
SoK: SSL and HTTPS:
Revisiting past challenges and evaluating certificate trust model enhancements

Jeremy Clark and Paul C. van Oorschot

School of Computer Science
Carleton University, Canada

{clark,paulv}@scs.carleton.ca

Abstract—Internet users today depend daily on HTTPS for
secure communication with sites they intend to visit. Over
the years, many attacks on HTTPS and the certificate trust
model it uses have been hypothesized, executed, and/or evolved.
Meanwhile the number of browser-trusted (and thus, de facto,
user-trusted) certificate authorities has proliferated, while the
due diligence in baseline certificate issuance has declined. We
survey and categorize prominent security issues with HTTPS
and provide a systematic treatment of the history and on-going
challenges, intending to provide context for future directions.
We also provide a comparative evaluation of current proposals
for enhancing the certificate infrastructure used in practice.

Keywords-SSL; certificates; browser trust model; usability.

I. INTRODUCTORY REMARKS

Enabling end users to easily communicate sensitive data

online was a significant milestone in the development of

today’s web, and, arguably, a necessary condition for its

explosive growth. Little-changed since its early days (1994–

2000), the core SSL/TLS technology persists as the basis

for securing many aspects of today’s Internet including

software download, data transfer, user passwords, and for

site authentication. While centred on the HTTPS protocol

(HTTP over SSL/TLS), its security services—confidentiality,

message integrity, and site authentication—fundamentally

rely on the correct interplay of out-of-band infrastructures,

procedures, and trust decisions.

While the web has moved from serving static information

pages to one which is relied on for billions of dollars of

commerce and for supporting critical infrastructures, there

has been an erosion of confidence in the HTTPS certificate

infrastructure for multiple reasons, e.g., increasing issuance

of server certificates through fully-automated (domain val-

idated) procedures, a proliferation of certificate authorities

(CAs) which may either directly issue site certificates or

certificates for other CAs, and the compromise of real-world

CAs leading to increased concern amongst security experts

of real-world man-in-the-middle (MITM) attacks on HTTPS.

SSL/TLS has evolved in response to the discovery of

cryptographic weaknesses and protocol design flaws. Prob-

lems with the certificate model appear to be more chal-

lenging, including among others: design and implementation

Extended version available [32].

issues in the CA/Browser (CA/B) trust model leading to

fragility (compromise of a single CA can, at least tem-

porarily, undermine system-wide security) and lack of trust

agility, poor support for certificate revocation, a reduction

in CA diligence in certificate issuance, and user interface

challenges related to reliably signalling to end-users, in

ways not ignored or spoofed, security indicators and site

authentication information.

In this paper, we provide a broad perspective of the

SSL/TLS (henceforth TLS) mechanism, as employed with

web browsers for securing HTTP traffic. We consider

HTTPS, the underlying CA infrastructure, CA/B trust

model, and proposed enhancements. Among many important

HTTPS-related topics beyond our main focus are: phishing,

performance enhancements, use of certificates for client-

authentication, and the use of TLS beyond securing HTTP.

Our main contributions are the following: (1) We classify

and put into a broader context disparate contributions on

HTTPS security, spanning elements of cryptographic de-

sign and implementation, systems software, operations, and

human factors. (2) We provide a comparative evaluation

of existing proposals to enhance security aspects of the

CA/B model, deconstructing and evaluating their core ideas.

(3) Building on this contextual review, classification, and

analysis, we summarize open problems and future research

directions. In addition, by systematic discussion of security

issues in a single place, we hope to provide perspective based

on the hindsight of a multitude of historical problems. Our

work highlights the overall complexity, including algorithms,

protocols, infrastructure, configuration, and interfaces, and

contributes an overall understanding of which issues are

addressed by which enhancements and protocol revisions.

II. BACKGROUND

Historical Objectives: SSL was developed to address

Netscape’s needs for securing web traffic, and specifically

designed to work well with HTTP [84]. Network protection

of data like credit card details sent from client to server

motivated two major design goals: confidentiality, and server

authentication—sensitive data should be released only to

a party one would ‘intend to do business with,’ i.e., the

2013 IEEE Symposium on Security and Privacy

© 2012, Jeremy Clark. Under license to IEEE.

DOI 10.1109/SP.2013.41

511

correct web server.1 Client authentication was an optional

third goal, however the credit card number largely replaced

user identity. Even today, while TLS supports client-side au-

thentication, this feature is little-used on the public internet;

we do not consider it at length herein.

As Netscape intended SSL to be a core technology beyond

use with HTTP alone, and since most high-runner internet

protocols ran over TCP, SSL was designed to provide a gen-

eral channel that can be adopted with minimal modification

by almost any TCP-based protocol seeking some security.

An important property was termed transparency: “the data

that one end writes is exactly what the other end reads [84].”

Protocol Specification: HTTPS combines the network

protocol HTTP with the cryptographic protocol TLS. The

TLS protocol (v1.0, 1.1, 1.2) updates the older public

SSL protocol (v3.0). TLS provides a secure tunnel to a

server, which is most commonly authenticated by an X.509

certificate. Specification of the cryptographic primitives used

by X.509 is largely delegated to PKCS standards. We do

not focus on protocols (e.g., IMAP or SMTP) other than

HTTP run over TLS, nor the use of TLS with transport

layer protocols other than TCP (e.g., DTLS).

III. CRYPTO PROTOCOL ISSUES IN HTTPS

In this section, we consider attacks on the TLS protocol

which relate to HTTPS security. Section IV expands focus

to the broader CA/B infrastructure and human decisions

involved. As TLS is well-documented, we assume familiarity

with the basic protocol. Many attacks refine known tech-

niques; examining both historical and recent attacks provides

a fuller perspective.

A. Weaknesses in Cryptographic Primitives

1) Weak Encryption & Signature Key Lengths: Several

encryption functions offered in the ciphersuites of early

versions of TLS are no longer considered secure. Any

symmetric key encryption scheme with 40, 56, or 64 bit

keys is subject to a brute-force attack. TLS supported DES,

RC2, and RC4 with some of these key lengths. Asymmetric

encryption schemes like RSA are subject to factoring attacks

when used with a 512 bit modulus. A 2007 analysis of TLS

servers found that while only 4% of sites still offered RSA-

512, 93% supported (single) DES [68]. Note that support-

ing an insecure primitive does not imply it is ever used,

as security parameters are negotiated (but see Downgrade

Attacks below). NIST strongly recommends that primitives

hold the equivalent of 112 bits (symmetric) security strength

and will require this by 2014 [22] (e.g., phasing out 1024-bit

RSA/DSA and 193-bit ECDSA).

Key length is also an issue for certificates. Sufficient key

lengths should be used by the certificate authority to sign a

1The meaning of ‘correct’ remains challenging today (see Section VI).

certificate, and CAs should only sign certificates containing

public keys that are of sufficient length.2

2) Weak Hash Functions: To issue a site certificate, CAs

sign its hash. Collision-resistance of the hash is paramount:

an adversary that could construct two meaningful certificates

with the same digest could transfer a CA signature from

a benign site certificate to a malicious CA certificate. The

MD5 hash function, published in 1992, has been eligible

for providing certificate digests. However the collision re-

sistance of MD5 has deteriorated over time, from generic

attacks [102] to the first published collision [37] to the gen-

eration of “meaningful” collisions [98], and finally finding

collisions that are structured enough to be both an acceptable

benign site certificate and a malicious root certificate [99].

Use of MD5 is discouraged (RFC 3279) and certificates

digested with MD5 are in decline [54]. MD5 remains

recommended in other places in the TLS protocol where

collision-resistance of the hash function is not critical, i.e.,
HMAC and key derivation [65], [25], [66].

B. Implementation Flaws and Related Attacks

1) PRNG Seeding: Many values in the TLS protocol

are generated randomly, including secret keys. This requires

a strong pseudorandom number generator (PRNG), seeded

with a high entropy seed. The Netscape browser (prior

to 1.22) relied on a PRNG implementation with weak

keys [51] allowing the TLS session key (master secret) to be

predictable. A 2008 change to the Debian operating system

reduced the randomness served to OpenSSL, which was

used to generate TLS certificates with predictable private

keys [24], [15], [110]. Recently, 0.5% of TLS certificates

were found to have recoverable RSA private keys due to

shared prime factors [53], [70]; most originated from poor

PRG seeding in embedded devices.

2) Remote Timing Attacks: Remote timing attacks have

been used against TLS servers that use an optimized variant

of RSA decryption, the default in OpenSSL versions prior to

0.9.7b [30], [13]. The decryption algorithm makes branching

decisions that are functionally dependent on the long-term

certified secret key. This results in measurable differences

in execution time, leaking information about the key during

TLS handshakes. Previous OpenSSL implementations of

ECDSA enabled similar remote timing attacks [29].

C. Oracle Attacks

The following attacks interactively and adaptively query

the victim’s protocol implementation, treating it as an oracle.

1) RSA Encoding: SSL 3.0 with the RSA ciphersuite uses

“textbook” RSA (which enables ciphertext malleability) for

transporting a PKCS#1 v1.5 encoded premaster secret to

the server during the handshake. If upon decryption and

decoding, the plaintext is not properly encoded, an error

2An intermediate CA in Nov 2011 was revoked for issuing certificates
for 512-bit RSA keys. http://www.entrust.net/advisories/malaysia.htm.

512

is returned to the client. An adversary could capture an

encrypted premaster secret, and, in separate handshakes

with the same server, submit adaptively modified versions

of it, learning if they are conformant [27]. With just this

information, the adversary can eventually (∼1M queries)

recover the premaster secret. TLS 1.0 consequently recom-

mends that encoding errors are handled indistinguishably

from successful decryptions.3

2) CBC Initialization: In TLS 1.0 and earlier, all block

ciphers are used in cipher block chaining (CBC) mode.

Records are encrypted individually, however the initializa-

tion vector for each (except the first) is set equal to the last

block of ciphertext sent (i.e., in a predictable way). CBC

with predictable IVs is not secure against chosen plaintext

attacks [23], and thus an adversary capable of injecting

partial plaintext into a TLS connection and of observing the

transmitted ciphertext can determine semantic information

about the rest of the plaintext [20], [21]. In one instantiation

of this attack, BEAST, an adversary submits adaptively

chosen cross-site requests for a domain with a secure cookie

to learn the value of the cookie (and by adjusting the amount

of the value included in a single block, due to partitioning,

the value can be guessed byte-by-byte) [38]. This issue is

resolved in TLS 1.1, not applicable to any stream cipher

(e.g., RC4), and is purportedly mitigated by first sending

the first byte as a separate record (‘1/n-1 record splitting’).4

3) Compression: The use of data compression is a ne-

gotiable option in TLS, although one never broadly sup-

ported by browsers. TLS does not obfuscate the length of a

compressed TLS record, thus again an adversary capable

of injecting partial plaintext into a TLS connection and

observing the post-compression record length can determine

semantic information about the rest of the plaintext [64].

An instantiation of this attack, CRIME, used a similar

setup to BEAST for recovering secret values from secure

cookies [89]. As a result, all major browsers have disabled

TLS compression.

4) CBC Padding: An extended version of this paper [32]

discusses oracle attacks on CBC padding [103], [31], which

until very recently [16] applied only to non-HTTPS proto-

cols run over TLS.

D. Protocol-level Attacks

1) Ciphersuite Downgrade Attack: The ciphersuite used

by the client and server is negotiated during the TLS hand-

shake. In SSL 2.0, a man-in-the-middle could influence the

negotiation and downgrade the strength of the ciphersuite to

the weakest acceptable by both parties. This is fixed in SSL

3.0 and all versions of TLS by having the client send, once

the MAC keys have been established, an authenticated digest

3Also note that while RSA key transport support is ubiquitous, 60–70%
of servers also support Diffe-Hellmen key exchange [86], [104] which has
the added benefit of perfect forward secrecy.

4A. Langley, “BEAST Followup,” ImperialViolet (blog), 15 Jan 2012.

of the previous handshake messages and waiting for an

authenticated confirmation from the server. Thus, downgrade

prevention is contingent on the unavailability of weak MAC

functions for negotiation.

2) Version Downgrade Attack: The TLS version is also

negotiated and while version downgrade attacks are not

possible against a strict implementation of the TLS spec-

ification, many client implementations respond to certain

server errors by reconnecting with an older TLS version.

These server errors can be spoofed by an attacker. To prevent

an adversary from first downgrading to SSL 2.0 and then

downgrading the ciphersuite, TLS prohibits downgrading

to SSL 2.0. TLS implementations may still be vulnerable

to downgrades from later version to earlier versions (e.g.,
from TLS 1.1+ to TLS 1.0 to exploit CBC initialization

vulnerabilities). One mitigation is to include the highest

supported version number in the list of ciphersuites during

negotiation, extending ciphersuite-downgrade protection to

versions [5].

3) Renegotiation Attack: Once a TLS connection has

been established, either party can at any point request a

new handshake, within the existing tunnel, to renegotiate

the cipher suite, session key, or other relevant connection

parameters. The renegotiation protocol was discovered to be

flawed in 20095 and was subsequently updated [1]. The erro-

neous version allowed an adversary to establish a connection

to a server, send data, renegotiate, and pass the renegotiated

connection onto a client that believes it is forming an

initial connection. This effectively allowed the adversary

to prepend chosen records to new HTTPS connections. An

extension [50] to the standardized countermeasures [1] can

provide a strong notion of renegotiation security.

4) Cross-Protocol Attacks: An extended version of this

paper [32] addresses cross-protocol attacks [105], [74] where

parameters intended to be used in one setting (e.g., Diffie-

Hellmen) are replayed in a different setting (e.g., RSA).

IV. TRUST MODEL ISSUES IN HTTPS

Section III narrowly considered attacks on the TLS proto-

col and the cryptographic algorithms it involves. This section

assumes a perfectly functioning TLS protocol and considers

attacks on the broader CA/B infrastructure. Our analysis

covers the certification process itself, who is allowed to be

a certificate authority (anchoring trust), how this authority

can be delegated (transitivity of trust), how certificates

are revoked (maintenance of trust), and how users interact

with certificate information (indication and interpretation of

trust). In what follows, we specifically note which issues

remain unresolved.

5M. Ray, “Authentication Gap in TLS Renegotiation,” Extended Subset
(blog), 4 Nov 2009.

513

A. Certification

A web certificate binds a public signing key to an ‘iden-

tity.’ The correctness of the binding is asserted through a

digital signature, by a CA implicitly expected to maintain

the accuracy of the binding over time. TLS enables client

software to establish a confidential channel terminated by the

entity holding the private key associated with the certificate.

The essential attribute that all HTTPS server certificates

have is a domain name which the certificate holder controls.

This is placed in the commonName (CN) attribute under

Subject, unless one or more domains are indicated in the

subject alternative name field in an X.509 extension. If an

entity requests a certificate for a domain name, the CA will

typically challenge the requester to demonstrate control over

the domain. Note that this implicitly assumes that domain

names are mapped to the correct webserver (IP address), a

mapping accomplished through DNS. Such certificates are

called domain validated (DV) certificates.

Issued certificates may include additional CA-verified

information, such as organization name and postal address.

Validation procedures have degraded over time, exemplified

by more CAs using a completely automated process (e.g.,
automated DV certificates). In response, the CA/Browser

Forum established extended validation (EV) certificates and

guidelines for their issuance,6 including diligent human val-

idation of a site’s identity and business registration details.

Security Issues (Certification)

Hostname Validation (CAs): Automated domain val-

idation services provided by a CA will typically send a

validation email to a fixed email address associated with

the CN’s top-level domain (e.g., admin@domain) or one

taken from CN’s WhoIS record. Both mechanisms rely on

accurate domain information; thus any disruption to the CA’s

ability to receive accurate DNS records (e.g., DNS cache

poisoning [61], [94]) could result in an improperly issued

certificate. For email validation, CAs should also ensure the

email address is only accessible to the site administrator. For

example, a certificate for the login page of Microsoft’s public

webmail service, login.live.com (formally Hotmail),

was wrongfully issued by a CA that offered to validate

through sslcertificates@live.com, an email ad-

dress that was open to public registration [111].

Even with non-automated validation, an adversary may

employ social engineering. For example, in 2001, a CA

wrongfully issued two certificates to someone posing as a

current Microsoft employee.7

Hostname Validation (Clients): Although current

browser platforms validate that a received site certificate

6CA/Browser Forum: Guidelines For The Issuance And Management Of
Extended Validation Certificates (v1.4), 2012.

7Microsoft MS01-017: Erroneous VeriSign-Issued Digital Certificates
Pose Spoofing Hazard, 22 Mar 2001.

matches the hostname, some non-browser software had inad-

equate validation. Many mobile applications display HTTPS

content and one study found that 1074 of 13500 Android

apps did not validate the hostname (aside from other TLS

implementation flaws) [42]. A concurrent study identified

the lack of hostname validation in cloud clients (Ama-

zon’s EC2 libraries), e-commerce backend systems (Paypal’s

SDK), online shopping carts, ad networks (AdMob), and

other non-browser software employing HTTPS [49].

Parsing attacks: Flaws relating to parsing enable im-

proper issuance (incorrect CA parsing) and validation (in-

correct browser parsing) of certificates. Certificate requests

containing a null character (Ø) in the CN can be misinter-

preted. For example, a CN of bank.comØevil.com was

validated by some CAs’ automated domain validation as

evil.com while browsers have been known to accept it

as a valid CN for bank.com [62], [71]. A dangerous vari-

ation is *Øevil.com, which grants a universal wildcard

certificate acceptable to older NSS-based browsers [71].

Some CAs and browsers have also inconsistently in-

terpreted the object IDs specifying which string is the

commonName: for example, CN is identified by OID

2.5.4.3 but some browser parsers accepted 2.5.4.003 or

2.5.4.18446744073709551619 (64-bit uint overflow) as the

CN, while some CAs ignore them [62].

EV downgrading: Many of the problems associated

with automated domain validation are claimed to be thwarted

by EV certificates. However a site that holds an EV certifi-

cate can be downgraded to normal HTTPS by a man-in-

the-middle (MITM) attack with a fraudulent DV certificate.

Furthermore, such an adversary can arrange for the EV cer-

tificate to be displayed through a “rebinding” attack [112],

[96] that is consistent with the browsers’ origin policy [55].

B. Anchoring Trust

Validating that a certificate request comes from the entity

specified in the SubjectName is an important CA func-

tion. As no one entity has universal control of all names-

paces, it is not clear who is best suited for such validation.

As a result, there exists a spectrum of CAs, with the majority

of site certificates being issued by commercial CAs with ties

to the security or domain registration industries.

Software vendors (e.g., Microsoft, Apple, Mozilla, Opera)

configure a default list of self-signed CA certificates in

operating systems and/or browser as trust anchors. Each

HTTPS site whose site certificate the browser accepts is thus

de facto trusted by users because its certificate has been

vouched for (directly or indirectly) by at least one of the

trust anchors. Mozilla’s Firefox 15, for example, includes

∼150 trust anchors from ∼50 organizations. However since

CAs with trust anchors can issue certificates empowering

other organizations to act as a CA (see below), the number

of automatically trusted CAs is much larger. The SSL Ob-

servatory reports that between Microsoft’s Internet Explorer

514

and Mozilla’s Firefox, ∼1500 CA certificates from ∼650

organizations8 in ∼50 countries are browser-accepted [39].

On private networks, particularly in corporate environ-

ments, a root certificate for the organization may be con-

figured as a trust anchor on employees’ machines. The

organization can then proxy (i.e., MITM) HTTPS connec-

tions with middleware boxes specifically designed for this

task to perform content inspection. The corporation may

even be able to obtain a browser-accepted CA certificate

for doing this, although issuing such a certificate is against

CA policies. For example, Trustwave admitted to issuing

certificates for this purpose but later revoked them,9 while,

purportedly by accident, TURKTRUST issued certificates

that were discovered being used this way.10 The mobile

browser OperaMini openly proxies HTTPS connections in

this way to allow compression between the client and

proxy [83]. Proxies assume all responsibility for certificate

validation, with a recent study finding that many implemen-

tations had validation flaws [59].

Security Issues (Anchoring Trust)

CA Compromise: Without further enhancement (i.e.,
without the primitives evaluated in Section V), any trusted

CA can issue a browser-acceptable certificate for any site.

Thus an adversary can target the weakest CA to obtain a

fraudulent certificate and, assuming clients would not notice

a different CA, this certificate enables the adversary to

evade detection in a MITM attack. In 2011, two CAs were

compromised: Comodo11 and DigiNotar.12 In both cases,

certificates for high profile sites were illegitimately obtained

and, in the second case, reportedly used in a MITM attack.13

Compelled Certificates: Concerns have also been raised

about the abilities of nation-states to compel certificates

from a browser-accepted CA [93]. Governmental entities

are often well-positioned to proxy (i.e., MITM) HTTPS

connections by controlling network infrastructure and/or

compelling ISPs. For example, reportedly, HTTPS connec-

tions to Facebook over multiple ISPs within Syria were

MITMed with a Facebook certificate issued by the Syrian

Telecom Ministry.14 In this case, the Ministry was not a

browser-acceptable CA, and so it is not an example of a

8The reported number of organizations may be inflated due to variation
in organization name (or division) across certificates. Also in some cases,
the issuing CA retains actual possession of the intermediate certificate.

9Bug 724929, Bugzilla@Mozilla, reported: 7 Feb 2012.
10A. Langley, “Enhancing digital certificate security,” Google Online

Security Blog, 3 Jan 2013.
11J. Appelbaum, “Detecting Certificate Authority compromises and web

browser collusion,” Tor Blog, 22 Mar 2011.
12“Black Tulip Report of the investigation into the DigiNotar Certificate

Authority breach,” Fox-IT (Tech. Report), 13 Aug 2012.
13C. Arthur, “Rogue web certificate could have been used to attack Iran

dissidents,” The Guardian, 30 Aug 2011.
14P. Eckersley, “A Syrian Man-In-The-Middle Attack against Facebook,”

EFF Deeplinks (blog), 5 May 2011.

state compelled certificate, but one that demonstrates the

danger posed.

C. Transitivity of Trust

Given that trust anchors can issue intermediate CA certifi-

cates (and intermediates can be enabled to do the same), a

site certificate is browser-acceptable if the browser can build

a chain of certificates that lead to a trust anchor. One study

found 20% of valid certificates required no intermediate and

38% used one [18].

The path validation algorithm is specified in RFC 5280 to

begin with the server certificate and build the path “forward”

to the trust anchor, although there are efficiencies to building

in reverse [40]. Certificate chains are subject to constraints.

Intermediate CA certificates must be authorized to be a CA

(CA:TRUE under basicConstraints). CA certificates

may also restrict the number of CAs that can precede it

(i.e., toward the leaf) in the chain (e.g., pathlen:0 un-

der basicConstraints means the CA cannot delegate

further CAs and can only sign leaf certificates).

Servers are mandated to present an entire chain, but in

practice, browsers may use a chain discovery mechanism

(e.g., AIA: Authority Information Access). Intermediate CAs

are invisible to client software until their certificate is

encountered, and yet they are essentially as trusted as an

anchor. This makes it difficult for users or OSs/browsers to

preemptively know about and remove unacceptable interme-

diate CA certificates. As above, while only ∼50 organiza-

tions have visible trust anchors, many more organizations

have acceptable intermediate CA certificates. Technically,

Ford, Marks and Spencer, and the US Dept. of Homeland

Security are authorized for issuing acceptable certificates for

any website [39].

Security Issues (Transitivity of Trust)

Basic Constraints: Certificate path validation must also

check the constraints during validation, in particular that

each intermediate CA certificate has CA:TRUE set under

basicConstraints. If this is not checked, a certificate

obtained for a webserver could issue browser-acceptable

certificates for any other website. Initially not checked by

Microsoft’s CryptoAPI,15 this has now been patched.16 A

decade later, the issue resurfaced in Apple’s iOS.17

D. Maintenance of Trust

Another important function of a CA is to terminate the

validity of a certificate prior to its preconfigured expira-

tion date upon becoming aware of certain circumstances,

e.g., mistaken issuance, site or CA compromise, affiliation

15M. Marlinspike, “Internet Explorer SSL Vulnerability,” thoughtcrime
(online), 5 Apr 2002.

16MS02-050: Microsoft certificate validation flaw, 2002.
17CVE-2011-0228: iOS certificate chain validation issue in handling of

X.509 certificates, 2011.

515

change, a superseding certificate, or cessation of the holder’s

operations [45]. Revocation status must also be available

through the issuing CA, i.e., by certificate revocation lists

(CRLs) or online certificate status checking protocol (OCSP)

responders. CRLs are signed by the CA’s key while OCSP

responses are produced by servers designated by the CA.

CAs often prefer OCSP responders as they can be updated

on-demand without use of the (generally offline) CA signing

key and due to response size.

In practice, some CA certificates do not include any re-

vocation information, and when OCSP responders are spec-

ified, they are often unresponsive. Thus, current browsers

fail open, accepting certificates for which revocation in-

formation cannot be located (browsers should downgrade

all EV certificates to a regular certificate, or warn, as

responsive revocation is an EV requirement).18 In response

to the failings of revocation, some browsers (e.g., Chrome)

maintain an updatable certificate blacklist (see Section V-C).

While the mandatory expiration date field provides an

eventual default form of revocation, many certificates are

valid for multiple years (the median lifetime varies across

measurements: 12 [86], 12–15 [54], or 24 [18] months).

Security Issues (Maintenance of Trust)

Blocking Revocation: If an adversary is able to obtain

a fraudulent certificate for a site which is subsequently

revoked, it may take several days for this information to be

available to clients, even with OCSP, due to caching [101].

Even then, the clients may not be able to reach an OCSP

responder or CRL distribution point. Further, a MITM

adversary could respond to a client’s request with an HTTP

error (e.g., error 500: internal server error) or OCSP error

(response status 3: try again later [71]); in this case, the

revoked certificate typically continues to be accepted.

Similarly, a MITM adversary could prevent a browser

blacklist from updating but this would require persistent

blocking—the OCSP check would only occur when the

client encounters the fraudulent certificate and the MITM

adversary is already in position. The CA’s CRL could have

been obtained by checking an unrelated certificate.

Ownership Transfer: Since TLS site certificates are

bound to a domain name, certificates should be revoked

when domain ownership expires or is transferred. This is

however not typically enforced. For example, Facebook (the

target of the Syrian MITM attack mentioned above) acquired

fb.com for $8.5M in 2010 but can have no assurance that the

previous owner does not have a valid unexpired certificate

for the site that could enable a MITM attack.19

18A. Langley, “Revocation doesn’t work,” ImperialViolet (blog), 18 Mar
2011.

19This example is meant to illustrate the principle rather than a vulner-
ability with Facebook. Few users type in https://fb.com.

E. Indication and Interpretation of Trust

Some HTTPS security protections rely on user due dili-

gence. Perhaps naively, users are expected to verify the

outcome of each connection attempt, typically indicated by

a visual cue in the browser window. More diligent users

may verify certificate details; e.g., that the subject name—

organization, address, country—matches their expectation.

Finally, the browser may require users to respond to warning

dialogues in some cases.

Browser Security Cues: Desktop browsers typically use

two primary cues to indicate a website is being accessed

over HTTPS: (1) the URL in the address bar begins with

https:// and (2) a lock icon is displayed somewhere

in the browser’s chrome (i.e., the boundary region of the

window populated by the browser itself). Typically, clicking

on the lock icon will display information about the certifi-

cate. One impedance to better user understanding of browser

security indicators is the inconsistency of how cues are

implemented across browsers [19]. Guidelines for browser

cues have been published.20

One study used eyetracking to find that of 16 primed

participants interacting with an HTTPS site, 11 viewed the

lock, 7 the https:// indicator, and only 2 interacted with

the lock to display certificate information [108]. Another

study found that 63 of 67 participants logged into a hypo-

thetical banking website with all HTTPS indicators removed,

suggesting that many did not notice the difference [90]

(although one researcher argues this is enlarged by flaws in

the study21). The introduction of EV certificates added a new

desktop browser cue, typically inducing the colour green in

the address bar itself or its font. Today’s desktop browsers

also display the organization name from the certificate in

the address bar, alongside the URL. One study found that

of 28 users, the “less than 40%” who actually looked at

browser cues (measured via eyetracking) was slightly but

not significantly more likely to interact with an EV site than

a DV (domain validated) site [92]. Aside from cues, some

users appear to simply assume a page is secure based on the

information being requested [46], [35].

Browser Security Warnings: Browsers display warnings

if an HTTPS connection fails for certain reasons. One study

found that 30 of 57 users clicked through and logged into

a simulated banking website when it displayed a certificate

warning page [90]. Another study asked users about three

common warnings: expired certificates, certificate chains not

terminating in a trust anchor, and certificates not identically

matching the visited site’s domain. Of 409 users, only

36% understood the expired certificate warning, 28% the

unknown CA warning, and 40% the mismatched domain

20Web Security Context: User Interface Guidelines. W3C Recommenda-
tion, 12 August 2010.

21A. Patrick. “Commentary on Research on New Security Indicators,”
(online), 6 Mar 2007.

516

warning [100]. Of the users who did not understand, just

over a third claimed they would ignore each.22 Of the

users who did understand, 63% would ignore the expired

certificate warning, 33% the unknown CA warning, and

17% the mismatched domain. The study authors reworded

the warnings and saw improvements in understandability

but felt users still opened themselves to MITM attacks

in their actions. This study was replicated; users were

found to ignore warnings more than they self-report, and

no measurable difference was observed between ignoring

rewritten warnings and the browser defaults [95].

Mixed Content: A prevalent warning not considered

in the above studies is mixed content—the ability to weave

dynamic content from multiple sources into a single website.

When a site is accessed over HTTPS, browsers will issue

a mixed scripting warning if the site embeds any scripting

resources (e.g., Javascript, CSS, or even SWF [55]) that are

not accessed over HTTPS. This is important because the

script runs with the HTTPS site’s privileges. Some browsers

(e.g., Chrome) follow the lead of the Gazelle research

browser [106] and actively block insecurely loaded scripts.

Non-scripting resources (e.g., static images) or resources

loaded into an iframe will typically generate a less severe

mixed content warning (e.g., an https:// cue but no lock

or a lock with a caution sign; clicking on the cue displays

the warning). Finally, if an EV certified site embeds DV

certified scripting, the EV cues are still displayed, which

can be exploited (see Section IV-A above) [112], [96].

Mobile Browsers: With the advent of smartphones and

tablets, users also access HTTPS sites on mobile browsers.

Mobile browsers conform less to HTTPS user interface

guidelines than desktop browsers, with less support for

displaying certificate/connection details, distinguishing EV

certificates, or warning users about mixed content [19].

HTTPS Form Submit: A relatively common practice

is including a login box on an HTTP page, but arranging

any login information to be submitted over HTTPS.23 This

allows the overhead of obtaining the certificate and estab-

lishing a TLS connection to be avoided for users who visit

the page without logging in. Browsers include a general

warning (at least the first time) when any information is

not submitted over HTTPS but since many submissions do

not require security (e.g., comments, posts, feedback, etc.),
it is sensible for users to disable this warning (an option

provided prominently). Beyond this, a user is given no cue

that sensitive information will be transmitted over HTTP or

HTTPS, let alone to which hostname. Of the Alexa top sites

with login pages, 19 of 125 offered such a post-to-HTTPS

login page while 56 of 125 only used HTTP [97].

22If they were hypothetically warned while at Craigslist or Amazon.
23E. Lawrence, “TLS and SSL in the real world,” IE Blog, 21 Apr 2005.

Security Issues (Indication and Interpretation of Trust)

Stripping TLS: Given users’ inattentiveness to HTTPS

security indicators and warnings, a MITM adversary may

thwart HTTPS in a technically detectable manner but one

unlikely to be noticed. For users being redirected to an

HTTPS site, arguably the most astute attack is to simply

relay pages back to the user over HTTP—an attack now

called SSL stripping after the sslstrip tool [71], although

it had been noted earlier [79]. On login pages served over

HTTP, the result of this attack is indistinguishable without

examining the page’s source code. On login pages typically

served over HTTPS, the user is relied on to realize the

difference or to generally refuse to log into pages served

over HTTP (which precludes using post-to-HTTPS sites).

Spoofing Browser Chrome: An important aspect of

security indicators is that they are placed in the browser

chrome, so the displayed cue is under the browser’s control

and not influenced by the content of the webpage being

displayed (this has been called a ‘trusted path’ [109]).

However as websites have been granted more power through

client-side scripting and control over how a browser window

is displayed, a variety of ‘web spoofing’ attacks [44] enable

the website to interfere with how a user perceives the

browser’s security cues. For example, a well-positioned pop-

up window without any chrome may overlap security cues

on the underlying page [69] or simulate a browser window

with complete browser chrome within the content of the

page [14], [109], [57]. In one study, a site implementing

the latter attack was classified as legitimate by 63% of

users [57]. Today’s desktop browsers typically force pop-up

windows into new tabs, maintaining a constant chrome. In

many mobile browsers, websites can position the address

bar so that it is hidden, enabling spoofing of security

indicators [43]. A solution suggested in the literature (but not

commercially adopted) is a dynamically changing browser

chrome [109], [34].

Users may also falsely attribute an HTTPS connection to

a lock displayed somewhere other than the chrome, e.g., on

the page content [35] or in the site’s favicon [72]. Of the

Alexa top sites with login pages, 29 of 125 displayed a lock

in the site content (including 70% of banks) or favicon [97].

Conceding a Warning: A MITM adversary may choose

to substitute in a certificate with an untrusted chain and hope

that users click-through or otherwise ignore the warning.

This was exemplified in the previously mentioned attack

attributed to the Syrian Telecom Ministry.

V. SECURITY ENHANCEMENTS TO CA/B MODEL

Section IV reviewed the spectrum of issues with the CA/B

trust model. Here we evaluate a collection of the most

prominent among known proposals to enhance aspects of the

trust model, deconstructing and evaluating their core ideas.

A few of these ideas have been incorporated into one or two

browsers platforms; others can be achieved with a browser

517

Table I
COMPARATIVE EVALUATION OF PRIMITIVES TO IMPROVE THE CA/BROWSER MODEL. PROPERTIES (COLUMNS) ARE POSITIONED AS BENEFICIAL

WITH FULFILMENT DENOTED BY • AND PARTIAL FULFILMENT BY ◦ (FOR DETAILS, SEE SECTION V). RATINGS ARE FOR THE POTENTIAL OFFERED BY

THE GENERIC PRIMITIVE AND MAY DIFFER FROM CONCRETE INSTANTIATIONS OF PROPOSALS.

D
et

ec
ts

M
IT

M

D
et

ec
ts

Loc
al

M
IT

M

Pro
te

ct
s

C
lie

nt
C
re

de
nt

ia
l

U
pd

at
ab

le
Pin

s

D
et

ec
ts

TLS
Stri

pp
in

g

A
ffi

rm
s

PO
ST-

to
-H

TTPS

R
es

po
ns

iv
e

R
ev

oc
at

io
n

In
te

rm
ed

ia
te

C
A

s
Vis

ib
le

N
o

N
ew

Tru
st
ed

Ent
ity

N
o

N
ew

Tra
ce

ab
ili

ty

R
ed

uc
es

Tra
ce

ab
ili

ty

N
o

N
ew

A
ut

h’
n

Tok
en

s

N
o

Ser
ve

r-S
id

e
C
ha

ng
es

D
ep

lo
ya

bl
e

w
ith

ou
t D

N
SSEC

N
o

Ext
ra

C
om

m
un

ic
at

io
ns

In
te

rn
et

Sca
la

bl
e

N
o

Fal
se

-R
ej

ec
ts

Sta
tu

s
Sig

na
lle

d
C
om

pl
et

el
y

N
o

N
ew

U
se

r
D

ec
is
io

ns

Primitive Security Properties Offered Evaluation of Impact on HTTPS

A B C Security & Privacy Deployability Usability

Key Pinning (Client History) ◦ ◦ ◦ • • • • • • •
Key Pinning (Server) ◦ ◦ ◦ • • • • • • •
Key Pinning (Preloaded) • • • • ◦ • • ◦ • • • ◦ •
Key Pinning (DNS) • • • • ◦ • • ◦ • • • ◦ •
Multipath Probing • • • • • • •
Channel-bound Credentials ◦ • • • • • • • ◦ •
Credential-bound Channels ◦ • • • • • • • ◦ •
Key Agility/Manifest • • • • • • • • •
HTTPS-only Pinning (Server) ◦ ◦ • • • • • • •
HTTPS-only Pinning (Preloaded) • • • ◦ • • ◦ • • • ◦ •
HTTPS-only Pinning (DNS) • • • ◦ • ◦ • • • ◦ •
Visual Cues for Secure POST • • • • • • • •
Browser-stored CRL • ◦ • • • • • • • • •
Certificate Status Stapling • • • • • • • • ◦ •
Short-lived Certificates • • • • • • • • • • •
List of Active Certificates • • • • • • • • • •

extension. Instead of focusing on specific tools, we distill

the main concepts behind each tool into a set of primitives

that can be combined in different ways to address security

issues within the CA/B model.
A summary is provided in Table I. The columns provide a

framework for evaluation. The first set of columns, Security
Properties Offered, show a set of properties not met by

the current HTTPS and CA/B model but which selected

primitives (as designated in the rows) provide. Primitives

that offer a certain enhancement typically trade off aspects

of security, privacy, deployability and usability. The next set

of columns are used to evaluate the enhancement according

to Security & Privacy, Deployability, and Usability (cf. [28]).
Combination Logic: It is interesting to consider how

the primitives (rows) of Table I can be combined, to achieve

broader sets of enhanced properties. In general, if the prim-

itives of two rows are combined, the combined primitive

inherits the strongest level of individual fulfillment from

the Security Properties Offered columns (a logical-OR) but

the weakest level from the Evaluation of Impact on HTTPS
columns (a logical-AND).

A. Security Properties Offered by Primitives
Detecting Certificate Substitution (Table I–column A):

Section IV-B provided several examples of how adversaries

have illegitimately obtained browser-accepted certificates for

subject domains (targets) they do not control. An adversary

capable of modifying a TLS handshake intended for this

target (through e.g., wide-impact DNS hijacking or on-

path interception near the server) could actively replace the

target’s certificate with his own—a substitution allowing

read/write access to the encrypted content without triggering

browser warnings or errors. Primitives that detect such a

MITM attack involving a substituted certificate are listed

under Detects MITM (first column, Table I). If a primitive

requires risk or “blind” trust on first use (TOFU) to detect

these attacks, we use ◦ to denote partial fulfillment.

Some primitives detect only specific subclasses of such

MITM attacks. We say a MITM attack is local if the

adversary is able to insert himself into connections to the

server from only a subset of clients (through e.g., poisoned

local DNS cache or on-path interception near the client);

if detectable, the primitive fulfils Detects Local MITM.

An HTTPS connection is often used to transmit a client

authentication credential (e.g., a password or secure cookie)

to the host. Some primitives focus on protecting against

credential theft during an HTTPS MITM attack; these fulfill

Protects Client Credential. Again, blind TOFU primitives

partially fulfill (◦). Some primitives that use pinning (see

518

below) make false-reject errors if a server updates its public

key, switches issuing CAs, or uses multiple certificates for

the same host. Primitives that resolve such false-reject errors

fulfil Updatable Pins.

Detecting TLS Stripping (Table I–column B): Sec-

tion IV-E outlined TLS stripping attacks where HTTPS

POSTs [79] or GETs [72] are simply downgraded to HTTP

by a man-in-the-middle adversary. Since many enhance-

ments to HTTPS do not take into account security-relevant

details of a connection until there is an HTTPS request

from the client, TLS stripping bypasses them. Primitives that

can detect stripping attacks fulfil Detects TLS Stripping and

partially fulfil it if they rely on blind TOFU. Primitives that

deter (through enforcement or a security indicator) POST

requests from being submitted over HTTP fulfil Affirms
POST-to-HTTPS.

PKI Improvements (Table I–column C): Sections IV-D

and IV-C respectively described two general problems with

the PKI infrastructure: the lack of reliable revocation and the

hidden nature of intermediate CA certificates. We assume in

evaluating the primitives that CRLs or OCSP responses are

not available and examine their ability to otherwise detect a

revoked certificate; primitives which do fulfill Responsive
Revocation. Primitives fulfil Intermediate CAs Visible if

every intermediate CA is visible to the user at any time.

B. Evaluation Criteria for Impact on HTTPS

Security & Privacy: Some primitives introduce new in-

frastructure elements, which include entities that contribute

to the trust decision or are queried when establishing an

HTTPS connection. A primitive not introducing any new

trusted parties fulfills No New Trusted Entity, with partial

fulfillment if the responsibilities of an already trusted party

are expanded. If it does not introduce any new parties that

will become aware of all (or a fraction of) sites a user visits

over HTTPS, it fulfills No New Traceability. If it eliminates

such a class of entities (such as OCSP responders) it fulfills

Reduces Traceability.

In the current HTTPS model, servers authenticate them-

selves through certificates. Many primitives effectively intro-

duce new server authentication tokens, like (see below) pins

or signed OCSP responses, that are transmitted to the client.

Generally procedures for issuing, updating, and revoking

these new tokens must be established, as well as integrity

protection. Primitives that do not introduce such tokens fulfil

No New Auth’n Tokens.

Deployability: Primitives that do not change how web

servers implement TLS and HTTPS have the greatest poten-

tial for deployment. Primitives that do not require any server

involvement or code changes fulfill No Server-side Changes,

while primitives that only require servers to participate in

a way that does not involve changing any server code

partially fulfills it. Some primitives rely on DNSSEC which

has not been fully deployed; the others are Deployable

without DNSSEC. If primitives do not introduce an extra

communication round that blocks completion of the connec-

tion, they fulfill No Extra Communications. Finally, Internet
Scalable systems could foreseeably support enrolment from

all current HTTPS servers and potentially beyond.

Usability: Evaluating usability properties is difficult with-

out conducting user studies. However, some objective us-

ability properties can be determined from the design and

knowledge of the operating environment. A primitive fulfills

No False-Rejects if it does not reject legitimate server certifi-

cates. A primitive not fulfilling No False-Rejects requires the

user (e.g., through a warning dialogue) to distinguish false-

rejects from an actual attack. Primitives fulfill No New User
Decisions if they are automated and do not require users to

respond correctly to new security cues or dialogues.

In the current model, an HTTPS connection succeeds,

with a security indicator (closed lock), when a site certificate

is browser-acceptable. For some primitives, connections may

succeed for other reasons. For example, if a primitive is

blind TOFU, an indication of trust could be attributed to it

being the first use or because the behaviour matches what

is expected. Depending on how these primitives are imple-

mented, users either (i) cannot readily determine the reason

for trust, (ii) are frequently warned, or (iii) a new security

cue is introduced. The latter two would respectively impact

No False-Rejects and No New User Decision. Instead of

assuming how these primitives should be implemented, we

identify them as not fulfilling Status Signalled Completely.

We award a partial fulfillment if the basis of trust is not clear

because server enrolment is optional, and thus a fallback

trust mechanism may be also necessary.

C. Summary and Evaluation of Proposed Primitives

Here we describe the proposals summarized in Table I.

Due to space constraints, detailed justification of the ratings

is provided in the extended version of this paper [32].

Key Pinning (Client History): Other than the browser

trust anchors, validating an HTTPS server certificate is

a stateless process, independent of any previous browser

acceptable certificates seen for a particular site. A pinning

primitive based on client history (also called inductive

pinning) remembers the last browser-acceptable public key

encountered for a particular site and warns the user if this

information changes. This allows detection of certificate

substitution attacks, even if the adversary has somehow

obtained a browser-acceptable certificate—but only if the

user has visited the site previously. Note that the term ‘key

pinning” (used here and below) is a slight misnomer, as the

pin could specify anything from the entire certificate chain to

a predicate applied over various certificate attributes to only

the SubjectPublicKeyInfo field of the server certificate.

Client-based key pinning is proposed in CertLock [93]

(which pins the issuing CA country) and implemented in

519

Firefox extension Certificate Patrol (which pins the entire

chain and shows differences through a dialogue).

Key Pinning (Server): With client-side key pinning, a

trade-off results from the level of granularity of certificate

information being pinned. Servers are better positioned to

themselves know which certificate attributes are likely to

remain stable over time, and certificate rollovers are typ-

ically planned in advance. Server-asserted pinning allows

the server to specify in an HTTPS header or TLS extension

which certificate attributes to pin and for how long. One

proposal, HPKP [10], suggests that servers specify a set of

public keys (the SubjectPublicKeyInfo field of an X.509

certificate) of which one must be present in each interaction.

A second proposal, TACK [12], is similar but organizes

server keys under a new TACK signing key, to which the

hostname is pinned by the client. The TACK key is used

to sign server certificates and can allow revocation (see Key
Agility/Manifest below).

Key Pinning (Preloaded): To avoid the blind TOFU

approach of server-asserted key pinning, browser vendors

could include a list of pins within the browser itself. Google

Chrome currently pins a number of certificates for its own

domains, as well as others by request.24 Among other issues,

this pinning allowed Chrome users to detect the earlier-

mentioned MITM attack involving DigitNotar. The list could

be populated by entities other than the browser vendor.

Key Pinning (DNS): Recall that some CAs offer DV

certificates to sites that can demonstrate control over the

DNS record for their hostname. If a CA does no more than

look at a DNS record to validate ownership then couldn’t

clients do it instead, cutting out the CA? In practice, it is

easier for an adversary to manipulate the client’s view of

DNS, which could rely on a cache or local resolver [94].

However with DNSSEC, records digitally signed by the

name servers give clients the ability to validate records.

The DNS-based Authentication of Named Entities (DANE)

protocol [3] proposes that servers pin their public key in

their DNSSEC record for clients to validate against.

We note one benefit of DNS-based pinning proposed [7]

not captured in our framework. Even without DNSSEC,

sites could pin certificate attributes such as acceptable CAs,

for other CAs to reference if they are ever asked, perhaps

illegitimately, to generate a certificate for the site. This offers

protection against social engineering attacks that imperson-

ate a domain owner to a CA.

Multipath Probing: Crowdsourcing is an approach with

many technological applications. Applied to making trust de-

cisions in HTTPS, crowdsourcing might take one of several

forms. First, participants could contribute objective (e.g., “I

have seen this certificate before”) or subjective (e.g., “I do

not trust the CA that issued this certificate”) information. We

cannot definitively evaluate subjective crowdsourcing as the

24A. Langley, “Public key pinning,” Imperial Violet (blog), 04 May 2011.

properties it achieves depend on the quality of information

provided by a client’s peers. Tools that enable subjective

trust assertions (whether crowd-sourced or from a delegated

authority) include Omnibroker [9], Monkeysphere (web of

trust PKI for HTTPS), YURLs (URLs with a built-in public

key fingerprint obtained from a trusted peer), and S-Links

(links to HTTPS sites where the links specify certificate

information or extra validation steps).

Objective measurements generally fall along the dimen-

sions of time (e.g., “I see the same certificate as last

time”) and space (“I see the same certificate as my peer”).

Time-based measurements are captured by inductive client

pinning, however we note that the usefulness of blind TOFU

can be extended by finding the peer with the earliest “first

use.” Multipath probing is a space-based measurement; the

idea is to establish if the client receives a certificate that

is consistent with the certificate received by independent

observers (notaries) distributed across the internet. Multipath

probing can detect local certificate substitution attacks, but

not attacks where all traffic to the host is modified.

As a primitive, multipath probing was proposed in Per-

spectives [107], available as a Firefox extension. Conver-

gence [73], also a Firefox extension, is a refinement that

provides a more general architecture for crowdsourcing that

could include subjective information as well as objective

measures. Another refinement, DoubleCheck [17], probes

from multiple servers in the existing Tor anonymity network

(which cleanly eliminates the privacy threat notaries pose

in terms of tracking). In addition to network devices, any

collection of certificate data can additionally be consulted for

an independent perspective (e.g., the SSL Observatory [39]

or ICSI Notary [18]). Certificate Transparency (CT) [6]

is a proposal for creating a central audit log of HTTPS

certificates, which is verifiably append-only and maintained

by independent monitors.

Channel-bound Credentials: Some primitives forgo de-

tecting MITM attacks in favour of protecting some of

the information otherwise subject to theft by a MITM

adversary. HTTPS is commonly used to provide secure

transport of client authentication credentials, e.g., passwords

and cookies. Channel-bound credentials make such creden-

tials functionally dependent on the specifics of the HTTPS

connection—specifics an adversary cannot replicate even

with a browser-acceptable certificate for the site. Rather than

modifying user-chosen passwords, these primitives modify

the authentication value in cookies. With channel-bound

cookies [36], this value is cryptographically bound to a

semi-persistent, site-specific public key certificate generated

on-the-fly by the client, called an origin bound certificate

(OBC). To login with such a cookie, the client first es-

tablishes a mutually authenticated TLS connection using

its OBC and then transmits the OBC-dependent cookie. A

MITM adversary cannot successfully use a stolen OBC-

bound cookie unless it can establish an OBC-authenticated

520

TLS session, which requires knowledge of the corresponding

private key. OBCs were then revised (for details not pertinent

to preventing MITM cookie theft) and renamed Channel

ID. The channel-bound credential primitive has also been

proposed for use in conjunction with a user device: e.g., a

token [78] or smartphone [81].
Credential-bound Channels: Credential-bound channels

prevent credential theft from MITM adversaries by reversing

the idea of channel-bound credentials—instead of having the

server decide to accept a credential based on its binding

to a client certificate, the client decides whether to accept

a server certificate based on its binding to the client’s

credential. This primitive assumes a pre-shared password

(and does not protect the password during the initial es-

tablishment). In one proposal called direct validation of

certificates (DVCert)25 [33], the server uses a PAKE-based

protocol to demonstrate knowledge of the client’s password

while attesting to the value of its certificate.26

Key Agility/Manifest: When preventing MITM attacks

without involving the server (i.e., through inductive client

pinning or multipath probing), it is difficult to distinguish

attacks from legitimate reasons that a different certificate

may be observed at different times (certificate update) or

from different locations on the network (multiple certifi-

cates used by the same host). At the cost of server-side

changes, many of the examples of the primitives evaluated

thus far address these issues with (i) a “key manifest,”

i.e., a specification of all keys that could be used by the

domain; and/or key agility, i.e., an update mechanism for

new certificates that could be implemented as either (ii)

signing the new certificate with the old certificate’s key, or

(iii) linking the certificate changes through use of a master

secret. One or more of these can be seen in: server-side key

pinning, TACK, DANE, and DVCert. The Sovereign Key

proposal [11] is also similar to (iii), in that servers establish

and broadcast a long-term signing key used to cross-certify

all their certificates. Although Table I evaluates the primitive

in isolation, in these examples, it is combined with another

primitive, e.g., key pinning or multipath probing, to detect

MITM attacks while eliminating false-reject errors due to

certificate updates and load-balancing.
HTTPS-only Pinning (All Types): The primitives consid-

ered above do not address (or attempt to) TLS stripping

attacks. This is largely because the primitives are never

invoked unless an HTTPS connection is requested. With

TLS stripping, this stage is never reached for the client.

The chief mechanism for preventing TLS stripping is to

make certain domains only support TLS and communicate

this to clients with a pin. As with key pins, HTTPS-

only pins can be communicated by the server in request

headers or TLS extensions, pre-established in the user’s

25This is not to be confused with domain validation (DV) certificates.
26This is better than the server MACing its certificate with the shared

password, which would admit an offline password dictionary attack.

browser, or obtained from the DNS record of the site.

Proposals for all three types exist: ForceHTTPS [56] and its

refinement in HSTS [8] are server-initiated pins; Chrome 22

ships with over 100 HTTPS-only pins; and Service Security

Requirement (SSR) [4], [80] records can specify (among

other things) that a site is HTTPS-only in its DNS record

(signed through DNSSEC). Some browser extensions, like

HTTPS Everywhere, redirect the HTTPS version of sites

according to a curated whilelist of domains.

Beyond TLS stripping, HTTPS-only pins can also ensure

a cookie scoped to the domain of the pin is always sent

over HTTPS, regardless of whether the website developer

remembered to mark the cookies as secure [56], [67].

Visual Cues for Secure POST: A simple client-side prim-

itive can address certain types of TLS stripping. Sites are

frequently designed to cause login credentials to be POSTed

to an HTTPS site from an HTTP site. A persistent security

cue could be introduced to indicate if a form POSTs to

HTTP or HTTPS (beyond the easily-disengaged warning

upon an initial POST-to-HTTP). One proposal, the SSLight

browser extension [91], adds a “traffic light” cue to login

form fields that displays a green light if and only if the

field is posted to the current domain over HTTPS (a yellow

light indicates cross domain HTTPS posts and red indicates

POST-to-HTTP). Note that the browser needs to retrieve

the site certificates associated with all POSTs on the page,

largely nullifying the main performance benefit from not

serving the landing page over HTTPS to begin with. Further,

the choice of displaying the cue in the login form field itself,

which is part of the site content, risks a malicious modified

site obscuring the real cue and spoofing its own (cf. [109]).

Browser-stored CRL: Four prominent long-standing re-

vocation approaches are [77]: CRLs, online certificate status

checking, short-lived certificates, and trusted directories. The

CA/B model uses the first two through CRLs and OCSP

respectively. Given the shortcomings of current revocation

procedures (Section IV-D), attention to improving the re-

sponsiveness of revocation is being pursued along the lines

of all four types. Browser-stored CRLs fall under the first

(CRLs), modifying the architecture of CRL distribution from

the current CA/B model. Instead of user clients fetching

CRLs (and OCSP responses) directly from CRL distribution

points, the browser vendor fetches these periodically and

sends to the browser an updated master CRL for storage.

All major browsers manually revoke high risk certificates

through software updates, but Chrome has implemented a

more general CRL that can be transparently updated.27

Certificate Status Stapling: In the same way that Browser-
stored CRL is an architectural change to how CRLs are

distributed in the current CA/B model, Certificate Sta-
tus Stapling modifies the distribution of OCSP responses.

27A. Langley, “Revocation checking and Chrome’s CRL,” Imperial Violet
(blog), 05 Feb 2012.

521

Currently, a user client requests a status report from a

CA-designated OCSP responder, but responders are often

overwhelmed or do not usefully respond, in which case,

the HTTPS connection typically completes without warning.

Under Certificate Status Stapling, the certificate holders

periodically obtain signed and timestamped status reports,

and include these with their certificate during a handshake

(cf. [88]). Within HTTPS, this is defined as a TLS exten-

sion [2] and commonly called OCSP-stapling. The RFC

only permits a report on the server certificate, not the entire

chain—a significant drawback. However Table I evaluates

the general idea of stapling reports on the entire chain.

Short-lived Certificates: This primitive, representing the

third type of revocation, replaces long-lasting certificates

with short-lived ones that certificate holders frequently re-

new [88]. Revocation results from simply failing to update

a certificate. In a recent proposal and implementation for

short-lived HTTPS certificates [101], servers are issued

certificates with a four-day lifespan (roughly the lifetime of

common cached OCSP responses) either on-demand or in

batches. It is proposed [101] to be used in conjunction with

Browser-stored CRL and Key Pinning (Server).
List of Active Certificates: The fourth revocation method

is trusted directories, by which we mean a publicly search-

able list of valid certificates. In HTTPS, this could be

implemented as a whitelist of every server and CA TLS

certificate (including intermediates) that is acceptable to the

HTTPS clients that rely on this list. A certificate not on

the list is not acceptable in any part of the certificate chain.

Revocation is accomplished by removing the certificate from

the list. This primitive makes visible all intermediate CAs,

and also allows domain owners to monitor for illegitimately-

issued certificates for their domains. No proposal for full-

fledged List of Active Certificates has been made. It is similar

to Certificate Transparency [6] (see above) but differs on the

issue of revocation: the CT log is meant only as a reference

for discovering suspicious certificates, not an authoritative

whitelist for making trust decisions. Also CT currently logs

site certificates only, which means intermediate CAs are

visible only if they issue site certificates.

VI. FURTHER DISCUSSION AND ON-GOING RESEARCH

Further discussion here first mentions research areas or-

thogonal to our main focus on HTTPS and its certificate trust

model. We then discuss primary areas of ongoing research.

1) Important Orthogonal Problems: The original objec-

tive [84] of HTTPS was to provide a confidential channel

with message integrity and server authentication. However

HTTPS does not bridge the cognitive gap (exposed by phish-

ing, even with the presence of TLS certificates) between the

user’s cognitive notion of what organization they intend to

connect with, and the domain name within the content of

a certificate—and the latter is the only information in DV

certificates that can be relied on. (It is interesting to ask: does

identification of a syntactic domain name deliver the desired

property of “server authentication”?) As for the extremes,

many websites do not use TLS at all, while for the minority

that use EV-SSL certificates, the validated organizational

details are arguably insufficient—they are not referenced by

users, nor typically endorsed by CAs familiar to users, even

if users did understand how certificates were meant to work.

For these reasons, TLS in its present form fails to close this

cognitive gap. It remains an open research problem to find

methods to address this issue.

HTTPS can protect the secrecy and integrity of cookies in

transit; browser policy dictates the conditions for read/write

access to cookies marked as secure. Likewise, browsers must

handle mixed content carefully, including how/when to alert

users—e.g., different policy decisions are needed to handle

the mixing of secured and unsecured content according to

three delivery mechanisms (no TLS, TLS, and EV TLS) and

different content types (e.g., images, objects, scripts). Cookie

security and mixed content remain challenging problems.

A compromised client-platform (e.g., due to malware) can

subvert HTTPS protections, including how protections are

communicated to the user. Research on building verified

kernels, trusted modules, and/or trusted paths into client

platforms therefore complements HTTPS. Other orthogonal

issues include the availability of the HTTPS infrastructure

(e.g., DDOS attacks, restrictive networks, captive portals)

and improving performance (e.g., False Start, Snap Start).

2) Protocol-level TLS–Analysis and Modification: The

complexity of TLS has significantly enabled protocol at-

tacks, even after 15 years. Analysing TLS security in suf-

ficiently broad models remains an open research problem.

Among other challenges, designing a protocol with provable

security is easier than proving the security of a fixed protocol

like TLS; many proof techniques require simplifying as-

sumptions or the ability to make at least minor modifications.

Security analysis of the basic functionality of TLS [105],

[75], [82], [52], [26], [76], [48], [47], [58], [50] and its use

of cryptographic primitives [65], [60] has provided results

both positive (security proofs) and negative (attacks).

The discovery of flaws in non-essential or little-used

components of TLS has produced a culture of work-arounds

by disabling features (e.g., renegotiation, CBC-mode cipher-

suites, and compression as cited earlier) rather than protocol

redesign. Such quick fixes are at the expense of long-term

protocol evolution: e.g., as of 2011, 99.6% of HTTPS sites

did not yet support TLS 1.1 or 1.2 [87].

Some aspects of TLS are agile, e.g., AES adoption

was “quick” [68] due to a pre-existing ability to negotiate

blockciphers. Other aspects, however, are not agile, e.g., the

two hashes used for pseudorandomness (MD5 and SHA1)

in TLS 1.0 are non-negotiable, impeding SHA2/3 adoption;

and likewise, the RSA padding format used for key transport

impedes OEAP support [85], [25]. An open challenge is how

to expedite protocol upgrades; TLS 1.2 adds agility but had

522

only a 0.02% adoption rate in 2011 [87].

3) Trust Model Infrastructure: Critical research questions

remain regarding the CA/B trust model—is its continued

use unavoidable, does it still solve more problems than it

creates, or has it become a liability? In the real world, trust

is transitive in at most short chains whereas the CA/B model

allows long chains. But even in a chain involving only one

intermediate CA, the end-user, de facto, ends up ‘trusting’

the browser vendor who sets hundreds of trust anchors in

the browser, the corresponding anchor CAs for endorsing

thousands of intermediate CAs, and these intermediate CAs

for certifying millions of websites. The end-user, as a relying

party, in many cases would have no knowledge of or business

relationship with CAs involved in these chains, and the CAs

are apparently not accountable to end-users for errors. It is

also worth remembering that in the original CA/B model,

there were only a handful of CAs.

For better or worse, we have achieved spontaneity, one of

the original goals [84] of TLS—an online world with great

convenience. In fact, users can now go online for the first

time and without any personal choices, ‘trust’ millions of

sites. It would be unreasonable to expect this in the physical

world; is it a realistic reflection of trust in the digital world?

Progress is being made—e.g., on increasing the transparency

of the anchor selection process (e.g., Mozilla’s policies

and public discussion for CA inclusion), indexing active

CAs on the public internet [39], and providing users with

configurable (and potentially delegatable [71]) trust anchors.

4) Human Element and the Security User Interface: Once

CA trust anchors are somehow configured, browsers can

automate many HTTPS security decisions, while providing

to users status indicators through its interface. However, for a

range of ‘soft’ errors—e.g., expired certificates, mismatched

domains, mixed content/scripting, untrusted CAs (includ-

ing self-signed)—it remains without consensus whether

browsers should fail open (with or without an indicator), fail

closed, or provide a warning dialogue. Research reviewed

in Section IV-E indicates low user confidence in navigating

the current set of indicators and warnings. Testing defaults,

UI changes, and the wording of warning dialogues requires

further research, as well as protocol ‘ceremony’ [41], [63],

[83] analysis that includes humans.

The challenges in designing usable security interfaces hint

at a deeper problem with users’ mental models of HTTPS.

Experts can understand the relationship between encryption

and authentication in TLS, and that a lock icon does not

indicate that a website is safe in all senses. The inability of

the community to provide interfaces and/or mechanisms that

average users can understand remains problematic.

5) Raising the Bar (or Just Moving It): Many of the

practical security issues with today’s CA/B infrastructure

result from a lack of defence in depth—e.g., the compromise

of a single CA defeats many current deployments of the

model. Many of the enhancements in Table I aim to add

depth by addressing MITM attacks, TLS stripping attacks,

and revocation issues. Combining several primitives into the

current infrastructure (e.g., in an attempt to fully address

MITM) offers the advantage of increasing protection, at the

cost of a patchwork with increased complexity. A different

approach is to seek alternatives that replace the functionality

of CAs outright; in fact, some primitives in the table might

be viewed as doing this.

A currently high profile approach that might be viewed

as doing this is DNSSEC-based pinning (e.g., DANE),

which provides an infrastructure for ubiquitous HTTPS,

largely replacing the need for CA-issued DV certificates.

(Of course, many questions remain regarding performance,

caching, and packet inspection if this were to be widely

deployed or enabled by default.) It could be argued that the

serious consideration currently being given to DANE signals

the degree to which trust in CA-validated certificates has

slipped, rather than the strength of DANE as an alternative.

DNS pinning by itself falls short of fully addressing the

original HTTPS goal related to authentication, namely to

support the transport of sensitive data to only an intended
party. As mentioned above in relation to phishing, the

intended target is not often identified by a domain name

in the user’s mind, but rather by the user’s conception

of a real-world entity. The extent to which high-assurance

extended validation certificates can be leveraged to provide

recognizable assurances to users remains an open question.

VII. CONCLUDING REMARKS

Among our objectives, we hope to raise awareness of

the number and breadth of past and on-going security

issues with HTTPS and its certificate trust model, allowing

independent determination of their relative severities and

root causes. The sophistication and difficulty of attacking

the TLS protocol directly has apparently shifted attention,

over time, to the security of the CA/B infrastructure and its

reliance on human factors. Indeed, in the research literature,

it is becoming more common for threat models to assume

an adversary possesses a valid certificate for a targeted site.

From our comparative evaluation of proposals for en-

hancing the certificate infrastructure, several research trends

are apparent. Among these: a variety of pinning techniques

propose adding defence in depth (a) against attacks involving

fraudulent certificates, and (b) against SSL stripping attacks

(which are deceptively simple); many primitives rely on a

trusted initialization before providing protection; and the

continuing failure of HTTPS support as it exists today to

provide responsive certificate revocation information.

Replacing the CA infrastructure is often viewed by indi-

viduals in the computer industry as a way forward. This may

not, however, improve things unless the current underlying

weaknesses do not reappear. Though certificate issuance was

historically independent of DNS, tighter integration of the

certificate trust model with domain names, and potentially

523

more tightly with DANE, has been a notable evolution.

A reasonable question to ask is: what tangible benefit to

users does the best-possible commercially viable certificate

validation offer beyond a binding between domain names

and public keys? The answer may dictate the future of CAs.

Acknowledgements. We thank those who provided de-

tailed comments on the paper, including the anonymous

referees, Carlisle Adams, Joseph Bonneau, Cormac Herley,

Adam Langley, Tim Moses, Trevor Perrin, and Sid Stamm.

We acknowledge funding from the Natural Science and

Engineering Research Council (NSERC) through a PDF

(first author), Canada Research Chair in Authentication and

Computer Security (second), and NSERC ISSNet (both).

REFERENCES

[1] RFC 5746: Transport layer security (TLS) renegotiation indication
extension, 2010.

[2] RFC 6066: Transport layer security (TLS) extensions: Extension
definitions, 2011.

[3] RFC 6698: The DNS-based authentication of named entities (DANE)
transport layer security (TLS) protocol: TLSA, 2012.

[4] Internet-Draft: Storing service security requirements in the domain
name system, 2006.

[5] Internet-Draft: Maximum version TLS cipher suites, 2011.
[6] Internet-Draft: Certificate transparency, 2012.
[7] Internet-Draft: DNS certification authority authorization (CAA) re-

source record, 2012.
[8] Internet-Draft: HTTP strict transport security (HSTS), 2012.
[9] Internet-Draft: OmniBroker protocol, 2012.

[10] Internet-Draft: Public key pinning extension for HTTP, 2012.
[11] Internet-Draft: Sovereign key cryptography for internet domains,

2012.
[12] Internet-Draft: Trust assertions for certificate keys (TACK), 2012.
[13] O. Aciiçmez, W. Schindler, and Ç. K. Koç. Improving Brumley and

Boneh timing attack on unprotected SSL implementations. In CCS,
2005.

[14] A. Adelsbach, S. Gajek, and J. Schwenk. Visual spoofing of SSL
protected web sites and effective countermeasures. In ISPEC, 2005.

[15] D. Ahmad. Two years of broken crypto. IEEE Security and Privacy,
6(5), 2008.

[16] N. J. AlFardan and K. G. Paterson. Lucky thirteen: Breaking the
TLS and DTLS record protocols. In IEEE Symposium on Security
and Privacy, 2013.

[17] M. Alicherry and A. D. Keromytis. Doublecheck: Multi-path
verification against man-in-the-middle attacks. In ISCC, 2009.

[18] B. Amann, M. Vallentin, S. Hall, and R. Sommer. Revisiting SSL:
A large-scale study of the internet’s most trusted protocol. Technical
report, ICSI, 2012.

[19] C. Amrutkar, P. Traynor, and P. van Oorschot. Measuring SSL
indicators on mobile browsers: Extended life or end of the road?
In ISC, 2012.

[20] G. Bard. The vulnerability of SSL to chosen-plaintext attack.
Technical Report 2004/111, IACR ePrint, 2004.

[21] G. V. Bard. A challenging but feasible blockwise-adaptive chosen-
plaintext attack on SSL. In SECRYPT, 2006.

[22] E. Barker and A. Roginsky. Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key lengths.
Special Publication 800-131A, NIST, 2011.

[23] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of symmetric encryption. In FOCS, 1997.

[24] L. Bello and M. Bertachhini. Predictable PRNG in the vulnerable
Debian OpenSSL package: the what and the how. In DEFCON 16,
2008.

[25] S. M. Bellovin and E. Rescorla. Deploying a new hash algorithm.
In NDSS, 2006.

[26] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptograph-
ically verified implementations for TLS. In CCS, 2008.

[27] D. Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In CRYPTO, 1998.

[28] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The
quest to replace passwords: a framework for comparative evaluation
of web authentication schemes. In IEEE Symp. Security & Privacy,
2012.

[29] B. B. Brumley and N. Tuveri. Remote timing attacks are still
practical. In ESORICS, 2011.

[30] D. Brumley and D. Boneh. Remote timing attacks are practical. In
USENIX Security, 2003.

[31] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password
interception in a SSL/TSL channel. In CRYPTO, 2003.

[32] J. Clark and P. C. van Oorschot. SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhance-
ments. http://www.scs.carleton.ca/research/tech reports/index.php?
abstract=TR-13-01, Carleton University, 2013.

[33] I. Dacosta, M. Ahamad, and P. Traynor. Trust no one else: Detecting
MITM attacks against SSL/TLS without third-parties. In ESORICS,
2012.

[34] R. Dhamija and J. Tygar. The battle against phishing: Dynamic
security skins. In SOUPS, 2005.

[35] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In
CHI, 2006.

[36] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach. Origin-bound
certificates: A fresh approach to strong client authentication for the
web. In USENIX Security, 2012.

[37] H. Dobbertin. Crytanalysis of MD5 compress. In EUROCRYPT
(Rump Session Talk), 1996.

[38] T. Duong and J. Rizzo. Here come the ⊕ ninjas. In Ekoparty, 2011.
[39] P. Eckersley and J. Burns. Is the SSLiverse a safe place? In Chaos

Communication Congress, 2010.
[40] Y. Elley, A. Anderson, S. Hanna, S. Mullan, R. Perlman, and

S. Proctor. Building certification paths: Forward vs. reverse. In
NDSS, 2001.

[41] C. Ellison. Ceremony design and analysis. Technical Report
2007/399, IACR ePrint, 2007.

[42] S. Fahl, M. Harbach, T. Muders, L. Baumgartner, B. Freisleben, and
M. Smith. Why Eve and Mallory love Android: An analysis of
Android SSL (in)security. In CCS, 2012.

[43] A. P. Felt and D. Wagner. Phishing on mobile devices. In USEC,
2007.

[44] E. Felten, D. Balfanz, D. Dean, and D. S. Wallach. Web spoofing:
An internet con game. In NISSC, 1997.

[45] B. Fox and B. LaMacchia. Certificate revocation: Mechanics and
meaning. In Financial Cryptography, 1997.

[46] B. Friedman, D. Hurley, D. C. Howe, E. Felten, and H. Nissenbaum.
Users’ conceptions of web security: A comparative study (short talk).
In CHI, 2002.

[47] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk.
Universally composable security analysis of TLS. In ProvSec, 2008.

[48] S. Gajek, M. Manulis, A.-R. Sadeghi, and J. Schwenk. Provably
secure browser-based user-aware mutual authentication over TLS.
In ASIACCS, 2008.

[49] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, V. Shmatikov, and
D. Boneh. The most dangerous code in the world: validating SSL
certificates in non-browser software. In CCS, 2012.

[50] F. Giesen, F. Kohlar, and D. Stebila. On the security of TLS
renegotiation. Technical Report 2012/630, IACR ePrint, 2012.

[51] I. Goldberg and D. Wagner. Randomness and the Netscape browser.
Dr. Dobb’s Journal, 1996.

[52] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A
modular correctness proof of IEEE 802.11i and TLS. In CCS, 2005.

[53] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman.
Mining your Ps and Qs: Detection of widespread weak keys in
network devices. In USENIX Security, 2012.

[54] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL
landscape: A thorough analysis of the X.509 PKI using active and
passive measurements. In IMC, 2011.

[55] C. Jackson and A. Barth. Beware of finer-grained origins. In W2SP,
2008.

[56] C. Jackson and A. Barth. ForceHTTPS: Protecting high-security web

524

sites from network attacks. In WWW, 2008.
[57] C. Jackson, D. R. Simon, D. S. Tan, and A. Barth. An evaluation

of extended validation and picture-in-picture phishing attacks. In
USEC, 2007.

[58] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of
TLS-DHE in the standard model. In CRYPTO, 2012.

[59] J. Jarmoc. SSL/TLS interception proxies and transitive trust. In
Black Hat Europe, 2012.

[60] J. Jonsson and B. S. Kaliski Jr. On the security of RSA encryption
in TLS. In CRYPTO, 2002.

[61] D. Kaminsky. Black Ops 2008: it’s the end of the cache as we know
it. In Black Hat USA, 2008.

[62] D. Kaminsky, M. L. Patterson, and L. Sassaman. PKI layer cake:
New collision attacks against the global X.509 infrastructure. In
Financial Cryptography, 2010.

[63] C. Karlof, J. Tygar, and D. Wagner. Conditioned-safe ceremonies
and a user study of an appplication to web authentication. In NDSS,
2009.

[64] J. Kelsey. Compression and information leakage of plaintext. In
FSE, 2002.

[65] H. Krawczyk. The order of encryption and authentication for
protecting communications (or: how secure is SSL?). In CRYPTO,
2001.

[66] H. Krawczyk. Cryptographic extraction and key derivation: The
HKDF scheme. In CRYPTO, 2010.

[67] A. Langley. Beyond the basics of HTTPS serving. USENIX ;Login:,
Dec 2011.

[68] H. K. Lee, T. Malkin, and E. Nahum. Cryptographic strength of
SSL/TLS servers: Current and recent practices. In IMC, 2007.

[69] S. Lefranc and D. Naccache. Cut-&-paste attacks with JAVA. In
ICISC, 2002.

[70] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter. Public keys. In CRYPTO, 2012.

[71] M. Marlinspike. More tricks for defeating SSL in practice. In
DEFCON 17, 2009.

[72] M. Marlinspike. New tricks for defeating SSL in practice. In Black
Hat DC, 2009.

[73] M. Marlinspike. SSL and the future of authenticity. In Black Hat
USA, 2011.

[74] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel.
A cross-protocol attack on the TLS protocol. In CCS, 2012.

[75] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of
SSL 3.0. In USENIX Security, 1998.

[76] P. Morrissey, N. P. Smart, and B. Warinschi. A modular security
analysis of the TLS handshake protocol. In ASIACRYPT, 2008.

[77] M. Myers. Revocation: Options and challenges. In Financial
Cryptography, 1998.

[78] R. Oppliger, R. Hauser, and D. Basin. SSL/TLS session-aware user
authentication. Computer Communications, 29(12), 2006.

[79] A. Ornaghi and M. Valleri. Man in the middle attacks: demos. In
Black Hat USA, 2003.

[80] A. Ozment, S. E. Schecter, and R. Dhamija. Web sites should not
need to rely on users to secure communications. In W3C Workshop
on Usability and Transparency of Web Authentication, 2006.

[81] B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing prevention.
In Financial Cryptography, 2006.

[82] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM
TISSEC, 1999.

[83] K. Radke, C. Boyd, J. G. Nieto, and M. Brereton. Ceremony
analysis: Strengths and weaknesses. In IFIP SEC, 2011.

[84] E. Rescorla. SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, 2001.

[85] E. Rescorla. Stone knives and bear skins: Why does the internet still
run on pre-historic cryptography? In INDOCRYPT (Invited talk),

2006.
[86] I. Ristic. Internet SSL survey 2010. In Black Hat USA, 2010.
[87] I. Ristic and M. Small. A study of what really breaks SSL. In Hack

in the Box, 2011.
[88] R. Rivest. Can we eliminate certificate revocation lists? In Financial

Cryptography, 1998.
[89] J. Rizzo and T. Duong. The crime attack. In Ekoparty, 2012.

[90] S. E. Schecter, R. Dhamija, A. Ozment, and I. Fischer. The emperor’s
new security indicators: An evaluation of website authentication and
the effect of role playing on usability studies. In IEEE Symposium
on Security and Privacy, 2007.

[91] D. Shin and R. Lopes. An empirical study of visual security cues
to prevent the SSLstripping attack. In ACSAC, 2011.

[92] J. Sobey, R. Biddle, P. van Oorschot, and A. S. Patrick. Exploring
user reactions to new browser cues for extended validation certifi-
cates. In ESORICS, 2008.

[93] C. Soghoian and S. Stamm. Certified lies: Detecting and defeating
government interception attacks against SSL. In Financial Cryptog-
raphy, 2011.

[94] S. Son and V. Shmatikov. The hitchhiker’s guide to DNS cache
poisoning. In SECURECOMM, 2010.

[95] A. Sotirakopoulos, K. Hawkey, and K. Beznosov. On the challenges
in usable security lab studies: Lessons learned from replicating a
study on SSL warnings. In SOUPS, 2011.

[96] A. Sotirov and M. Zusman. Breaking the security myths of extended
validation SSL certificates. In Black Hat USA, 2009.

[97] D. Stebila. Reinforcing bad behaviour: the misuse of security
indicators on popular websites. In OZCHI, 2010.

[98] M. Stevens, A. Lenstra, and B. de Weger. Chosen-prefix collisions
for MD5 and colliding X.509 certificates for different identities. In
EUROCRYPT, 2007.

[99] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A.
Osvik, and B. de Weger. Short chosen-prefix collisions for MD5
and the creation of a rogue CA certificate. In CRYPTO, 2009.

[100] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor.
Crying wolf: An empirical study of SSL warning effectiveness. In
USENIX Security, 2009.

[101] E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and D. Boneh.
Toward short-lived certificates. In W2SP, 2012.

[102] P. C. van Oorschot and M. J. Wiener. Parallel collision search with
cryptanalytic applications. J. Cryptology, 12:1–28, 1999.

[103] S. Vaudenay. Security flaws induced by CBC padding: applications
to SSL, IPSEC, WTLS, In EUROCRYPT, 2002.

[104] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux. The
inconvenient truth about web certificates. In WEIS, 2011.

[105] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In
USENIX Workshop on Electronic Commerce, 1996.

[106] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter. The multi-principal OS construction of the Gazelle web
browser. In USENIX Security, 2009.

[107] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives:
Improving SSH-style host authentication with multi-path probing.
In USENIX Annual Tech, 2008.

[108] T. Whalen and K. M. Inkpen. Gathering evidence: Use of visual
security cues in web browsers. In Graphics Interface, 2005.

[109] Z. Ye, S. Smith, and D. Anthony. Trusted paths for browsers. ACM
TISSEC, 8(2), 2005.

[110] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When
private keys are public: Results from the 2008 Debian OpenSSL
vulnerability. In IMC, 2009.

[111] M. Zusman. Criminal charges are not pursued: Hacking PKI. In
DEFCON 17, 2009.

[112] M. Zusman and A. Sotirov. Sub-prime PKI: Attacking extended
validation SSL. Technical report, Black Hat Security Briefings, 2009.

525

