
Tarzan: A Peer-to-Peer Anonymizing Network Layer

Michael J. Freedman
NYU Dept of Computer Science

715 Broadway #715
New York, NY 10003 USA

mfreed@cs.nyu.edu

Robert Morris
MIT Lab for Computer Science

200 Technology Sq. #509
Cambridge, MA 02139 USA

rtm@lcs.mit.edu

ABSTRACT
Tarzan is a peer-to-peer anonymous IP network overlay. Because
it provides IP service, Tarzan is general-purpose and transparent
to applications. Organized as a decentralized peer-to-peer overlay,
Tarzan is fault-tolerant, highly scalable, and easy to manage.

Tarzan achieves its anonymity with layered encryption and multi-
hop routing, much like a Chaumian mix. A message initiator
chooses a path of peers pseudo-randomly through a restricted topol-
ogy in a way that adversaries cannot easily influence. Cover traffic
prevents a global observer from using traffic analysis to identify an
initiator. Protocols toward unbiased peer-selection offer new direc-
tions for distributing trust among untrusted entities.

Tarzan provides anonymity to either clients or servers, without
requiring that both participate. In both cases, Tarzan uses a net-
work address translator (NAT) to bridge between Tarzan hosts and
oblivious Internet hosts.

Measurements show that Tarzan imposes minimal overhead over
a corresponding non-anonymous overlay route.

1. INTRODUCTION
The ultimate goal of Internet anonymization is to allow a host to

communicate with an arbitrary server in such a manner that nobody
can determine the host’s identity. Toward this goal, we envision a
system that uses an Internet-wide pool of nodes, numbered in the
thousands, to relay each others’ traffic to gain anonymity.

Different entities may be interested in exposing the host’s iden-
tity, each with varying capabilities to do so: curious individuals
or groups may run their own participating machines to snoop on
traffic; parties skirting legality may break into a limited number of
others’ machines; and large, powerful organizations may tap and
monitor Internet backbones.

Clearly, each type of adversary suggests different design criteria
for an anonymizing system. Prior systems have either underesti-
mated the ease of cracking or crashing individual machines, or dis-
counted the prevalence of wide-spread eavesdropping capabilities,
exemplified by the “Great Firewall of China” [30], the FBI’s Carni-
vore system [11], or subpoenas of Tier-1 ISP traffic for copyright-
protection compliance [22].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02,November 18–22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

This paper describes Tarzan, a practical system aimed at realiz-
ing anonymity against all three flavors of adversary. First, however,
we discuss why less ambitious approaches are not adequate.

In the simplest alternative, a host sends messages to a server
through a proxy, such as Anonymizer.com [1]. This system fails
if the proxy reveals a user’s identity [18] or if an adversary can
observe the proxy’s traffic. Furthermore, servers can easily block
these centralized proxies and adversaries can prevent usage with
denial-of-service attacks.

To overcome this single point of failure, a host can connect
to a server through a set of mix relays [3]. The anonymous re-
mailer system [10], Onion Routing [26], and Zero-Knowledge’s
Freedom [13] offer such a model, providing anonymity through a
small, fixed core set of relays. However, if a corrupt relay receives
traffic from a non-core node, the relay can identify that node as
the ultimate origin of the traffic. Colluding entry and exit relays
can use timing analysis to determine both source and destination.
Even an external adversary can mount the same attack. Therefore,
the connecting host remains vulnerable to individual relay failures,
and these relays provide obvious targets for attacking or blocking.

Few of these systems attempt to provide anonymity against an
adversary that can passively observe all network traffic. Such pro-
tection requires fixing traffic patterns or using cover traffic to make
such traffic analysis more difficult. Proposals that do exist have
several shortcomings, however. Some protect only the core of the
static mix network and thus allow traffic analysis on its edges [2,
26]. Some simulate full synchrony and thus trivial DoS attacks halt
their operation in entirety [7]. And some require central control and
knowledge of the entire network [15].

Tarzan, on the other hand, does not suffer from these same weak-
nesses. Its main contributions are two-fold.

First, Tarzan extends known mix-net designs to a peer-to-peer
environment. Tarzan nodes communicate over sequences of mix
relays chosen from an open-ended pool of volunteer nodes, without
any centralized component. We present techniques to securely dis-
cover and select other nodes as communication relays: All peers are
potential originators of traffic; all peers are potential relays. Such a
scalable design lessens the significance of targeted attacks and in-
hibits network-edge analysis, as a relay cannot tell if it is the first
hop in a mix path. Furthermore, we leverage our new concept of a
domainto remove potential adversarial bias: An adversary may run
hundreds of virtual machines, yet is unlikely to control hundreds of
different IP subnets.

Second, Tarzan introduces a scalable and practical technique
for cover traffic that uses a restricted topology for packet routing:
Packets can be routed only between mimics, or pairs of nodes as-
signed by the system in a secure and universally-verifiable manner.
This technique is practical in that it does not require network syn-

chrony and consumes only a small factor more bandwidth than the
data traffic to be hidden, and it is powerful as it shields all network
participants, not only core routers.

Tarzan allows client applications on participating hosts to talk to
non-participating Internet servers through special IP tunnels. The
two ends of a tunnel are a Tarzan node running a client application
and a Tarzan node running a network address translator; the lat-
ter forwards the client’s traffic to its ultimate Internet destination.
Tarzan is transparent to both client applications and servers, though
it must be installed and configured on participating nodes.

Tarzan supports a systems-engineering position: anonymity can
be built-in at the transport layer, transparent to most systems, triv-
ial to incorporate, and with a tolerable loss of efficiency compared
to its non-anonymous counterpart. This approach immediately
reduces the effort required for application writers to incorporate
anonymity into existing designs, and for users to add anonymity
without changing existing non-anonymous applications. In the long
term, the ability for individual anonymizing relays to easily partic-
ipate in multiple kinds of traffic may make it easier to achieve a
critical mass of anonymizing relays.

The rest of this paper is structured as follows. Section 2 explains
Tarzan’s design goals and threat models. Section 3 describes the de-
sign of Tarzan: its tunneling architecture, peer discovery and selec-
tion protocols, and restricted topology and cover traffic mechanism.
Section 4 presents an analysis of Tarzan’s anonymity properties.
Section 5 describes Tarzan’s implementation, and Section 6 evalu-
ates its performance. Section 7 discusses integration transparency,
Section 8 describes related work, and Section 9 concludes.

2. DESIGN GOALS AND NETWORK MODEL
This paper uses the following terminology. A nodeis an Internet

host’s virtual identity in the system, created by running an instan-
tiation of the Tarzan software on a single IP address. A tunnel is
a virtual circuit for communication spread across an ordered se-
quence of nodes. A relay is a node acting as a packet forwarder as
part of a tunnel.

We designed Tarzan to meet a number of goals. Ordered by pri-
ority, these goals are the following:

1. Application independence: Tarzan should be transparent to
existing applications and allow users to interact with existing
services. To achieve this, Tarzan should provide the abstrac-
tion of an IP tunnel.

2. Anonymity against malicious nodes: Tarzan should pro-
vide senderor recipient anonymityagainst colluding nodes.
That is, a particular host should not be uniquely linkable
as the sender (recipient) of any message, or that a message
should not be linkable to any sender (recipient) [20]. We
consider these properties in terms of an anonymity set: the
set of possible senders of a message. The larger this set, the
“more” anonymous an initiator remains.

These properties implies the weaker relationship anonymity:
an adversary should not be able to identify a pair of hosts as
communicating with each other, irrespective of which host is
running Tarzan.

3. Fault-tolerance and availability: Tarzan should resist an
adversary’s attempts to overload the entire system or to block
system entry or exit points. Tarzan should minimize the dam-
age any one adversary can cause by running a few compro-
mised machines.

X

local subnet

unswitched
LAN

border gateway

malicious nodes

spoofed nodes

honest nodeshonest routers

malicious routers

corrupted domains

Figure 1: Tarzan network model. In relation to node X, ad-
versarial machines can control address spaces and can spoof
virtual nodes within corrupted domains.

4. Performance: Tarzan should maximize the performance of
tunnel transmission, subject to our anonymity requirements,
to make Tarzan a viable IP-level communication channel.

5. Anonymity against a global eavesdropper: An adversary
observing the entire network should be unable to determine
which Tarzan relay initiates a particular message. Therefore,
a node’s traffic patterns should be statistically independent of
it originating data traffic.

Because anyone can join Tarzan, the system will likely be tar-
geted by misbehaving users. While a correct host runs only one
honestnode—which forwards packets properly, does not log ad-
dressing or timing information, and so on—an adversary can run
potentially many malicious nodes or spoof many fake addresses. A
node is maliciousif it modifies, drops, or records packets, analyzes
traffic patterns, returns incorrect network information, or otherwise
does not properly follow the protocols.

From a naive viewpoint, the fraction of Tarzan nodes that are ma-
licious determines the probability that a tunnel relay is malicious.
Yet, a single compromised computer may operate on multiple IP
addresses and thus present multiple Tarzan identities.

To defend against such a situation, we make the observation that
a single machine likely controls only a contiguousrange of IP ad-
dresses, typically by promiscuously receiving packets addressed to
any IP address on a particular LAN or by acting as a gateway router.

This observation is useful in bounding the damage each mali-
cious node can cause. We will call this subnet controllable by a
single malicious machine a domain.1

A node belongs to a /d domain if the node’s d-bit IP prefix
matches that of the domain. Figure 1 shows the dependence of
intra-domain node failure: a malicious machine “owns” all of the
address space behind it.

Domains capture some notion of fault-independence: While an
adversary can certainly subvert nodes within the same domain in

1Our domain notion is completely unrelated to DNS and applies to
both IPv4 and IPv6.

relayd

PNATinitiatorclient
app

divert
kernel

relayd

Tag: 59
src: Priv
dst: Dest

Tag: 17

src: Priv
dst: Dest

Tag: 31

src: Priv
dst: Dest

src: PNAT
dst: Dest

src: App
dst: Dest

relayd

(31 17) (17 59)

Internet

(App Priv) (Priv PNAT)

Dest

relayd

Figure 2: Tarzan Architecture Overview: An IP packet is diverted to the local tunnel initiator, which NATs it to a private address
space, wraps it in several layers of encryption, and sends it to the first relay in UDP. Based on the packet’s flow tag, the relay decrypts
one layer of the encryption and sends the result to the next relay. The PNAT decrypts the last layer, extracts the original IP packet,
NATs the packet to its own public address, and writes the raw packet to the Internet.

a dependent fashion, nodes in different domains may fail indepen-
dently. Therefore, when selecting relays, Tarzan should consider
the notion of distinct domains, not that of distinct nodes.

Ideally, we would know the actual size of each domain in address
space and count all nodes within that address space as a single en-
tity. However, this internetwork topology is non-uniform and dif-
ficult to measure. Therefore, Tarzan chooses some fixed IP prefix
size as its granularity for counting domains: first among /16 sub-
net masks, then among /24 masks. We believe that this provides a
reasonable notion of distinct physical and administrative control.2

3. ARCHITECTURE AND DESIGN
This section describes Tarzan’s design: its basic tunnel mecha-

nism, its peer-discovery protocol, and its cover-traffic technique.
Figure 2 shows a simple Tarzan overlay network. All participat-

ing nodes run software that 1) discovers other participating nodes,
2) intercepts packets generated by local applications that should be
anonymized, 3) manages tunnels through chains of other nodes to
anonymize these packets, 4) forwards packets to implement other
nodes’ tunnels, and 5) operates a NAT (network address translator)
to forward other participants’ packets onto the ordinary Internet.

Typical use proceeds in three stages. First, a node running an
application that desires anonymity selects a set of nodes to form a
path through the overlay network. Next, this source-routing node
establishes a tunnel using these nodes, which includes the distri-
bution of session keys. Finally, it routes data packets through this
tunnel. The exit point of the tunnel is a NAT. This NAT forwards
the anonymized packets to servers that are not aware of Tarzan, and
it receives the response packets from these servers and reroutes the
packets over this tunnel.

Tarzan restricts route selection to pairs of nodes that use cover
traffic to maintain traffic levels independent of data rates. The sys-
tem enforces this topology by assigning neighbors in a decentral-
ized yet verifiable manner.

Tarzan operates at the IP (Internet Protocol) level and offers a
best-effort delivery model. End hosts must provide functionality
like reliability or authentication.

Tarzan uses layered encryption similar to Chaumian mixes [3]:
each leg of the tunnel removes or adds a layer of encryption, de-
pending upon the packet’s direction of traversal. The tunnel initia-
tor sanitizes IP headers, as well as TCP headers if applicable.

2Even years since the introduction of CIDR, active Internet ad-
dresses still disproportionally belong to network prefixes that re-
flect classful addressing [17].

3.1 Packet relay
A Tarzan tunnel passes two distinct types of messages between

nodes: data packets, to be relayed through existing tunnels, and
control packets, containing commands and responses that establish
and maintain these virtual circuits. Tarzan encapsulates both packet
types inside UDP.

A flow tag (similar to MPLS [23]) uniquely identifies each link
of each tunnel. A relay rapidly determines how to route a packet
tag. Symmetric encryption hides data, and a MAC protects its in-
tegrity, on a per-relay basis. Separate keys are used in each direc-
tion of each relay.

In the forward path, the tunnel initiator clears each IP packet’s
source address field, performs a nested encoding for each tun-
nel relay, and encapsulates the result in a UDP packet. More
precisely, consider a tunnel that consists of a sequence of nodes
T = (h1, h2, . . . , hl, hpnat).3 Let the forward encryption and in-
tegrity keys for each node be ekhi and ikhi , respectively, and let
seq be the packet sequence number, initiated to zero at the time
of tunnel establishment. Then, an initiator produces the following
block Bi for each relay hi in the tunnel, starting with hpnat:

ci = ENC(ekhi , {Bi+1})
ai = MAC(ikhi , {seq, ci})
Bi = {seq, ci, ai}

The origin tags block B1 with the first relay’s flow identifier and
forwards the result to h1. The first relay extracts the packet’s pay-
load, determines the relevant keys by its flow identifier, checks the
block’s integrity, decrypts the block (i.e., strips off one layer of en-
cryption), retags the resulting block B2, encapsulates it in a new
UDP packet, and forwards the packet on to the next relay. The
node drops any packet that fails its integrity check. This process
continues until the packet reaches the last relay, which strips off the
innermost layer of encryption, revealing the initiator’s IP packet.

On the reverse path, each successive relay performs a single en-
cryption with its appropriate key for the reverse direction, re-tags
and forwards the packet back towards the origin. This process
wraps the packet in layers of encryption, which the origin of the
tunnel must unwrap by performing l+1 decryptions. This design
places the bulk of the encryption workload on the node seeking
anonymity. Nodes that are merely relaying perform only a single
symmetric key operation per packet that is processed.4

3Section 3.7 explains our strange bookkeeping with the last relay.
4Section 3.7 describes an additional encryption-decryption used
between immediate nodes.

h0 = initiator ;
h1 ∈R {h0.neighbors};
for i = 1 to l

hi+1 ∈R {hi.neighbors}
send establishrequest(hi−1, hi+1) to hi via tunnel;
rc =wait for establishresponse;
if rc ∈ {!ok, timeout}

i = i − 1;
while rc ∈ {!ok, timeout}

if max retries exceeded
decrementi and break;

hi+1 ∈R {hi.neighbors};
send resetforward request(hi+1) to hi;
rc =wait for resetforward response;

send establishresponse(hl) to hpnat via tunnel;

Figure 3: Pseudocode for tunnel establishment protocol

3.2 Tunnel setup
When forming a tunnel, a Tarzan node pseudo-randomly selects

a series of nodes from the network based on its local topology (see
Section 3.7). The initiator is responsible for iteratively setting up
the entire tunnel, one relay at a time. This process consists mainly
of generating and distributing the symmetric keys, encrypted un-
der the relays’ public keys. Section 3.5 describes how an initiator
discovers nodes and their corresponding public keys. Each node
generates its public key locally the first time it enters the network.

The high-level establishment algorithm is shown in Figure 3. An
establish request sent to node hi is relayed as a normal data packet
from h1 through hi−1. Node hi cannot distinguish whether the
packet originated from node hi−1 or from one of that node’s prede-
cessors; node hi−1 cannot distinguish successive establish requests
from ordinary tunneled data.

The initiating node creates an establish request by using the pub-
lic key of node hi to encrypt the initial forward session key, there-
after used to decrypt packets received from hi−1. This session key
encrypts the forward integrity key, the subsequent reverse keys for
packets from hi+1, the addresses of hi−1 and hi+1, and the flow
identifiers that will be used to tag packets going in each direction.
When hi has successfully stored the state for this request, it re-
sponds to the origin for an end-to-end check of correctness.

For path length l, this algorithm takes O(l) public-key opera-
tions and O(l2) inter-relay messages to complete. This overhead is
sufficiently small for realistic choices of l.

3.3 IP packet forwarding
Tarzan provides a client IP forwarder and a server-side pseudony-

mous network address translator (PNAT) to create a generic anony-
mizing IP tunnel. The IP forwarder diverts certain packets from
the client’s network stack that matches user-specified IP firewall
rules and ships them over a Tarzan tunnel. The client forwarder
replaces its real address in the packets with a random address as-
signed by the PNAT from the reserved private address space. The
PNAT translates this private address to one of its real addresses.
Remote hosts can communicate with PNAT normally, as if it origi-
nated the traffic. Correspondingly, response packets are deNAT’ed
twice, once at each end of the tunnel.

The IP forwarder only hides the Internet Protocol address and
special header fields, such as origin port numbers, for TCP and
UDP packets. Section 7 discusses ways of coping with applications
that require more work than this to anonymize.

The pseudonymous NAT also offers port forwarding to allow or-
dinary Internet hosts to connect through Tarzan tunnels to anony-
mous servers. In fact, to achieve both sender and recipient

anonymity, any two users can communicate by each creating a tun-
nel to a different PNAT; each user’s application connects to the
other’s PNAT to form a double-blindedchannel.

3.4 Tunnel failure and reconstruction
A tunnel fails if one of its relays stops forwarding packets. To de-

tect failure, the initiator regularly sends ping messages to the PNAT
through the tunnel and waits for acknowledgments. Upon multiple
unsuccessful retries, the initiator attempts to determine the point-
of-failure by sending pings through the tunnel to each relay.

If the PNAT is the point-of-failure, i.e., hl still responds to pings,
the initiator selects a new hpnat for the tunnel. Otherwise, it at-
tempts to rebuild the tunnel to the original PNAT, so that higher-
level connections, such as TCP, do not die upon tunnel failure.

If the furthest node to reply to the ping is hi, for i < l, interme-
diate relay hi+1 is unreachable. So, the initiator attempts to rebuild
the tunnel from hi forward, T ′ = (h1,. . ., hi, h

′
i+1,. . ., h

′
l, hpnat).

Upon multiple unsuccessful attempts, the initiator decrements i by
one and reattempts reconstruction.

3.5 Peer discovery
A Tarzan node requires some means to learn about all other

nodes in the network, knowing initially only a few other nodes.
Anything less than near-complete network information allows an
adversary to bias the distribution of a node’s neighbor set towards
malicious peers, leaks information through combinatorial profiling
attacks, and results in inconsistencies during relay selection. Sec-
tion 4.1 discusses these attacks in more depth.

Tarzan uses a simple gossip-based protocol for peer discovery.
Tarzan’s goal—to learn about all network resources—differs from
recent peer-to-peer lookup protocols [25], which spend great effort
to achieve immediate information propagation and load balancing
in a flat namespace, often at the cost of security.

Gossiping offers a simple mechanism for nodes to learn about
new neighbors.5 A node can prune inactive neighbors lazily when
they do not respond to cover traffic establishment requests, which
we explain further in Section 3.7.

This problem can be modeled as a directed graph: vertices rep-
resent Tarzan nodes; edges correspond to the relation that node a
knows about, and thus can communicate with, node b. Edges are
added to the graph as nodes discover other peers. We assume that
the graph is initially weakly connected; otherwise, nodes in sepa-
rate network partitions could never learn of one another. Tarzan’s
peer discovery goal is to make this graph fully connected.

Our technique to grow this network graph is similar to the Name-
Dropper resource discovery protocol [16]. In each round of Name-
Dropper, node a simply contacts one neighbor at random and trans-
fers its entire neighbor set.

The Tarzan discovery protocol supports three related operations:
initialization, redirection, and maintenance. Initialization provides
the bulk-transfer functionality of Name-Dropper, which allows fast
information propagation. Redirection allows nodes to shed load
by redirecting new nodes to random neighbors. As this protocol
progresses, nodes sending entire neighbor sets will transmit many
elements already known to their recipients, wasting bandwidth.

In response, maintenance messages provide an incremental up-
date P of a node’s peer database with only new information
(P ∩ db = ∅). Tarzan calculates these set differences efficiently
by performing k-ary searches on prefix-aggregated hashes of the
set elements. This mechanism is briefly described in Section 4.1.

5“Gossiping” is a slight misnomer. Traditional gossiping protocols
assume a fully-connected or fixed network and seek to optimize the
broadcast of extra information, such as link state.

// LetUa be the set ofa’s unvalidated known peers
// LetVa be the set ofa’s validated known peers
a.gossip()

while true
if (Ua = ∅), Ua = Va;
b ∈R Ua;
if (|Va| < 1

c
|Vb|)

b.busy ? a.redirect(b) : a.initialize(b);
else if (|Vb| < 1

c
|Va|)

a.busy ? b.redirect(a) : b.initialize(a);
else

a.maintain(b); b.maintain(a);

Figure 4: Pseudocode for the peer discovery protocol

Tarzan differentiates between unvalidated addresses(Ua) and
validated addresses(Va) in a node’s peer database. A node learns
{ipaddr, port, hash(pubkey)} tuples through gossiping: these un-
validated values can easily be forged.

A node validates a tuple once its corresponding peer correctly re-
sponds to a discovery request sent directly to its gossiped address.
The request includes a random nonce. This two-way network hand-
shake is a weak yet practical authentication mechanism to show a
node “speaks for” its address. This validation distinction stops an
adversary from injecting arbitrary tuples into a peer database and
later impersonating a streak of invalid addresses following it in a
tunnel (see Section 4.1).

Figure 4 shows the main gossip protocol. To join the system, a
new node a contacts some existing node b to discover a new set
of unvalidated addresses. Node a validates b once a receives a
response. Node a successively contacts the new neighbors in Ua

before retrying neighbors in Va.
Running the discovery protocol, a node learns about and vali-

dates all other nodes in the network in O(n) connections.

3.6 Peer selection
This section describes Tarzan’s method for selecting nodes from

this peer database.
One may be tempted to simply choose nodes completely at ran-

dom from Va. This approach is problematic: if an adversary runs as
many Tarzan nodes as IP addresses to which it has access, a user is
very likely to select malicious nodes. However, these addresses are
rarely scattered uniformly through the IP address space. Instead,
they are often located in the same IP prefix space. Thus, we choose
among distinctIP prefixes, not among all known IP addresses.

We select nodes by choosing randomly among the populated do-
mainsat each level of the table in Figure 5. Tarzan uses a three-level
hierarchy: first among all known /16 subnets, then among /24 sub-
nets belonging to this 16-bit address space, then among the relevant
IP addresses.

A node generates this table by inserting all peers in Va into their
corresponding identifier rings. The leading d-bits of a node’s IP
address are transformed to an identifiervia hash(ipaddr/d , date),
where hashis a cryptographic hash function and date is the day-
of-the-month according to GMT. Identifiers are ordered on their
corresponding rings modulo 2|id|.

Therefore, Tarzan’s lookup(key) method selects peers as fol-
lows: Node a first generates identifier id16 via hash(key/16 , date)
and finds the smallest identifier ≥ id16 (with wrap-around) on the
/0 identifier ring; it repeats this process recursively with id24 and
id32 on their corresponding rings of increased specificity.

Note that a node executes lookupcompletely locally, based on in-
formation already accumulated in its peer database. Therefore, two

18D3

3CB8

49A1

58E2

712F

9D37

B541

CA13

F72A

/0

18.26/16

18.26.4/24

21F8

3A25

45F1

5212

7C38

94D1

B1E3

E436

23A5

4F9A

61D1

974F

B11A

Figure 5: Peer selection on validated nodes. Shown is a
lookup(key) with id16 = 541A, id24 = 82F1, and id32 = 261B.
This ultimately maps to the hash value 4F9A, which yields a
node with IP address 18.26.4.9.

nodes may have slightly different lookup structure replicas, which
can yield temporarily inconsistent results. We return to the impact
of inconsistencies in the next section.

Tarzan includes the date in identifier hashes to daily reorder of
ring elements. This randomization stops any particular domain or
address from owning a larger space in the ring for any duration.
Furthermore, this rebalancing reorders the validated set daily, ran-
domizing how nodes propagate their neighbors during maintain.

3.7 Cover traffic and link encoding
If the pattern of inter-node Tarzan traffic varied with usage, a

wide-spread eavesdropper could analyze the patterns to link mes-
sages to their initiators. Prior work has suggested the use of cover
traffic to provide more time-invariant traffic patterns independent of
bandwidth demands [3]. Such traffic provides a node with stronger
plausible deniabilitythat it is the actual message initiator.

Our key contributions include introducing the concept of a traffic
mimic. We propose traffic invariants between a node and its mimics
that protect against information leakage. These invariants require
some use of cover traffic and yield an anonymity set exponential in
path length.

3.7.1 Selecting mimics
Upon joining the network, node a asks k other nodes to exchange

mimictraffic with it. Similarly, an expected k nodes select a as they
look for their own mimics. Thus, each node has κ mimics, where
E(κ) = 2k for some global parameter k. Mimics are assigned
verifiably at random from the set of nodes in the network.

A node establishes a bidirectional, time-invariant packet stream
with a mimic node, into which real data can be inserted, indistin-
guishable from the cover traffic.

This mimic relationship must be symmetric for three reasons.
First, a otherwise would send data only on its outgoing links, not
trusting its incoming mimic connections. This practice halves a’s
anonymity set on average. Second, and related, variations in host
density behind different IP prefixes may account for some nodes
receiving few incoming connections. Second, a otherwise would
not be incentivized to provide cover traffic on its incoming links.

PNAT

Figure 6: Mimic topology and traffic flows for k=3: Each node
has κ≈ 6 mimics (shown connected by solid lines). A node es-
tablishes its tunnel over mimic links (arrows in bold) and com-
pletes it with a random PNAT (dotted line). Nodes inject cover
traffic with data traffic to yield a uniform total traffic T that
flows bidirectionally over the solid lines. All packets on these
links are pair-wise encrypted and padded to the same size.

This mimic relationship must be universally verifiable to stop an
adversary from selecting more than k mimics. As mimics will be
used for tunnel establishment, an adversary could otherwise bias a
node’s choice of tunnel relays.

Node a chooses its ith mimic, or Ma
i , as the peer returned by

lookupi(a.ipaddr). This function is similar to that in Section 3.6,
except that the identifier idi

d is generated by recursively applying
the cryptographic hash function i times to {a.ipaddr/d , date},
i ≤ (k+1). Therefore, we map domains to domains. We explain
this design choice in Section 4.1.

Node a sends a mimic request, including the tuple {a.ipaddr , i},
to Ma

i , which we refer to as b. Node b accepts a mimic establish-
ment request from node a if and only if the following hold:

• 1 < i ≤ (k+1)

• b.lookupi(a.ipaddr) = b

If the lookupi check fails, we must consider two cases. First,
node b can have a different network view than a: its execution
b.lookupi(a.ipaddr) maps to a different node. This inconsistency
occurs when b knows a ring identifier between a.ipaddr/d and b/d,
unknown to a. Node b declines the mimic request but returns the
identifier’s corresponding node, to which a sends a new request.

Second, a may initially contact node c and receive no response,
signifying c’s failure. Node a removes c from Va, and a.lookupi

now maps to b. However, b is not aware of this failure, thus a’s new
request includes the message that c has failed. To verify, b pings
c and waits for the acknowledgment to timeout, at which time b
removes c from Vb and thus accepts a’s mimic request.

If a looses connectivity to its ith mimic, a removes it from Va

and replaces it with the new node mapped from lookupi.

3.7.2 Tunneling through mimics
We constrain a tunnel initiator’s choice of relays at each hop to

those mimics of the previous hop, instead of allowing it to choose
any random node in the network. Therefore, nodes only construct
tunnels over links protected by cover traffic. Figure 6 shows this
manner of tunnel establishment over mimics.

To initiate a tunnel, node a chooses a mimic Ma
i as its first tun-

nel relay. This node Ma
i has its own mimics {MMa

i
1 . . .MMa

i
κ },

and it returns this list to a. Node a already knows about most of
these returned nodes (from gossiping) and can verify them: a’s ex-
ecution of lookup with Ma

i ’s key should result in the same set.

Node a randomly selects node MMa
i

j from the resulting set and
continues by tunneling an establish request to this node via Ma

i . It
repeats this process for l relays. Finally, a selects a random node
for hpnat by lookup(random).

If a chose its PNAT in the mimic overlay as well, it could not
reconstruct a broken tunnel to this same publicly-addressed node,
as no alternative l-length path to the PNAT likely exists. Changing
PNATs breaks any application-layer connections over the tunnel.

3.7.3 Unifying traffic patterns
The packet headers, sizes, and rates of a node’s incoming traffic

from its mimics must be identical to its outgoing traffic, so that an
eavesdropper cannot conclude that the node originated a message.

All packets along these mimics links are symmetrically en-
crypted. This encryption—an additional layer on top of the tunnel
encoding—makes cover traffic indistinguishable from data flows.
Encrypted packets along these links are padded to be all the same
size.6 A node generates and distributes symmetric keys when it
connects with a new mimic.

Our model considers several types of traffic flows in order to
properly regulate throughput and cover traffic levels. Data requires
a fixed path, i.e., an unsplittable flow. Thus, it places a demand on
some specificoutgoing link. Incoming cover traffic can be dropped
on demand or rebalanced on any outgoing links. We consider the
following traffic flows between a node a and its mimic b:

• TI(b): Total incoming rate (data + cover) from b to a

• TO(b): Total outgoing rate to b from a

• DO(b, ti): Outgoing data rate to b on a single tunnel ti

For its behavior to appear innocuous, an honest Tarzan node uses
the following relations when generating traffic levels. As before, let
Ma be the set of node a’s mimics. Let T Ma

I = {TI(b) : ∀b ∈
Ma} be the multiset of total incoming traffic rates fromMa. Thus,
∀b ∈ Ma,∀ti ∈ tunnels(a, b):

DO(b, ti) ≤ f(T Ma

I) (1)

We choose f(·) as the 33rd percentile of send rates.
Intuitively, Equation 1 limits the outgoing data rate on any link to

a function of the incoming traffic rate, such that a malicious mimic
could not identify the node as being a clear source of data. How-
ever, this function still allows the node to send data at reasonable
speeds if up to 1

3
of its mimics are slow, either maliciously or not.

This data rate is independent (although strictly ≤) of the total
outgoing traffic level, which itself is constrained, ∀b ∈ Ma:

f(T Ma

I) ≤ TO(b) ≤ max(T Ma

I)+ε (2)

Ideally, each node provides “enough” traffic to cover its mimics’
actions. Per the lower-bound in Equation 2, an honest node main-
tains a reasonably high level of outgoing traffic to its mimics, in
order to cooperatively provide them with anonymity. Additionally,
this rate stops a node from being a clear sink of traffic, which would
otherwise impact its recipient anonymity.

6Our implementation pads to two different sizes as a performance
optimization and thus manages two separate queues.

Bad first relay Bad intermediate relay Bad last relay Bad first and last relays
information exposed? OR Crowds Tarzan OR Crowds Tarzan OR Crowds Tarzan OR Crowds Tarzan

sender activity Yes Maybe Maybe No No Maybe No No No Yes Maybe Maybe
recipient activity No Yes No No Yes No Yes Yes Yes Yes Yes Yes
sender content No Maybe No No No No No No No Yes Maybe Maybe

recipient content No Yes No No Yes No Yes Yes Yes Yes Yes Yes

Table 1: A comparison of anonymity properties between Onion Routing (OR), Crowds, and Tarzan. Positive table entries mean that
the adversary succeeds in its attack and a participant loses some property of its anonymity. Note again that “recipient” refers to a
non-participating Internet host; transparent port-forwarding, such as in Tarzan, reverses this notion of sender and recipient.

The upper-bound specifies a maximal rate to prevent the follow-
ing situation: Node a receives its f(·)th percentile level of total
traffic from b and uses this to generate some level of data traffic to
mimic c (per Equation 1, a chooses DO(c, ti) = TI(b)). If node
b’s own incoming traffic rates are less than its outgoing rate to a,
the data received by c could have been initiated by a or b, but not
one of b’s other mimics. To prevent this, the maximum rate of b’s
outgoing traffic should be approximate to its own maximal incom-
ing rate; the ε term allows a set of honest nodes to cooperatively
raise their maximum traffic levels.

Every 20-msec time period, a relay checks its incoming tun-
nel queues for available data. It reorders packets received out-of-
sequence and drops any unexpected or replayed packets, i.e., those
ones with sequence numbers smaller than the last packet forwarded.
The relay also starts dropping packets once these queues begin to
fill. Any congestion control or retransmission is pushed back to the
higher-lever protocol between communicating end-hosts.

Once a relay establishes which data packets from the previous
period may be forwarded (per Equation 1), it batches some number
of these data packets by randomly selecting packets in-order from
the available incoming queues (thus mixing between tunnels), cre-
ates cover packets to round up to its rate requirement (per Equa-
tion 2), inserts the cover randomly into the batched set, and writes
the packets to the link-layer.

4. SECURITY ANALYSIS
Per Section 2, Tarzan’s anonymity goal is to ensure that a partic-

ipant has either senderor recipient anonymityagainst both collud-
ing nodes and a global eavesdropper. While Tarzan nodes may act
as anonymous servers (via port forwarding), we assume here that
Tarzan nodes act as clients connecting to oblivious Internet hosts.

Generally, an adversary attempts to break sender anonymity by
back-tracing observed messages to their source, usually by care-
fully watching traffic patterns or message encodings. Similarly, an
adversary must trace a message forward to its egress from a PNAT
(or control the PNAT itself) to compromise the recipient anonymity
of non-participating servers.

This section presents analysis that demonstrate the paper’s claims.
First, Tarzan’s peer-to-peer design exposes less identifying topo-
logical information to malicious relays than core-based architec-
tures, yet its decentralized design is still secure. Second, Tarzan
resists powerful traffic-analysis attacks without requiring high-
latency or bandwidth-inefficient communication.

Therefore, our security analysis first considers the consequences
of Tarzan’s peer-to-peer model, then discusses general attacks on
its cover traffic and anonymous tunneling design.

4.1 On Tarzan’s peer-to-peer model
This section shows how Tarzan’s peer-to-peer mix-net architec-

ture provides more protection against malicious relays than alterna-
tive designs. Second, we consider how Tarzan’s handles the secu-

rity concerns inherent to an open-admission, self-organizing, peer-
to-peer model.

Tarzan is the first anonymizing communication system that is
both self-organizing and fully-decentralized. Other systems such
as the web-specific Crowds system [21] and the “local COR” con-
figuration of Onion Routing [26] propose a peer-to-peer model, yet
the former uses a centralized registration and peer discovery server,
while the latter does not offer any self-organizing peer-discovery or
relay-selection mechanisms.7 Tarzan’s model scales to much larger
networks and removes any single or few points-of-failure.

An analysis of Onion Routing’s “local COR” configuration
in [27] provides a good description of the anonymity benefits of
combining a peer-to-peer model with mix-net tunneling. While we
have generally described sender and recipient anonymity in terms
of hiding the identityof a message’s sender or recipient, we should
differentiate between an adversary’s ability to detect the mere pres-
ence of activity and the ability to understand the content transmit-
ted: A user surfing the web might only want to prevent an adversary
from determining whichweb pages he requests, not the fact that he
is making encrypted requests. That is, an adversary detects sender
activity when it discovers the mere fact that a sender is sending
something; we treat messages as black-boxes. The adversary deter-
mines sender contentwhen it matches sender activity to a partic-
ular, readable (glass-box) message. That is, while a Tarzan PNAT
can certainly read the clear-text of a message, it reveals sender con-
tent only when knows the sender’s identity as well. We likewise
define such properties for recipients.

4.1.1 Comparing anonymity properties
Table 1 shows a comparison of Tarzan’s model (peer-to-peer, lay-

ered encryption) against Onion Routing (network core, layered en-
cryption) and Crowds (peer-to-peer, link encryption only). This
direct comparison emphasizes how Tarzan provides better protec-
tions against a static adversarythan other system designs.

A static adversarycan corrupt some number of independent
physical machines prior to observing any system behavior. It can
read packets addressed to machines under its control; it can analyze
the contents, sizes, rates, and volumes of these packets. The adver-
sary can use timing analysis to determine whether packets seen at
different relays belong to the same tunnel, but not to estimate the
tunnel distance between relays (see Section 4.2.3).

The relay homogeneityof the peer-to-peer network model pre-
vents an adversary from deterministically concluding the identity
of a sender: All nodes both originate and forward traffic; thus, a
compromised relay cannot determine whether it is the first hop in
the tunnel. So, it can only guess that its immediate predecessor is
the initiator with some confidence, hence the “maybe’s” in Table 1
for sender activity and content. On the other hand, a malicious

7Therefore, we do not hereafter consider Onion Routing a peer-to-
peer system, even while we ignore Crowds’ centralized component
for demonstrative purposes. Please see Section 8 for related work.

router in a network core system can conclude that a sender is active,
with full confidence, whenever the client communicates through it.

Crowds [21] provides a good quantitative analysis of the confi-
dence a malicious relay has that its predecessor is the initiator. We
extend this analysis to Tarzan in Appendix A; the main difference
arises from Tarzan restricting relay choice to source-routing mim-
ics, which additionally explains Tarzan’s “maybe” loss of sender
activity anonymity with malicious intermediate relays.

The layered (end-to-end) encryption of mix-net systems stops
a non-terminal malicious relay from determining the contentof a
message. Thus, it also protects a message’s recipient from expo-
sure, which otherwise would be identified through addressing in-
formation in the message clear-text. On the other hand, a system
that only encrypts messages link-by-link exposes such information
to all tunnel relays.

4.1.2 Considering adaptive adversaries
While the previous section discussed the anonymity properties

of systems against a static adversary, we now concern ourselves
with the impact of a time-bounded adaptive adversary. In addition
to the capabilities of a static adversary, a time-bounded adaptive
adversary can pick-and-choose which machines to compromise af-
ter it joins the system. It may compromise these nodes via buffer
overflows and other standard exploits, or even obtain court orders
to recover available information through proper legal channels [22].
However, it requires some period of time to compromise any one
machine, and it can only control each machine for some period of
time until the compromise is detected and subsequently stopped.8

If the period to compromise a tunnel’s relays is sufficiently small,
one cannot achieve anonymity against an adaptive adversary: All
entries in Table 1 would be true. An adversary initially controlling
any relay can just back- or forward-trace a tunnel to the sender or
recipient by successively compromising nodes. The adversary may
additionally compromise the nodes with which the sender shares
cover traffic, if applicable,9 to verify that it indeed originates the
traffic of interest.

To protect against an adaptive adversary, 1) the period to com-
promise all tunnel relays must be longer than the tunnel’s duration,
and 2) tunnels should not be repeatedly constructed through the
same small set of largely-compromised relays.

Tarzan’s design makes a real effort to ensure that this period to
compromise is non-trivial. Its node-selection mechanism of choos-
ing randomly from known domains constructs tunnels that empha-
size host diversity, which spreads relays across jurisdictional and
operational boundaries. Diverse relays will likely run a variety of
operating systems and could potentially use different software im-
plementations. Furthermore, an adversary gains little additional in-
formation by compromising Tarzan relays after their participation
in a tunnel: Honest nodes store tunnel keys and routing tables only
in memory, and they disable core dumps and process tracing.

Tarzan’s scalable architecture offers a large choice of nodes
through which to construct tunnels, and Tarzan’s mimic reassign-
ment ensures that an initiator’s set of possible relays changes daily.
Taken together, a new tunnel is unlikely to traverse the same small
set of nodes already compromised by the adaptive adversary. Thus,
long-term node observation or time-intensive attacks, such as issu-
ing court orders, are less effective. This property does not hold for
systems with a central core or a small network, in which a user re-

8For example, through the application of periodic security checks
and patches by system administrators.
9These additional attacks are only necessary against peer-to-peer
systems that protect against global eavesdropping through cover
traffic. Tarzan is the only such system of which we are aware.

peatedly constructs tunnels over the same nodes, and thus the nodes
offer clear targets for both long- or short-term compromise.

For the remainder of our discussion of Tarzan’s peer-to-peer de-
sign, we assume that a tunnel’s duration is shorter that the period
needed by an adaptive adversary to sequentially compromise the
tunnel’s relays. In other words, we only consider a static adversary
that compromises machines prior to tunnel construction, although
it can actively attempt to bias an initiator during relay selection.

4.1.3 Defining probability of failure
The attacks shown in Table 1 succeed with the probability that

a malicious node occupies the respective tunnel position. How
should we analyze this probability? Tarzan’s insight into this ques-
tion led to a domain-driven tunnel construction mechanism that of-
fers additional protections over other systems.

The analyses of most systems, including those of Onion Routing
and Crowds, make an obvious independence assumption of adver-
sarial control: if m nodes are malicious in a network (crowd) of
size n, any given node is malicious with probability m

n
. Thus, the

first and last hop are together malicious with probability (m
n

)2.
This assumption is understandable, as we cannot know how

nodes will experience correlated failures. However, Tarzan’s de-
sign accounts for how we predict that nodes will fail. Thus, our
analysis makes the weaker assumption that domains fail indepen-
dently, and our design reflects this accordingly.

The node-independenceassumption presents a problem. There
are no known techniques to prevent individual entities from pre-
senting multiple identities to the system, without some out-of-band
authentication procedure and trusted centralized authority [8, 9].
Thus, without some limit on multiple identities, an adversary with
only one host at its disposal can arbitrarily raise m

n
toward 1.

Systems may attempt to combat this by exposing relay selection
to users [26, 13], in order to encourage host diversity. However,
much of the information available to users cannot be authenticated,
and it may in fact be used to bias their selection.

Tarzan leverages the following observation. If an adversary com-
promises M gateway routers or LAN machines that belong to
previously-uncorrupted domains, it can then run many malicious
nodes (m) within each of these M corrupted domains. As every
honest participant runs only one node and assuming these hon-
est nodes are well-distributed, an N -domain system will have a
much higher preponderance of nodes within its corrupted domains:
m
M

� n
N

, thus m
n

� M
N

. Although Tarzan’s use of domains re-
moves the incentive for such an attack, this fact implies that a ran-
dom nodehas a higher probability of compromise than a random
domainin systems that do not consider domains.

For our domain-independenceclaim to be true—an initiator se-
lects a malicious node as a tunnel relay only with probability M

N
, in-

dependent of correlated intra-domain failures—we must first show
the following.

CLAIM 1. A node selects a malicious mimic with prob.M
N

.

CLAIM 2. Nobody can bias an initiator’s choice of relays.

To achieve these strong claims, a node must select its mimics
uniformly over the entire set of domains. It also must build tunnels
only through other nodes’ mimics that are similarly selected in a
random and unbiased fashion.

However, malicious nodes may attempt to do the following, in
order to bias a’s mimic selection and increase its frequency of using
malicious relays in its tunnel.

• Corrupt gossiping: An adversary gossips addresses that do
not exist or only returns malicious nodes.

• Leverage open admission: An adversary tries to control
“important” IP addresses or run multiple nodes.

• Ignore neighbor-selection algorithm: A malicious node at-
tempts to select malicious nodes as its mimics, so that hon-
est nodes will build tunnels through sequences of malicious
nodes.

The remainder of this section describes how Tarzan protects against
these types of attacks.

4.1.4 Securing resource discovery
To bias the distribution of known nodes, an adversary may gossip

invalid or only malicious neighbors.
To protect against fake entries, Tarzan differentiates between un-

validated and validated addresses in the peer-discovery and selec-
tion process. Honest nodes only propagate validated addresses and
only select mimics from their set of validated addresses.

Fake addresses could otherwise be used as placeholders in a tun-
nel. Consider a malicious node that creates fake addresses and the
corresponding key pairs. If an initiator selects this node as tunnel
relay hi, the node can respond successfully to tunnel establishment
requests to fake addresses following it on the tunnel (i.e., spoof
hi+1 . . . hj), even though it may not control their relevant domains.
If this is the case, the probability that r malicious “relays” are on
the tunnel is much greater than (M

N
)r and, in fact, approaches M

N
.

A node must learn and validate all n nodes in the network to
prevent a bias towards malicious nodes in its peer database. This
bias arises as honest nodes return both honest and malicious nodes,
while adversaries return only the latter.

Furthermore, a global eavesdropper that watches nodes gossip
can record the α nodes we assume each learns from the total set
of size n. Therefore, only α possible nodes could have initiated
a tunnel establishment request to a colluding malicious node. In
general, for any α < n, this discovery-profiling attack leaks some
information10 and thus should be avoided.

Lastly, a node attempts to check the validity of other nodes’ mim-
ics during tunnel establishment.11 If the check fails, the initiator
does not consider the mimic for its tunnel, reducing the anonymity-
set fan-out to < (κ−1) for the hop. For the check to succeed often,
the node must also know nearly all nodes in the network.

To handle these security considerations, Tarzan offers an effec-
tive and efficient peer-discovery mechanism: A node will discover
all n nodes in the network with high probability in connection com-
plexity O(n) and pointer complexity O(n logk n).

Tarzan’s discovery protocol propagates knowledge the same as
Name-Dropper [16]. However, for nodes with neighbor lists of size
within a constant factor, node a will only transmit to node b those
neighbors not previously known to b.

In Name-Dropper, each node contacts an expected O(log2n)
other nodes. As a Tarzan node validates its neighbor list by di-
rectly contacting every neighbor, we increase the per node connec-
tion complexity to O(n).

We measure pointer complexity by both the number of ma-
chine addresses and hash values passed during communication.

10The expected number of nodes that know about a particular node
sequence of length r is n

�
α
r

�
/
�

n
r

�
. As Tarzan constrains tunnel

selection to mimics, this tighter bound is (κ− 1)l−r
�

α
r

�
/
�

n
r

�
≈

(κ−1)l−rαr/nr . To uniquely identify the initiator, an eavesdrop-

per needs this value to be ≤ 1, or α ≤ n/(κ−1)
l−r

r .
11The initiator performs a mimic lookupon its own peer database as
if it is the node in question, in order to check the correctness of the
node’s mimic relationships.

Nodes can determine one set difference briefly as follows. The
ith element of a node’s sorted set Va has the hash value Hi =
h(. . .h(h(Va[1])+Va[2]). . .+Va[i]), generated by recursively ag-
gregating prefixes. If two nodes have the same last hash value
H|Va|, their sets are identical and the comparison terminates. Oth-
erwise, the nodes compare their value for H|Va|/2 and proceeds
with a binary search. Therefore, nodes can find one set difference
in O(log n) by transferring one hash value per round. We can re-
duce round complexity to O(logk n) on average by sending (k−1)
values per round to perform a k-ary search. Thus, maintainpasses
O(logk n) pointers to learn one new node.

At least one of a node’s initial entry points into the network must
be correct; otherwise, all tuples the node learns thereafter could
correspond to malicious nodes.

4.1.5 Hardening the open admissions policy
An entity can present multiple identities in Tarzan by using dif-

ferent public keys or running multiple instances of Tarzan on dif-
ferent IP addresses. As stated in Section 4.1.3, Tarzan provides
practical measures to lessen the impact of such attacks. First, nodes
distribute their keys indirectly through a gossiping protocol. Sec-
ond, tunnel initiators choose mimics (and thus relays) by selecting
uniformly at random from among available domains.

First, consider a poor alternative to Tarzan’s key-distribution via
gossiping: node a learns b’s public key by directly contacting it. If
b is malicious, it could create a new public key per request and store
a mapping from this key to the requester. Later, upon receiving a
tunnel establishment message, b could use this mapping to resolve
the identity of the tunnel’s initiator (based on which key the mes-
sage is encrypted under). A Tarzan node distributes its public key
through gossip channels beyond its direct control. Such indirection
protects a tunnel initiator against this key-mapping attack.

Second, consider alternative approaches to peer selection: There
is a trade-off between security and network performance. One ap-
proach is a local variant of Chord’s distributed hash table [25],
which maps IP addresses onto a single /32 identifier ring via a hash
function. lookup(random) selects some random element from this
ring. This approach has obvious load-balancing benefits, but suf-
fers from the admission control problem [9]: An adversary’s multi-
ple addresses are distributed randomly around the ring, each having
an equal probability of being selected as honest nodes.

Alternatively, a node can simply map IP addresses onto a ring,
rather than their hash values. Or, we can still use Tarzan’s hier-
archical identifier rings, but change lookupi to hash the node’s IP
address for each /d ring, as opposed to hashing its d-bit IP pre-
fix. These approaches protect a node in the outgoing direction, as
it selects mimics in the adversary’s contiguous IP addresses (do-
mains) with low probability. However, an adversary running many
nodes—in only a constant number of domains—can create many
outgoing links to honest nodes. Thus, honest nodes will have more
mimics than the expected 2k, of which many are malicious.

Emphasizing security, Tarzan maps domains to domains, such
that an adversary can influence neither a node’s outgoing links nor
its incoming ones. Furthermore, as domain prefixes map to random
locations on the identifier ring, we assign equivalent importance to
all individual /16 prefixes. Therefore, an adversary does not benefit
by running multiple intra-domain nodes.

We recognize that a highly-skewed distribution of host densi-
ties within /16 prefixes will result in poor network performance
for mismatched domains. Still, for the smaller network sizes that
Tarzan considers, we believe that this distribution will be closer to-
ward uniformity. For instance, real deployment may show Tarzan
nodes run on NAT boxes for trusted local area networks.

4.1.6 Enforcing proper mimic selection
An initiator should construct its tunnel only through nodes se-

lected in an unbiased and random fashion. Merely asking the
potentially-malicious relay for its mimics is certainly not sufficient:
As an initiator extends its tunnel recursively, it must be able to ver-
ify a relay’s proper mimics.

Let us consider when an initiator accepts some node w as one
of malicious node u’s mimics. This result occurs when the initia-
tor’s lookupon u’s key Ki yields w, which happens in one of two
cases. First, the initiator might not know of some node v which
lies between Ki and w on the identifier ring. However, this con-
tradicts that the initiator knows all n nodes in the network with
high probability (per Section 4.1.4). Second, node w is actually a
properly-selected mimic.

A similar proof by contradiction shows that mimic selection is
secure. A node trusts the k mimics it chooses itself. It can also trust
the expected k mimics it accepts from other nodes’ requests. Oth-
erwise, it would know about some other currently-available node v
between the lookup keys and itself.

4.2 Traffic analysis attacks
The previous section’s analysis assumes that an adversary can

gain no additional information through traffic analysis that would
otherwise allow it to compromise Tarzan’s anonymity properties.
This section discusses how Tarzan 1) resists powerful traffic analy-
sis on the Tarzan overlay itself and 2) prevents information leakage
at its exit points, yet 3) may be susceptible to some attacks that use
additional application-layer information.

4.2.1 Information leakage in tunnels
Existing provably-secure anonymous communication algorithms

assume synchrony [3, 4], but a practical system must operate asyn-
chronously. Thus, practical systems must hide discernible, asyn-
chronous events in background statistical noise. Approaches in-
clude mixing the order of received packets, batching packets to en-
sure a sufficient pool size for mixing, delaying packets at relays,
and sending cover traffic to hide discernible traffic patterns.

If an eavesdropper can observe all network traffic, relay homo-
geneity alone does not provide sender or relationship anonymity.
The eavesdropper can back-trace traffic flows from an observed
PNAT to yield a set of potential senders. If most of these nodes
have little activity at that exact time, the adversary may uniquely
identify the sender with high probability.

Cover traffic (dummy traffic) that is indistinguishable from data
can prevent such analysis. First, an eavesdropper cannot determine
whether a relay initiates new data or just sends cover packets. Sec-
ond, an observer must back-trace the multiple sources of a node’s
incoming traffic, creating a fan-out of possible senders.

Different mix-network topologies provide various benefits and
challenges for achieving anonymity against a global eavesdropper.
If an initiator has complete freedom to randomly build tunnels, its
anonymity set is naively (n−m). However, such systems cannot
guarantee incoming traffic flows to any particular node. Explicitly
providing cover traffic across all n2 links is prohibitively expensive.

In contrast, Tarzan’s mimic mechanism explicitly assigns node
pairs to exchange cover traffic. This fixed allocation makes the
generation of cover more practical, at the cost of a loss of freedom
for tunnel initiators.

How may misbehaving mimics affect the protections offered by
cover traffic? A misbehaving mimic b may not send traffic at the
appropriate incoming packet rate TI(b), either through malice or
bandwidth limitations. So, Equation 1 balances the DoS threat from
slow mimics with the risk of reducing fan-out from malicious mim-

ics: It sets the rate of any individual outgoing data flow DO(h, ti)
to at most the 33rd percentile of incoming traffic rates.

If node a rate-limits DO(h, ti) by the minimum incoming rate,
node b could trivially DoS a by not sending any traffic (as in [7]).
On the other hand, if a limits DO(b, ti) only by the maximum in-
coming rate, the node’s fan-out reduces to the one maximal mimic.
This mimic is likely b itself, and thus a may originate data faster
than could be explained by its incoming traffic from honest mimics.
(This attack succeeds against the current design when malicious
nodes comprise two-thirds (1−f(·)) of a’s mimics and a originates
data faster than any incoming traffic from its honest mimics.)

In short, Tarzan selects its rate equations to maintain a “suffi-
cient” outgoing data rate, even if one-third of mimics are slow
or malicious. Tarzan’s cover traffic mechanism offers protection
against traffic analysis of message volume or content, against mes-
sage flooding, and against DoS attacks of slowing incoming rates.

4.2.2 Information leakage at network exit points
While cover traffic and layered encryption protects data traffic

within tunnels, an adversary may attempt to leverage the fact that
data exits the Tarzan network in clear-text. These network-edge
attacks include packet replay, tagging, reordering, and flooding.
They generally require an adversary to control some node or link
on a tunnel and to observe a PNAT or the non-participating Internet
host of interest.

While Tarzan is less susceptible to such attacks on its sender
anonymitydue to its lack of any entrance points, an adversary may
attempt such attacks to reduce its recipient anonymityor to partially
back-trace a packet to reduce a sender’s anonymity set. This section
briefly describes Tarzan’s protections against such attacks.

A Tarzan node uses packet sequence numbers to drop replayed
packets. Otherwise, an adversary could replay packets and try to
find corresponding activity at non-Tarzan recipients. Tarzan in-
cludes an integrity check (i.e., the MAC) to protect against a node
or active router from changing the sequence number and defeating
our replay protection. Similarly, the MAC prevents an adversary
from tagging the packet in such a way that the packet could be
identified once it exits the Tarzan network, for example, by flipping
some bits in the payload such that TCP checksums are invalidated,
given that packet transmission generally introduces few errors.

Tarzan also protects against reordering attacks. As the IP layer
usually transmits packets in order, an adversary can reorder TCP
packets in a way identifiable once their TCP sequence numbers are
in clear-text. While mixing packets alone may initially seem suffi-
cient, an adversary can always reorder a sequence longer than that
batched and mixed at nodes. Therefore, a Tarzan node buffers in-
coming packets and only batches packets for mixing and forward-
ing in-order. It drops any later packets received out-of-order.

Lastly, an adversary may attempt to flood a node with packets.
It hopes to reduce the number of other senders that can simultane-
ously use the relay, and then try to identify its own outgoing pack-
ets from those of others. Tarzan greatly reduces the effectiveness of
such flooding. First, mimics encrypt messages between them, mak-
ing it difficult for an adversary to identify its own packets. Second,
cover traffic cannot be distinguished from the legitimate traffic of
other nodes. Third, the rigid structure of the mimic overlay limits
the set of nodes that an adversary attack: A malicious node can
only flood mimics through a well-formed tunnel in the overlay.

4.2.3 Information leakage from application-layer
Designed at the IP-layer, Tarzan promises no real protection

against information that leaks through application-layer interaction.
Even so, its design helps limit such information.

First, an adversary may time application-layer events, such as
the period between queries and responses, to estimate the tunnel
length between itself and the initiator. Good results would change
our characterization of Tarzan’s anonymity in Table 1. However,
we expect it difficult to estimate tunnel length beyond a margin
of error ± several hops, as 1) wire propagation delays dominate
transmission time (see Section 6), and 2) intermediate relays de-
lay packets for short random periods as a second-order effect of
ensuring proper traffic rates each transmission round. An initiator
can always add additional random delays to its own packets, al-
though this practice obviously impacts performance. Furthermore,
application-layer anonymizing support at the PNAT or initiator can
defend against such attacks, e.g., Crowds suggests a PNAT web
proxy to defeat automatic HTTP re-requests [21].

Second, an adversary may use users’ behavior to trace them by
observation over a long period. An analysis of anonymity degrada-
tion by this intersectionattack is presented in [31]. If tunnel relays
collude, the adversaries require 2

�
N
M

�r
lnn roundsto uncover the

initiator’s identity with high probability, where r = 2 if relays can
perform timing analysis to determine they belong to the same tun-
nel, i.e., only the first relay and PNAT need be malicious.

A new round begins when an initiator constructs a completely
new tunnel that an adversary can deterministically link to the ini-
tiator’s previous tunnels, through content, timing, or behavioral in-
formation leaked by the application-layer. As the network grows in
size or usage, linking tunnels may become increasingly difficult.

We note that Tarzan’s tunnel reconstruction protocol offers some
protection against intersection attacks: Intermediate nodes will
keep reappearing on reconstructed tunnels, yet an adversary can-
not differentiate between reconstructed tunnels and new tunnels.
This reappearance is viewed as a weakness in [31], which argues
that an initiator can continually reuse its first hop to implicate it in
intersection attacks. We view this capability as a strength, as an
adversary has less confidence in its conclusion.

5. IMPLEMENTATION
We have implemented Tarzan’s basic tunneling mechanism in

C++ on Unix to validate our approach. SFS libraries [19] provide
callback-style functionality for fast asynchronous I/O and automate
marshalling data into the standard XDR wire representation.

Tarzan’s core component is a stand-alone relay server which per-
forms the per-hop packet relaying. This relay daemon can be run
by unprivileged users, as can be the peer discovery daemon.

Tarzan’s source-routing IP forwarder and its pseudonymous NAT
require root permissions to make raw socket calls. For IP forward-
ing, we take advantage of FreeBSD divert sockets.

These IP forwarder and PNAT components are built on top of
the Tarzan library, which communicates with the relay server to
establish tunnels, to listen for incoming connections, and to send
and receive data. The Tarzan library presents an API modeled after
standard Unix sockets, albeit asynchronous, and is executable on a
variety of BSD, Linux, and Unix platforms.

Other Tarzan-aware applications can easily be written using this
library as well. For example, the implementation of an anonymous
echo client-server is about 150 lines of code. Or, one may wish to
modify the PNAT to require access control via SSL certificates and
use Tarzan tunnels as an anonymous VPN.

All built-in cryptographic operations are implemented by the
SFS crypt library. The payloads of all Tarzan packets, which
include encapsulated IP headers in data packets, are encrypted in
CBC mode with a 20-byte Blowfish [24] key. Each packet includes
an 8-byte random initialization vector. A pseudo-random generator
based on DSS generates symmetric keys, IVs, and flow identifier

Pkt size Latency Throughput
(bytes) (µ-sec) (pkts/s) (Mbits/s)

64 244 14000 7.2
512 376 8550 35.0

1024 601 7325 60.0

Table 2: Per-hop latency and forwarding rate. Packet sizes
shown are the actual number of bytes transmitted: packets are
not padded to Tarzan’s standardized lengths.

Tunnel Setup Variance
length latency (1 StD)

1 30.19 1.38
2 46.54 0.53
3 68.37 0.73
4 91.55 1.20

Table 3: Setup latency (msec) and its variance for the construc-
tion of multi-hop tunnels through pre-defined relays.

tags. See [19] for details of the seeding mechanism. Tarzan uses
SHA-1 for all cryptographic hash operations and the Rabin public-
key cryptosystem to encrypt the forward-path session key for tunnel
establishment. The Rabin implementation is secure against adap-
tive chosen-ciphertext attacks and is plaintext-aware.

6. PERFORMANCE
This section examines the overhead added by Tarzan’s packet

handling and crypto processing, as well as its packet forwarding
rates. Tunnel latency is lower-bounded by the propagation delay of
Internet routes between Tarzan relays.

We performed controlled-environment tests on a 100 Mbps
switched network with the tested relay daemon running on a 1.2
GHz Athlon box with 128 MB of RAM running FreeBSD 4.3. Ta-
bles 2 and 3 summarize our results.

Table 2 shows the average time that a Tarzan relay needs to read
a packet off the network, decrypt and route it, and send it out to
the next relay. These preliminary measurements only examine ba-
sic data packet handling and do not reflect the overhead of cover
traffic and packet batching. We calculated latency using tcpdump
measurements. For large enough packets, the latency scales lin-
early with packet size. Throughput also scales roughly linearly. As
shown, a Tarzan relay has reasonable performance for user-level
packet forwarding and can easily saturate a T1 line, if not limited
by its cover traffic algorithms.

The authors have personal experience using multi-hop Tarzan
tunnels within a LAN. We experienced no noticeable delays while
web-surfing and only slightly perceivable delays, although accept-
able, while running the ssh protocol over Tarzan.

Setup latency is measured end-to-end from when a client initi-
ates the tunnel, connects iteratively through one to four relay pro-
cesses run on the relay machine, registers itself with the server-side
tunnel end-point application (such as a PNAT), and receives a final
acknowledgment. On average, we incur a setup cost of 20 msec
per hop. This data suggests that the cost of latency incurred by the
underlying network will dominate latency even during tunnel setup.

In summary, a Tarzan relay enjoys a fast packet forwarding rate,
high throughput, and reasonable tunnel-setup latency. As each re-
lay adds a packet-handling overhead of less than 1 msec, propaga-
tion delays through the underlying Internet route will completely
dominate tunnel latency. Therefore, route efficiency will pervade
any performance measurements.

These measurements support our goal that anonymity can be in-
corporated at the IP level within a tolerable loss of efficiency com-
pared to its non-anonymous counterpart.

7. INTEGRATION
Tarzan’s primary goal is to factor out anonymity in the design of

larger systems. That is, one should be able to take an existing non-
anonymous application that uses IP (or UDP/IP or TCP/IP), and
make it anonymous by substituting the Tarzan layer for IP. For this
to work, Tarzan should be as transparent as possible, and should
integrate painlessly with applications and higher-level protocols.

7.1 Transport-layer protocols
To a first order, Tarzan acts just like an IP layer from the point

of view of higher-level protocols such as TCP or UDP. The main
difference is that Tarzan uses a network address translator at the
exit point. Thus, it inherits the non-transparent aspects of NATs.
For example, if a NAT fails, connections already set up through it
will also fail.

7.2 Application-layer protocols
One can transparently anonymize an existing protocol with

Tarzan only if the protocol reveals the client’s identity solely in
the packet headers. Protocols that put identifying information in
packet payloads need additional work to anonymize.

For example, HTTP headers include identifying information
such as page referrals and cookies. However, web browsers and
plug-ins offer cookie-blocking tools, as well as the ability to turn
Javascript off. Users may use a simple web proxy to sanitize HTTP
headers. Tarzan offers the piece still lacking with these tools: a
method to strongly anonymize IP address.

Similarly, email SMTP headers include a list of servers through
which a message has been routed. While a sanitizing proxy could
also scrub this information, pseudonymous email would be more
convenient, since it handles replies. A user could simply connect
to any pseudonymous email service through Tarzan, such as the
free web-based Hotmail system.

Tarzan can transparently anonymize other important protocols.
DNS requests do not identify the senders. Login authentication
mechanisms, such as telnet, ssh, and SSL, do not leak additional
information; Tarzan could be used for pseudonymous identifica-
tion. Instant messaging systems such as ICQ and AIM imple-
ment their own namespaces at the application-layer without leaking
personally-identifying information. Tarzan already handles some
protocols that explicitly encode IP address and port information in
packet payloads, by using existing NAT code which takes care of
this for common protocols such as FTP and IRC.

7.3 Software systems
Beyond anonymizing existing protocols, we designed Tarzan

as a building-block for anonymous systems. Section 8 mentions
several such publishing and file-sharing systems. Systems like
Freenet [5] make architectural design decisions for anonymity that
impact functionality and performance. For example, the current
Freenet implementation (version 0.4.4) always rewrites the source
addresses of replies, likely for anonymity reasons. This decreases
the ability of Freenet nodes to build efficient routing tables.

Good design practices suggest that such systems should use a
layered approach to peer-to-peer file-sharing. For instance, CFS [6]
separates its file-system block store from its Chord lookup mech-
anism. Similarly, Tarzan could serve as its underlying communi-
cations layer. Free Haven [8] and Tangler [28] specifically cite the
need for a system like Tarzan for their anonymity requirements.

8. RELATED WORK
Prior work in anonymizing asynchronous systems falls into two

categories: systems which provide application-specific anonymity,
and systems that offer a more generic transport framework.

The majority of application-specific anonymous systems focus
on email, web browsing, or file sharing. For example, Chaum [3]
proposed mix networks to achieve untraceable anonymous email.
The Cypherpunk and Mixmaster remailers [10], which use Chau-
mian mixes, are also only useful for email. The latter addition-
ally provides reply blocksfor recipients of email to respond to
the anonymous senders; Tarzan offers similar functionality with its
PNATs. Web systems range from centralized sanitizers [1] to the
Crowds peer-to-peer system [21] to those using mixes [2]. Systems
for anonymous publishing and storage include the URL-chaining
Rewebber system [14], Publius [29], and Freenet [5]. Each of these
systems provides its own particular anonymity design, interwoven
with the design of the application-specific protocol. In contrast,
Tarzan provides a single general-purpose anonymizer that can be
used transparently by many applications.

Few systems attempt anonymity for low-level, real-time com-
munication. The Onion Routing system [26] creates a mix-net over
sequential TCP connections, and Zero-Knowledge Systems devel-
oped the first commercial mix-net system, known as the Freedom
network [13] (which stopped service in mid-2001). Tarzan differs
from these systems in a few key ways.

Application integration is achieved in Onion Routing using sep-
arate application proxies; they propose at least sixteen such prox-
ies. However, a TCP-based anonymizer is less-suited for UDP-
based protocols such as DNS that provide retransmission at the
application-layer. Freedom supports only a few protocols. Operat-
ing at the network level by diverting packets using standard firewall
rules, Tarzan can anonymize client traffic with fewer application-
specific components.

Onion Routing uses a fixed set of onion routers with static public
keys. The Freedom network consists of commercially-run nodes
deployed at various ISPs to route traffic between them. Freedom
centrally manages and provisions the network, building a PKI for
router authentication. Tarzan’s peer-to-peer architecture requires
no central management or control. Nodes can join and leave the
network dynamically; we place no requirements on authentication
to provide anonymity.

Freedom ties the network into a centrally-managed pseudonym
authentication system. Tarzan does not place such barriers at the
network level. Instead, the Tarzan library would allow one to build
custom server-side applications for access-control or other higher-
level considerations.

Tarzan’s peer-to-peer architecture removes any notion of entry-
point into the anonymizing layer. This topology allows us to pro-
vide cover traffic mechanisms that are both practical and power-
ful: Tarzan offers senderand recipient anonymityin addition to the
relationship anonymityprovided by Onion Routing and Freedom,
without their susceptibility to network-edge attacks.

Both Onion Routing and Freedom expose router selection to the
end user. Tarzan automates randomized relay selection and tunnel
construction. Furthermore, Tarzan can route around failures for
ongoing connections.

Onion Routing’s proposed reply onionsare static, slow, and more
vulnerable to node failure, brute force decryption, and even sub-
poena attacks. Tarzan’s IP forwarding architecture allows anony-
mous servers to interact transparently with clients by performing
dynamic pseudonymous network address translation and port for-
warding. This design is fast, flexible, and forward anonymous.

9. CONCLUSION
Tarzan provides a flexible layer for sender, recipient, and rela-

tionship anonymity, even when operating in real-time. It sustains
such anonymity in hostile environments, against both malicious
participants and global eavesdroppers.

Tarzan operates transparently at the IP level, so it works with any
Internet application. Its peer-to-peer design makes it decentralized,
highly scalable, and easy to manage. Additionally, this lack of any
network core increases its fault-tolerance to individual relay failure,
benefiting both anonymity and availability.

We show that Tarzan imposes minimal overhead over a corre-
sponding non-anonymous overlay route. Latency through Tarzan
tunnels is dominated by transmission speed through the Internet.

Tarzan’s ability to participate in multiple kinds of traffic fur-
thers its usefulness and, hopefully, adoption. We believe a common
and open-source infrastructure like this will help to make Internet
anonymization easier and more prevalent.

By providing privacy-enabling tools for anonymous communi-
cation, we hope to reinforce the rights of freedom of speech and
freedom of information as integral parts of everyday life.

Acknowledgments
We thank Emil Sit and Josh Cates for significant contribution to
the software design and implementation of Tarzan tunnels; David
Mazières for helpful discussions regarding security design and
analyses; David Karger and Charles Leiserson for useful point-
ers concerning the peer discovery protocol; and David Andersen,
Richard Clayton, George Danezis, Roger Dingledine, Wei Dai, and
David Molnar for comments.

10. REFERENCES
[1] The Anonymizer. http://anonymizer.com.
[2] BERTHOLD, O., FEDERRATH, H., AND KÖSPELL, S. Web mixes: A

system for anonymous and unobservable internet access. In Federrath
[12], pp. 115–129.

[3] CHAUM, D. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM 24, 2 (February
1981).

[4] CHAUM, D. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of Cryptology 1(1988),
65–75.

[5] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and retrieval
system. In Federrath [12], pp. 46–66.
http://freenet.sourceforge.net.

[6] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proceedings
of the 18th ACM Symposium on Operating Systems Principles (SOSP
’01) (Banff, Canada, 2001).

[7] DAI, W. Pipenet.
http://www.eskimo.com/˜weidai/pipenet.txt.

[8] DINGLEDINE, R., FREEDMAN, M. J., AND MOLNAR, D. The Free
Haven Project: Distributed anonymous storage service. In Federrath
[12], pp. 67–95. http://freehaven.net.

[9] DOUCEUR, J. R. The Sybil attack. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS02)
(Cambridge, MA, March 2002).

[10] ELECTRONIC FRONTIERS GEORGIA (EFGA). Anonymous remailer
information. http://anon.efga.org/Remailers/.

[11] FEDERAL BUREAU OF INVESTIGATIONS. Carnivore diagnostic tool.
http://www.fbi.gov/hq/lab/carnivore/
carnivore.htm.

[12] FEDERRATH, H., Ed. Designing Privacy Enhancing Technologies:
International Workshop on Design Issues in Anonymity and
Unobservability(2001), vol. 2009 of Lecture Notes in Computer
Science, Springer-Verlag.

[13] GOLDBERG, I., AND SHOSTACK, A. Freedom network 1.0
architecture, November 1999.

[14] GOLDBERG, I., AND WAGNER, D. TAZ servers and the Rewebber
network: Enabling anonymous publishing on the World Wide Web.
First Monday 3, 4 (1998).

[15] GUAN, Y., LI, C., XUAN, D., BETTATI, R., AND ZHAO, W.
Preventing traffic analysis for real-time communication networks. In
Proceedings of Milcom ’99(November 1999).

[16] HARCHOL-BALTER, M., LEIGHTON, T., AND LEWIN, D. Resource
discovery in distributed networks. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC ’99)
(Atlanta, Georgia, 1999).

[17] KOHLER, E., LI, J., PAXSON, V., AND SHENKER, S. Observed
structure of addresses in IP traffic. In Proceedings of the SIGCOMM
Internet Measurement Workshop 2002(Marseille, France, November
2002).

[18] MARTIN, D., AND SCHULMAN, A. Deanonymizing users of the
safeweb anonymizing service. In Proceedings of the 11th USENIX
Security Symposium(San Francisco, California, August 2002).

[19] MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F., AND

WITCHEL, E. Separating key management from file system security.
In Proceedings of the 17th ACM Symposium on Operating Systems
Principles(Kiawah Island, South Carolina, Dec. 1999), pp. 124–139.

[20] PFITZMANN, A., AND KÖHNTOPP, M. Anonymity, unobservability
and pseudonymity — a proposal for terminology. In Federrath [12],
pp. 1–9.

[21] REITER, M. K., AND RUBIN, A. D. Crowds: Anonymity for Web
transactions. ACM Transactions on Information and System Security
1, 1 (1998), 66–92.

[22] RIAA V. VERIZON. Motion to enforce July 24, 2002 subpoena. U.S.
Distinct Court, District of Columbia, August 20, 2002. Case No.
1:02MS00323.

[23] ROSEN, E., VISWANATHAN, A., AND CALLON, R. Multiprotocol
Label Switching Architecture, January 2001. RFC 3031.

[24] SCHNEIER, B. Description of a new variable-length key, 64-bit block
cipher (Blowfish). Lecture Notes in Computer Science 809(1994),
191–204.

[25] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference(San Diego, California, August 2001).

[26] SYVERSON, P., GOLDSCHLAG, D. M., AND REED, M. G.
Anonymous connections and onion routing. In Proceedings of the
IEEE Symposium on Security and Privacy(Oakland, California, May
1997), pp. 44–54.

[27] SYVERSON, P., TSUDIK, G., REED, M., AND LANDWEHR, C.
Towards an analysis of onion routing security. In Federrath [12],
pp. 96–114.

[28] WALDMAN, M., AND MAZIÈRES, D. Tangler: A
censorship-resistant publishing system based on document
entanglements. In Proceedings of the 8th ACM Conference on
Computer and Communications Security(Philadelphia,
Pennsylvania, November 2001).

[29] WALDMAN, M., RUBIN, A. D., AND CRANOR, L. F. Publius: A
robust, tamper-evident, censorship-resistant, web publishing system.
In Proceedings of the 9th USENIX Security Symposium(Denver,
Colorado, August 2000), pp. 59–72.

[30] WALTON, G. China’s Golden Shield: Corporations and the
development of surveillance technology in the People’s Republic of
China, 2001. http://go.openflows.org/.

[31] WRIGHT, M., ADLER, M., LEVINE, B. N., AND SHIELDS, C. An
analysis of the degradation of anonymous protocols. In Network and
Distributed System Security Symposium(San Diego, California,
February 2002).

APPENDIX

A. MEASURING ANONYMITY
This appendix presents some quantitative analysis supporting

our negative goal—that an adversary cannot compromise a partic-
ipant’s anonymity—by considering Tarzan’s properties against the
theoretical static adversary. Given this model, as described in Sec-
tion 4.1, we calculate the confidence with which a malicious node
can identify any given node as the tunnel initiator a. These results
allow us to quantify the “maybe’s” in Table 1. Crowds [21] asks a
similar question and provides the model for our analysis.

In a core-based architecture, a malicious relay can certainly de-
termine when it receives a message from a non-core node and can
thus detect sender activity, even though it may not know the mes-
sage’s contents or destination. Tarzan’s relay homogeneity, on the
other hand, does not expose this information. While a malicious
Tarzan relay candistinguish between cover and data traffic from its
predecessor, it cannot deterministicallyconclude whether this node
is initiating the traffic (and is thus a) or merely relaying the data.
Given that initiator a chooses a tunnel length randomly through
several potentially malicious nodes, what is the adversary’s confi-
dencethat its predecessor is the initiator? Or that one of the possi-
ble predecessors of its predecessor is the initiator? And so on.

To derive this probability, we first assume that an initiator selects
malicious relays with independent probability M

N
, as discussed in

Section 4.1.3. The malicious relay could conclude deterministi-
cally that its predecessor is a if it knew both the tunnel’s length l
and that (l−1) relays succeed it on the tunnel. However, as Tarzan
allows variable path lengths, l takes some probability distribution
and our analysis becomes one of conditional probabilities.

Let Hi (i≥ 1) denote the event that the first malicious relay on
the tunnel appears at the ith position on the tunnel. Define Hi+ =
Hi ∧Hi+1 ∧ . . . ∧Hl to be the event that the first malicious relay
hi+ appears at or after position i.

If the initiator chooses whether to extend the tunnel length by
flipping a (biased) coin as in Crowds, the probability that the tun-
nel is extended by one more hop is independent of its existing tun-
nel length. Thus, the malicious relay hi+ can gain no additional
information if it learns how many relays follow it.

However, as Tarzan allows users to select tunnels whose lengths
likely take other distributions, Pr(l ≥ k+r|l ≥ r) < Pr(l ≥ k)
unlike before. Thus, hi+ gains additional information by determin-
ing that some number of relays follow it, call this number r. We
note that colluding relays do not need to sequentially follow hi+ to
determine whether they are on the same tunnel, assuming they can
use timing analysis to reach this conclusion. In fact, hi+ can deter-
mine r even when only one in three of these relays is malicious, as
each malicious relay knows its two possibly-honest neighbors. Let
E(r) be the expected number of such relays as known to hi+.

The probability that the tunnel first wanders (i−1) honest nodes
is (N−M

N
)i−1 multiplied by the probability the tunnel is at least (i−

1+E(r)) hops long, given that it is at least E(r) hops.

Pr
�
Hi

�
=

�
Pr(l ≥ i−1+E(r))

Pr(l ≥ E(r))

��
N−M

N

�i−1�
M

N

�

Pr
�
Hi +

�
=

∞X
k=i−1

�
Pr(l ≥ k+E(r))

Pr(l ≥ E(r))

��
N−M

N

�k�
M

N

�

Let Ij (i ≥ j ≥ 1) be the event that a node j hops preceding the
malicious relay hi+ on the tunnel is actually the initiator. For ex-
ample, I1 is true if and only if the malicious relay’s predecessor
is the initiator, and I2 is true only when one of this predecessor’s
other mimics is the initiator. Generally, Ij is true only when the

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

th
at

 s
el

ec
te

d
no

de
 is

 in
iti

at
or

Percent malicious domains

One hop before
Two hops before

Three hops before
Four hops before
Five hops before

Figure 7: The malicious relay’s confidence that a specific relay
i hops before it is the tunnel’s initiator, given κ = 6 and tunnel
length takes a Lognormal distribution with median 4, σ 0.5.

node at position (i−j) on the tunnel is the initiator.
As Tarzan initiators will never choose themselves as intermediate

relays in their own tunnels, unlike Crowds, the initiator is always
at position i = 0. Thus, ∀j > i, Pr(Ii|Hj) = 0; in other words,
Pr(Ii|H(i+1)+) = 0. Therefore, Ij is true if and only if j = i, and
Hi ⇒ Ii. The probability that an adversary observes an initiator is

Pr(Ii) = Pr(Hi)Pr(Ii|Hi) = Pr(Hi)

Thus, given that a malicious relay hi+ appears somewherein a
tunnel at or after position i, the adversary’s confidence that some
node preceding it by i hops is the tunnel initiator is Pr(Ii|Hi+).

Pr(Ii|Hi+) =
Pr(Ii)Pr(Hi+|Ii)

Pr(Hi+)
=

Pr(Ii)

Pr(Hi+)
=

Pr(Hi)

Pr(Hi+)

Lastly, consider that Ii merely identifies the positionof the initi-
ating node in a tunnel. For i=1, hi+ uniquely identifies its imme-
diate predecessor. This is the problem that Crowds considers; I2
is not interesting as all other nodes in the crowd are equi-likely to
precede h2+’s predecessor, provided that we assume an adversary
cannot perform traffic analysis. However, Tarzan constrains an ini-
tiator’s selection to mimics to make cover traffic feasible. Thus, for
I2, the number of possible initiators two hops prior to h2+ in the
mimic overlay is exactly the set of its predecessor’s honestmimics.
Generally, Ii applies to the set of nodes that precede hi+ by i hops,
which is precisely the initiator’s anonymity setASi.

E(|ASi|) =

��N−M

N

��
κ−1

��i−1

Assuming that hi+ assigns all nodes in ASi to have an equal proba-
bility of being the initiator, let Ci be hi+’s confidence that a specific
node from this set is the initiator:

Ci =
Pr(Ii|Hi+)

E(|ASi|)
Figure 7 shows the malicious relay’s confidence Ci, for i =

1 . . . 5, plotted against increasing adversarial compromise of the
network. We model L(·) as a Lognormal (heavy-tailed) distribu-
tion and assume that the network is large enough such that all nodes
in ASi are unique. Note that as M

N
→ 1, C1 = Pr(I1|H1+) → 1.

