources, as is the case with the opt-ack attack, is to limit resource
consumption. Conceivably, this could be done at the server with
a per IP address bandwidth cap, but unfortunately this is not suffi-
cient. First, any restriction on bandwidth can simply be over come
by increasing the number of victims. Suppose for example, that
each victim sets the policy that no client can use more than a frac-
tion c ∈ (0, 1] of their bandwidth. Then the attacker need simply
increase the number of victims by1/c to maintain the same total
attack traffic. Further, bandwidth caps interfere with legitimately
fast clients, violating our efficiency goal.

4.1.3 Disallow Out of Window ACKs
A straightforward solution is to change the TCP specification to

disallow out of window ACKs. Recall from Section 3 that our im-
plementation runs the risk overrunning the victim. If a victim sent
a reset, terminating the connection, upon receipt of an out of win-
dow ACK, the opt-ack attack would be mitigated. However, this is
not a viable solution as this opens non-malicious connections to a
new DoS attack. A malicious third party could inject a forged out
of window ACK into a connection, causing a reset [25]. Because
the ACK is out of window, there would be no need to guess the se-
quence space and window size. Also, compliant receivers can send
out of window acknowledgments due to delays or packet reorder-
ing. For example, suppose ACKs for packets numbered 2 and 3 are
sent but received in reverse order. The ACK for packet 3 would
advance the window, and then the ACK for packet 2 would be and
out of window ACK, causing a RST. Additionally, the lazy opt-ack
attack is not prevented by disallowing out of window ACKs.



Solution Efficient Robust Deployable Simple Change TCP Spec.
Cumulative Secure Nonces yes yes no yes client & server

Secure Nonces w/ timestamps yes no yes yes server only
ACK Alignment yes no yes yes server only
Bandwidth Caps no no yes yes no
Network Support yes yes no no no
Random Pauses no no yes yes server only

Skipped Segments yes yes yes yes server only

Table 1: Summary of Defenses to Opt-Ack Attack

4.2 Proposed Solution: Randomly Skipped
Segments

To defend against the opt-ack attack, we propose that the server
randomlyskip sending the current segment, and instead send the
rest of the current window. Note that this is equivalent to locally,
intentionallydropping the packet. A non-malicious client that ac-
tually gets all of the packets, save the skipped one, will start re-
ACKing for the lost packet, thereby invoking the fast retransmit
algorithm. However, an attacker, because it does not have a global
view of the network, cannot tell where along the path a given packet
was dropped, so itcannot tell the difference between an intention-
ally dropped packet and a packet dropped in the network by con-
gestion. Thus, an attacker will ACK the skipped packet, alerting
the server to the attack. Note that usually fast retransmission indi-
cates network congestion, so the congestion window is correspond-
ingly halved. However in this case, retransmission was not invoked
due to congestion in the network, so the sender should not halve
the congestion window/slow start threshold as it typically would.
Given that most modern TCP stacks implement selective acknowl-
edgments (SACK)[13], this solution is very efficient (see Section 5
for performance).The only penalty applied to a conforming client
is a single round trip time in delay.

To determine how often to apply the skipped packet test, we
maintain a counter of ACKs received. Once a threshold number
of ACKs are received, the skip test is applied. It is important that
the threshold be randomized, as the security of this system requires
that the attack not predict which segment was skipped. However,
there is an obvious trade off in where to make the skipped packet
threshold. If it is too low, the server will lose efficiency from skip-
ping packets too often. Setting the threshold too high allows the
attacker to do more damage before being caught (see Section 5 for
an exploration of this trade-off). Our solution is to chose the thresh-
old uniformly at random over a configurable range of values.

This simple skipped segment solution meets all of our goals. It is
efficient: compliant clients suffer only one round trip time in delay,
the computational costs consist of keeping only an extra counter,
and the storage costs are trivial (5 bytes per connection, described
in [22] ). The skipped packet solution is robust against the varia-
tions of the attack described in Section 2.3, because it inherently
checks whether a client actually received the packets. This solution
is a local computation, so it needs no additional coordination or
infrastructure, i.e., the deployment requirements are met. Best of
all, it is transparent to unmodified clients, allowing for incremental
deployment. Due to space considerations, we discuss of our imple-
mentation of randomly skipped segments for the Linux kernel in
[22].

Last, we must take care to insure that the randomly skipped seg-
ments solution test does not introduce a new DoS attack. For ex-
ample, an attacker might maliciously inject ACKs into a benevo-
lent client’s TCP stream, causing the server to believe the client

is performing a opt-ack attack. This attack is easily remedied if
servers ignore out of window ACKs during the skipped segments
test. Thus, attackers must guess the current sequence space and
window size in order to correctly inject a malicious ACK. Fur-
ther, in our randomly skipped segments implementation, when the
servers detects an opt-ack attack, it simply reset the connection.
Because any attacker that can guess the sequence space and win-
dow size can already reset a connection by injecting a RST packet,
our solution introduces no new vulnerabilities into the protocol.

5. ATTACK EVALUATION
We evaluate the feasibility and effectiveness of the opt-ack at-

tack in a series of simulated, local area, and wide area network
experiments. In the first set of simulations, we determine the total
amount of traffic induced by the opt-ack attacks. Next, we deter-
mine the effect of the attack on other (honest) clients trying to ac-
cess the victim. We also present results for the amount of traffic
(described in Section 2.2) our real world implementation actually
achieves across a variety of platforms. Finally, in Section 5.3, we
evaluate the efficiency of our skipped segment solution. Further
experiments with number of packets sent, variable file sizes, and
performance of the randomly skipped segments solution without
selective acknowledgments can be found in [22].

5.1 Simulation Results
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We have implemented the opt-ack attack in the popular packet
level simulator ns2 and simulate the amount of traffic induced in
various attack configurations. In each experiment, there is a single
attacker and multiple victims connected in a star topology. Each
victim has a link capacity of 100Mb/s, and all links have 10ms la-
tency (the choice of delay is arbitrary because it does not affect the
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attack). We vary the number of victims, and themss andwscale
of the connection. The attacker makes a TCP connection to each
victim in turn, and only sends acknowledgments once all victims
have been contacted. Victims are running the “Application/FTP”
agent, which uses an infinite stream of data.

In Figure 7, we show the sum of the attack traffic generated
over time with variable numbers of victims. In this experiment,
the attacker is on a T1 (1.544Mbs) and uses connection parameters
mss=1460 andwscale=4. When the number of victims is less than
512, the amount of flooding is limited by the sum of the bandwidths
of the victims . The amount of traffic doubles as the number of vic-
tims double until 512 victims. As the number of victim’s increases,
the attack takes longer to achieve full effect . Both of these effects
are discussed and analyzed in [22]. The case with 512 victims took
73 seconds to reach it peak attack rate, while all others did so in
under 30 seconds. At 512 victims, the simulation achieves 99.9%
of the traffic predicted by Equation 1.

As shown in Figure 7, once the attack’s maximum effect is reached,
it can be sustained indefinitely. In Figure 8 we show the maximum
traffic induced as we vary the number of victims,mss andwscale
for bytes/second . As predicted by Section 2.2, attackers with a
lowermss produce more traffic than one with a higher value. Like-
wise, an increasedwscale has a dramatic increase in the total traffic
generated. In [22], we also present results that measure the total
number of packets/second sent.

Due to CPU and disk space limits, we were not able to simulate
more than 512 victims for all parameters, orwscale values above
4, despite the fact that our simulation machine was a dual processor
2.4Ghz Athlon-64 with 16GB ram and 300GB in disk.

5.2 Real World Implementation
We implemented the attack in C and experimented on real ma-

chines in various network settings. We measure the actual band-
width generated from a single victim running various popular op-
erating systems. We did not experiment with multiple attackers or
victims due to real world limitations of our test bed. Our exper-
iments with a single attacker and single victim were sufficient to
cause overwhelming traffic on our local networks. It would be irre-
sponsible and potentially illegal to have tested the distributed attack
on a wide-area test bed (e.g., PlanetLab[17]), and even our simple
one attacker-one victim wide-area experiments caused network op-
erators to block our experiments.4

4Incoming traffic to one author’s home DSL IP address was tem-

Experiment Average (sec) Dev. Increase
No Attack 89.11 0.007 1

LAN Attack 1552.03 141.76 17.42
WAN Attack 779.93 139.32 8.75

Figure 9: Average Times with Deviations for a Non-malicious
Client to Download a 100MB File
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Figure 10: Topology for Experiments

5.2.1 Single Victim DoS Effect - LAN and WAN
This experiment measured the effect on a third party client’s ef-

ficiency in downloading a 100MB file from a single victim during
various attack conditions. We repeated this experiment with no
attacker, with an attacker on the local area network, and with an
attacker across the Internet (see Figure 10). The local area attacker
was a dual processor Pentium III running Linux with a 10Mb Eth-
ernet card, while the WAN attacker was a 100Mhz Pentium running
GNU/Linux on an asymmetric 608/128 Kb/s downstream/upstream
residential DSL line. The latency on the WAN link varied over
time, with a average RTT of 13.5ms.

A typical web server runs on a fast local area network, which
connects to a slower wide area network. In order to emulate this
bottleneck, and also to safeguard against saturation of our produc-
tion Internet connection, we connected our test web server to the
world via a 10Mb connection on a Cisco Catalyst 3550 switch.
Furthermore, both LAN and WAN attackers were configured to use
TargetBandwidth of 109 bytes/second, andβ = 16000 bytes/s as
their local bandwidth setting (see Section 3 for description). The in-
tuition is that the LAN and WAN attackers should be equally capa-
ble with respect to their available bandwidth, but the WAN attacker
must compensate for more end-to-end jitter and delay. Each run
usedmss=536 andwscale=0, i.e., typical values for Internet con-
nections. Each experiment was repeated 10 times and the values
averaged. The numbers were measured with a command line web
client (similar towget) specially instrumented to measure band-
width at 10 ms intervals. We present the results from these exper-
iments in Table 9. The “Increase” column refers to the increase in
time relative to the “No Attack” baseline.

The effect of the attack is significant. The 100MB file takes on
average 17.42 and 8.75 times longer to download under LAN and
WAN attack, respectively. We believe that the time difference be-
tween the WAN and LAN attacks is due to the increased jitter of
the wide area Internet, and the increased standard deviation in the

porarily blocked as a result of these experiments. This did not serve
to stop the attack, as the outbound ACKs could still be sent. How-
ever, this served as evidence that we should cease the experiment.



OS Avg. KB/s Dev. Amplification
Linux 2.4.24 3931.93 1102.38 251.6
Mac OS X 806.2 258.1 51.6
Solaris 5.8 3150.6 1301.1 201.6

Windows XP 640.62 378.85 41.0

Table 2: Average kilobytes/s of Induced Flooding, Stan-
dard Deviation, and Amplification Factor of Attacker’s
Bandwidth

results supports this. This variability makes keeping synchronizing
with the victim more difficult due to the buffered ACK problem, as
described in Section 3. However, more advanced attackers could
target more victims (Section 3) or potentially employ more sophis-
ticated segment prediction to increase the effectiveness of the at-
tack.

We also re-ran the same set of experiments with a set of hubs
in place of the switch, effectively removing queuing from the sys-
tem. The times to download the 100MB file while under attack
were reduced to 5 times and 4.5 times the baseline for LAN and
WAN attackers, respectively. In other words, having queuing on the
bottleneck link significantlyincreasedthe damage from the attack.
We surmise this is because the opt-ack attacker usedmss = 536
and the non-malicious client, since it was on local Ethernet, used
mss = 1448. Once the queue was full, the switch could service
two of the attack packets before there was room for a legitimate
(i.e. destined to the non-malicious client) packet. Effectively, the
higher rate of smaller packets caused the switch to drop more non-
malicious/legitimate packets. Removing the queue from the sys-
tem reduced the amount of dropped legitimate packets, therefore
increasing non-malicious throughput.

5.2.2 Amplification Factors
To evaluate the potential effectiveness of the distributed opt-ack

attack, we measure the amount of traffic that our implementation
code can induce in a single victim. In this experiment, we use
the LAN attacker, as above, to attack various operating systems
including GNU/Linux 2.4.24, Solaris 5.8, Mac OS X 10.2.8, and
Windows XP with service pack 1. For this experiment, instead of
a web server, each victim ran a program that streamed data from
memory. This was done to remove any potential application-level
bottlenecks from the experiment. As above, the attacker used pa-
rametersβ = 16000, mss = 536, andwscale = 0. We measured
the bandwidth in one second intervals using a custom tool writ-
ten with the libpcap library. Each experiment in Table 2 was run
10 times, averaged, and is shown as an amplification factor of the
attacker’s used local bandwidth.

We believe that the variation in amount of flooding by OS is
due to the lack of sophistication of our attack implementation. The
amplification factor for Linux is 251.6 times the used bandwidth,
which translates to251.6/1336 or approximately 18% of the theo-
retical maximum traffic,Tmax. This low number is in part because
the implementation sends four ACKs per window (as described in
Section 3), which alone limits the attack to 25% ofTmax.

5.3 Performance of Skipped Segments Solu-
tion

In the final experiment, we evaluate the efficiency of our pro-
posed randomly skipped segments solution. Specifically, we mea-
sure the time for a non-malicious client on the LAN with selective
acknowledgments (SACK) enabled to download a 100MB file from
the server with and without the fix and with various threshold val-

Experiment Time(s) Deviation %
Unfixed 89.136 0.007 100%

Fixed: 10-20 89.623 0.980 99.457%
Fixed: 1-200 89.158 0.0234 99.975 %

Fixed: 100-200 89.167 0.0256 99.965 %

Table 3: Time to Download a 100MB File for Various Fix
Options - SACK Enabled

ues for the fix. The download times were measured with the UNIX
timeutility. Each experiment was run ten times, the results were av-
eraged and are presented in Table 3 with SACK enabled. The two
numbers in the first column refer to the range from which the ran-
domly skipped segment was chosen. Results with SACKdisabled
are presented in [22], but are summarized here.

The results show that the performance hit from the proposed fix
is negligible for most parameters. Even when we chose the thresh-
old to be intentionally inefficient, i.e., skipping a segment every 10
to 20 ACKs, the fix maintained 99.457% efficency. We found that
varying low end of the range had little effect when combined with
SACK, but made a 1% difference with SACK disabled. We be-
lieve the performance loss from skipping segments every 100-200
ACKs, i.e., less than 0.1% with or with SACK, is an acceptable
price for defeating this attack.

6. RELATED WORK
There are two works directly related to opt-ack, which we ad-

dress below. Due to space considerations, a more complete treat-
ment of related work can be found in [22].

6.1 Misbehaving Receivers
As previously mentioned, Savage et al.[21] discovered the opt-

ack attack as a method for misbehaving receivers to get better end-
to-end performance. While they suggest that opt-ack can be used
for denial of service, they did not investigate the magnitude of the
amplification the attack can achieve. As a result, their cumulative
nonce solution to the opt-ack attack does not consider global de-
ployment as a goal. In this work, through analysis and implemen-
tation, we have shown that opt-ack is a serious threat. Further, we
have engineered an efficient solution that does not require client-
side modification, and thus is more readily deployable.

6.2 Reflector Attacks
In [16], Paxson discusses a number of attacks where the initiator

can obscure its identity by “reflecting” the attack off non-malicious
third parties. As a general solution, Paxson suggests upstream fil-
tering based on the attack signature with the assumption that it is
not possible to overwhelm the upstream filter with useless data.
The work specifically mentions that if the attacker is able to guess
the ISN of the third party, it is possible to mount a blind opt-ack at-
tack against an arbitrary victim. No analysis is made of the amount
of the amplification from the opt-ack attack, nor is it immediately
clear what filter rules could be applied to arbitrary TCP data.

7. DISCUSSION AND CONCLUSION
We have described an analysis of the opt-ack attack on TCP and

demonstrated that amplification from the attack makes it danger-
ous. We have also engineered an efficient skipped segments de-
fense against attacks of this type that allows for incremental de-
ployment. The opt-ack attack succeeds because it violates an un-



derlying assumption made by the designers of TCP: that peers on
the network will provide correct feedback. This assumption holds
when clients are interested in receiving data, since false feedback
will usually lead to worse end-to-end performance. However, the
opt-ack attack shows that if malicious nodes do not care about
data transfer integrity, they can cause widespread damage to other
clients and to the stability of the network.

Since opt-ack violates an underlying assumption upon which
TCP is based, we believe a proper solution for the opt-ack attack in-
volves changing the TCP specification. Although new features can
be added to TCP (e.g., cumulative nonces) to ensure the receiver
TCP is in fact receiving all of the segments, this type of solution
is difficult to deploy because it requires client modification. The
skipped segment solution presented here requires modification of
only high capacity servers, and is thus more readily deployable.
In this paper, we have described different mechanisms that can be
used to defend against opt-ack attacks. We recommend a specific
change to the TCP specification that we have shown to be easy to
implement, efficient for fast connections, and which does not bur-
den resource-poor hosts.
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