
CLASSIC 
MEMORY ATKS & DEFS

GRAD SEC
SEP 07 2017

TODAY’S PAPERS

REFRESHER

• How is program data laid out in memory?

• What does the stack look like?

• What effect does calling (and returning from) a
function have on memory?

• We are focusing on the Linux process model
• Similar to other operating systems

ALL PROGRAMS ARE STORED IN MEMORY

0

4G

ALL PROGRAMS ARE STORED IN MEMORY

0

4G 0xffffffff

0x00000000

ALL PROGRAMS ARE STORED IN MEMORY

0

4G 0xffffffff

0x00000000

The process’s view
of memory is that

it owns all of it

ALL PROGRAMS ARE STORED IN MEMORY

0

4G 0xffffffff

0x00000000

The process’s view
of memory is that

it owns all of it

In reality, these are
virtual addresses;
the OS/CPU map
them to physical

addresses

THE INSTRUCTIONS THEMSELVES ARE STORED IN MEMORY

Text

0

4G 0xffffffff

0x00000000

THE INSTRUCTIONS THEMSELVES ARE STORED IN MEMORY

Text

0

4G 0xffffffff

0x00000000

0x4bf mov %esp,%ebp

0x4be push %ebp

0x4c1 push %ecx
0x4c2 sub $0x224,%esp

...

...

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

Init’d data static const int y=10;

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

Uninit’d data static int x;

Init’d data static const int y=10;

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

Set when 
process starts

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

Set when 
process starts

Stack
int f() {  
 int x;

 …

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at

compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
 int x;

 …

DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at
compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
 int x;

 …

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Heap

0xffffffff0x00000000

Stack

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

1

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

1

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

12

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

12

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

{
apportioned by the OS;

managed in-process
by malloc

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

{
apportioned by the OS;

managed in-process
by malloc

Focusing on the stack for now

STACK LAYOUT WHEN CALLING FUNCTION

0xffffffff0x00000000

caller’s data

void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 ...
}

STACK LAYOUT WHEN CALLING FUNCTION

0xffffffff0x00000000

caller’s dataarg3arg2arg1

Arguments 
pushed in 

reverse order
of code

void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 ...
}

STACK LAYOUT WHEN CALLING FUNCTION

0xffffffff0x00000000

caller’s dataarg3arg2arg1loc1loc2…

Arguments 
pushed in 

reverse order
of code

Local variables  
pushed in the
same order as
they appear 
in the code

void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 ...
}

STACK LAYOUT WHEN CALLING FUNCTION

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

Arguments 
pushed in 

reverse order
of code

Local variables  
pushed in the
same order as
they appear 
in the code

void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 ...
}

STACK LAYOUT WHEN CALLING FUNCTION

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

Arguments 
pushed in 

reverse order
of code

Local variables  
pushed in the
same order as
they appear 
in the code

void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 ...
}

Two values between the arguments 
and the local variables

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

0xbffff323

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

0xbffff323
Undecidable at 
compile time

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

0xbffff323
Undecidable at 
compile time

- I don’t know where loc2 is,

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

0xbffff323
Undecidable at 
compile time

- I don’t know where loc2 is,
- and I don’t know how many args

Variable args?

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

0xbffff323
Undecidable at 
compile time

- I don’t know where loc2 is,
- and I don’t know how many args

Variable args?4B4B4B4B

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

0xbffff323
Undecidable at 
compile time

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

Variable args?4B4B4B4B

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

%ebp
Frame pointer

ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 int loc3;
 loc2++;
}

Q: Where is (this) loc2?
A: -8(%ebp)

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

%ebp
Frame pointer

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0x00000000 0xffffffff

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0x00000000 0xffffffff

0xbfff03b8

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0x00000000 0xffffffff

%ebp

0xbfff03b8

0xbfff03b8

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8

0xbfff03b8

0xbfff0720

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8

0xbfff03b8

0xbfff0720

pushl %ebp

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl %esp %ebp /* %ebp = %esp */

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl %esp %ebp /* %ebp = %esp */

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl %esp %ebp /* %ebp = %esp */

0xbfff0200

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200

0xbfff03b8

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200

0xbfff03b8

movl (%ebp) %ebp /* %ebp = (%ebp) */

NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200

0xbfff03b8

movl (%ebp) %ebp /* %ebp = (%ebp) */

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp %ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we restore %ebp?

%ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
} Q: How do we restore %ebp?

%ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
} Q: How do we restore %ebp?

%ebp

%esp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
} Q: How do we restore %ebp?

%ebp

%ebp

1. Push %ebp before locals

%esp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we restore %ebp?

%ebp

%ebp

1. Push %ebp before locals

%esp

2. Set %ebp to current %esp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we restore %ebp?

%ebp

%ebp

1. Push %ebp before locals

3. Set %ebp to(%ebp) at return

%esp

2. Set %ebp to current %esp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp %ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we resume here?

%ebp

INSTRUCTIONS THEMSELVES ARE IN MEMORY

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...

INSTRUCTIONS THEMSELVES ARE IN MEMORY

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...

%eip

INSTRUCTIONS THEMSELVES ARE IN MEMORY

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...

%eip

INSTRUCTIONS THEMSELVES ARE IN MEMORY

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...

%eip

INSTRUCTIONS THEMSELVES ARE IN MEMORY

0x5bf mov %esp,%ebp

0x5be push %ebp
...

...

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...

%eip

INSTRUCTIONS THEMSELVES ARE IN MEMORY

0x5bf mov %esp,%ebp

0x5be push %ebp
...

...

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...

%eip

INSTRUCTIONS THEMSELVES ARE IN MEMORY

0x5bf mov %esp,%ebp

0x5be push %ebp
...

...

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...

%eip

INSTRUCTIONS THEMSELVES ARE IN MEMORY

0x5bf mov %esp,%ebp

0x5be push %ebp
...

...

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>
0x4a7 mov $0x0,%eax

...

...
%eip

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we resume here?

%ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we resume here?

Push next %eip 
before call

%ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we resume here?

Push next %eip 
before call

%eip

%ebp

RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we resume here?

Push next %eip 
before call

Set %eip to 4(%ebp)
at return

%eip

%ebp

STACK & FUNCTIONS: SUMMARY

STACK & FUNCTIONS: SUMMARY

Calling function:
1.Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

STACK & FUNCTIONS: SUMMARY

Calling function:
1.Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

STACK & FUNCTIONS: SUMMARY

Calling function:
1.Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:
7.Reset the previous stack frame: %ebp = (%ebp) /* copy it off first */
8.Jump back to return address: %eip = 4(%ebp) /* use the copy */

ATTACKS
BUFFER OVERFLOW

BUFFER OVERFLOWS: HIGH LEVEL

• Buffer =
• Contiguous set of a given data type
• Common in C

- All strings are buffers of char’s

• Overflow =
• Put more into the buffer than it can hold

• Where does the extra data go?

• Well now that you’re experts in memory layouts…

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%ebp %eip

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg100 00 00 00

buffer

%ebp %eip

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg100 00 00 00

buffer

A u t h %ebp %eip

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg100 00 00 00

buffer

A u t h

M e ! \0

%ebp4d 65 21 00 %eip

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg100 00 00 00

buffer

A u t h

Upon return, sets %ebp to 0x0021654d
M e ! \0

%ebp4d 65 21 00 %eip

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg100 00 00 00

buffer

A u t h

Upon return, sets %ebp to 0x0021654d
M e ! \0

%ebp4d 65 21 00 %eip

SEGFAULT (0x00216551)

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip%ebp

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip%ebp00 00 00 00

authenticated

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip%ebp00 00 00 0000 00 00 00

authenticatedbuffer

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip%ebp00 00 00 0000 00 00 00

authenticatedbuffer

A u t h

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip%ebp00 00 00 0000 00 00 00

authenticatedbuffer

M e ! \0

4d 65 21 00A u t h

A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip%ebp00 00 00 0000 00 00 00

authenticatedbuffer

M e ! \0

4d 65 21 00A u t h

Code still runs; user now ‘authenticated’

void vulnerable()
{
 char buf[80];
 gets(buf);
}

void vulnerable()
{
 char buf[80];
 gets(buf);
}

void still_vulnerable()
{
 char *buf = malloc(80);
 gets(buf);
}

void safe()
{
 char buf[80];
 fgets(buf, 64, stdin);
}

void safe()
{
 char buf[80];
 fgets(buf, 64, stdin);
}

void safer()
{
 char buf[80];
 fgets(buf, sizeof(buf), stdin);
}

USER-SUPPLIED STRINGS

• In these examples, we were providing our own
strings

• But they come from users in myriad aways
• Text input
• Network packets
• Environment variables
• File input…

WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

&mystr%eip%ebp00 00 00 00

buffer

WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)

WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)

All ours!

WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)

All ours!

What could you write to memory to wreak havoc?

FIRST A RECAP: ARGS
#include <stdio.h>

void func(char *arg1, int arg2, int arg3)
{
 printf(“arg1 is at %p\n”, &arg1);
 printf(“arg2 is at %p\n”, &arg2);
 printf(“arg3 is at %p\n”, &arg3);
}

int main()
{
 func(“Hello”, 10, -3);
 return 0;
}

FIRST A RECAP: ARGS
#include <stdio.h>

void func(char *arg1, int arg2, int arg3)
{
 printf(“arg1 is at %p\n”, &arg1);
 printf(“arg2 is at %p\n”, &arg2);
 printf(“arg3 is at %p\n”, &arg3);
}

int main()
{
 func(“Hello”, 10, -3);
 return 0;
}

&arg1 < &arg2 < &arg3? &arg1 > &arg2 > &arg3?

What will happen?

FIRST A RECAP: LOCALS
#include <stdio.h>

void func()
{
 char loc1[4];
 int loc2;
 int loc3;
 printf(“loc1 is at %p\n”, &loc1);
 printf(“loc2 is at %p\n”, &loc2);
 printf(“loc3 is at %p\n”, &loc3);
}

int main()
{
 func();
 return 0;
}

FIRST A RECAP: LOCALS
#include <stdio.h>

void func()
{
 char loc1[4];
 int loc2;
 int loc3;
 printf(“loc1 is at %p\n”, &loc1);
 printf(“loc2 is at %p\n”, &loc2);
 printf(“loc3 is at %p\n”, &loc3);
}

int main()
{
 func();
 return 0;
}

&loc1 < &loc2 < &loc3? &loc1 > &loc2 > &loc3?

What will happen?

STACK & FUNCTIONS: SUMMARY
~
0
x
00

x
0

caller’s data

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

~
0
x
00

x
0

caller’s data

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

~
0
x
00

x
0

caller’s dataarg2

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

~
0
x
00

x
0

caller’s dataarg2arg1

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

~
0
x
00

x
0

caller’s dataarg2arg1%eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

~
0
x
00

x
0

caller’s dataarg2arg1%eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

~
0
x
00

x
0

caller’s dataarg2arg1%eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

~
0
x
00

x
0

caller’s dataarg2arg1%eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

~
0
x
00

x
0

caller’s dataarg2arg1%ebp %eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

~
0
x
00

x
0

caller’s dataarg2arg1%ebp %eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

~
0
x
00

x
0

caller’s dataarg2arg1%ebp %eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

~
0
x
00

x
0

caller’s dataarg2arg1%ebploc1 %eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

~
0
x
00

x
0

caller’s dataarg2arg1%ebploc1loc2 %eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:
7.Reset the previous stack frame: %ebp = (%ebp)
8.Jump back to return address: %eip = 4(%ebp)

~
0
x
00

x
0

caller’s dataarg2arg1%ebploc1loc2 %eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:
7.Reset the previous stack frame: %ebp = (%ebp)
8.Jump back to return address: %eip = 4(%ebp)

~
0
x
00

x
0

caller’s dataarg2arg1%ebploc1loc2 %eip+…

%ebp

code

%eip

STACK & FUNCTIONS: SUMMARY
Calling function:
1.Push arguments of the function you’re calling onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:
7.Reset the previous stack frame: %ebp = (%ebp)
8.Jump back to return address: %eip = 4(%ebp)

~
0
x
00

x
0

caller’s dataarg2arg1%ebploc1loc2 %eip+…

%ebp

code

%eip

GDB: YOUR NEW BEST FRIEND

i f

i r

x/<n> <addr>

b <function>  
s

Set a breakpoint at <function> 
step through execution (into calls)

Examine <n> bytes of memory  
starting at address <addr>

Show info about registers 
(%ebp, %eip, %esp, etc.)

Show info about the current frame 
(prev. frame, locals/args, %ebp/%eip)

BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

char loc1[4];

BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

gets(loc1);  
strcpy(loc1, <user input>);
memcpy(loc1, <user input>);
etc.

char loc1[4];

BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>);
memcpy(loc1, <user input>);
etc.

char loc1[4];

BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>);
memcpy(loc1, <user input>);
etc.

char loc1[4];

BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>);
memcpy(loc1, <user input>);
etc.

char loc1[4];

Can over-write other data (“AuthMe!”)

BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>);
memcpy(loc1, <user input>);
etc.

char loc1[4];

Can over-write other data (“AuthMe!”)

Can over-write the program’s control flow (%eip)

INJECTION
CODE

HIGH-LEVEL IDEA

void func(char *arg1)
{
 char buffer[4];
 sprintf(buffer, arg1);
 ...
}

&arg1%eip%ebp00 00 00 00

buffer

... …

HIGH-LEVEL IDEA

void func(char *arg1)
{
 char buffer[4];
 sprintf(buffer, arg1);
 ...
}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load our own code into memory

Haxx0r c0d3... …

HIGH-LEVEL IDEA

void func(char *arg1)
{
 char buffer[4];
 sprintf(buffer, arg1);
 ...
}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load our own code into memory

Haxx0r c0d3text

%eip

(2) Somehow get %eip to point to it

... …

HIGH-LEVEL IDEA

void func(char *arg1)
{
 char buffer[4];
 sprintf(buffer, arg1);
 ...
}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load our own code into memory

Haxx0r c0d3text

%eip

(2) Somehow get %eip to point to it

... …

HIGH-LEVEL IDEA

void func(char *arg1)
{
 char buffer[4];
 sprintf(buffer, arg1);
 ...
}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load our own code into memory

Haxx0r c0d3text

%eip

(2) Somehow get %eip to point to it

... …

THIS IS NONTRIVIAL

• Pulling off this attack requires getting a few things
really right (and some things sorta right)

• Think about what is tricky about the attack
• The key to defending it will be to make the hard parts

really hard

CHALLENGE 1: LOADING CODE INTO MEMORY

• It must be the machine code instructions (i.e.,
already compiled and ready to run)

• We have to be careful in how we construct it:
• It can’t contain any all-zero bytes

- Otherwise, sprintf / gets / scanf / … will stop copying
- How could you write assembly to never contain a full zero

byte?

• It can’t make use of the loader (we’re injecting)
• It can’t use the stack (we’re going to smash it)

WHAT KIND OF CODE WOULD WE WANT TO RUN?

• Goal: full-purpose shell
• The code to launch a shell is called “shell code”
• It is nontrivial to it in a way that works as injected code

- No zeroes, can’t use the stack, no loader dependence

• There are many out there
- And competitions to see who can write the smallest

• Goal: privilege escalation
• Ideally, they go from guest (or non-user) to root

SHELLCODE
#include <stdio.h>
int main() {
 char *name[2];
 name[0] = “/bin/sh”;
 name[1] = NULL;
 execve(name[0], name, NULL);
}

SHELLCODE
#include <stdio.h>
int main() {
 char *name[2];
 name[0] = “/bin/sh”;
 name[1] = NULL;
 execve(name[0], name, NULL);
}

xorl %eax, %eax
pushl %eax
pushl $0x68732f2f
pushl $0x6e69622f
movl %esp,%ebx
pushl %eax
...

A
ss

em
bl

y

SHELLCODE
#include <stdio.h>
int main() {
 char *name[2];
 name[0] = “/bin/sh”;
 name[1] = NULL;
 execve(name[0], name, NULL);
}

xorl %eax, %eax
pushl %eax
pushl $0x68732f2f
pushl $0x6e69622f
movl %esp,%ebx
pushl %eax
...

A
ss

em
bl

y

SHELLCODE
#include <stdio.h>
int main() {
 char *name[2];
 name[0] = “/bin/sh”;
 name[1] = NULL;
 execve(name[0], name, NULL);
}

xorl %eax, %eax
pushl %eax
pushl $0x68732f2f
pushl $0x6e69622f
movl %esp,%ebx
pushl %eax
...

A
ss

em
bl

y

“\x31\xc0”
“\x50”
“\x68””//sh”
“\x68””/bin”
“\x89\xe3”
“\x50”
...

M
achine code

SHELLCODE
#include <stdio.h>
int main() {
 char *name[2];
 name[0] = “/bin/sh”;
 name[1] = NULL;
 execve(name[0], name, NULL);
}

xorl %eax, %eax
pushl %eax
pushl $0x68732f2f
pushl $0x6e69622f
movl %esp,%ebx
pushl %eax
...

A
ss

em
bl

y

“\x31\xc0”
“\x50”
“\x68””//sh”
“\x68””/bin”
“\x89\xe3”
“\x50”
...

M
achine code

(Part of)
your
input

PRIVILEGE ESCALATION
• More on Unix permissions later, but for now…

• Recall that each file has:
• Permissions: read / write / execute
• For each of: owner / group / everyone else

• Permissions are defined over userid’s and groupid's
• Every user has a userid
• root’s userid is 0

• Consider a service like passwd
• Owned by root (and needs to do root-y things)
• But you want any user to be able to execute it

REAL VS EFFECTIVE USERID
• (Real) Userid = the user who ran the process

• Effective userid = what is used to determine what
permissions/access the process has

• Consider passwd: root owns it, but users can run it
• getuid() will return who ran it (real userid)
• seteuid(0) to set the effective userid to root

- It’s allowed to because root is the owner

• What is the potential attack?

REAL VS EFFECTIVE USERID
• (Real) Userid = the user who ran the process

• Effective userid = what is used to determine what
permissions/access the process has

• Consider passwd: root owns it, but users can run it
• getuid() will return who ran it (real userid)
• seteuid(0) to set the effective userid to root

- It’s allowed to because root is the owner

• What is the potential attack?

If you can get a root-owned process to run 
setuid(0)/seteuid(0), then you get root permissions

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward
• With this alone we want to get it to jump to our code
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

... …

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward
• With this alone we want to get it to jump to our code
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

... …

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward
• With this alone we want to get it to jump to our code
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

... … \x0f \x3c \x2f ...

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward
• With this alone we want to get it to jump to our code
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... … \x0f \x3c \x2f ...

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward
• With this alone we want to get it to jump to our code
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... … \x0f \x3c \x2f ...

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward
• With this alone we want to get it to jump to our code
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... … \x0f \x3c \x2f ...

STACK & FUNCTIONS: SUMMARY

Calling function:
1.Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

Called function:
4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebb

Returning function:
7.Reset the previous stack frame: %ebp = (%ebp)
8.Jump back to return address: %eip = 4(%ebp)

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

%ebp

… \x0f \x3c \x2f ...

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

… \x0f \x3c \x2f ...

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

… \x0f \x3c \x2f ...

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

But how do we know the address?

%ebp

… \x0f \x3c \x2f ...

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

\x0f \x3c \x2f ...

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

0xbdf \x0f \x3c \x2f ...

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

0xbdf \x0f \x3c \x2f ...

HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

0xbdf

This is most likely data,
so the CPU will panic
(Invalid Instruction)

\x0f \x3c \x2f ...

CHALLENGE 3: FINDING THE RETURN ADDRESS

CHALLENGE 3: FINDING THE RETURN ADDRESS

• If we don’t have access to the code, we don’t know how
far the buffer is from the saved %ebp

CHALLENGE 3: FINDING THE RETURN ADDRESS

• If we don’t have access to the code, we don’t know how
far the buffer is from the saved %ebp

• One approach: just try a lot of different values!

CHALLENGE 3: FINDING THE RETURN ADDRESS

• If we don’t have access to the code, we don’t know how
far the buffer is from the saved %ebp

• One approach: just try a lot of different values!

• Worst case scenario: it’s a 32 (or 64) bit memory space,
which means 232 (264) possible answers

CHALLENGE 3: FINDING THE RETURN ADDRESS

• If we don’t have access to the code, we don’t know how
far the buffer is from the saved %ebp

• One approach: just try a lot of different values!

• Worst case scenario: it’s a 32 (or 64) bit memory space,
which means 232 (264) possible answers

• But without address randomization:
• The stack always starts from the same, fixed address
• The stack will grow, but usually it doesn’t grow very deeply

(unless the code is heavily recursive)

IMPROVING OUR CHANCES: NOP SLEDS

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…0xbdf

nop is a single-byte instruction
(just moves to the next instruction)

\x0f \x3c \x2f ...

IMPROVING OUR CHANCES: NOP SLEDS

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…0xbdf nop nop nop …

nop is a single-byte instruction
(just moves to the next instruction)

\x0f \x3c \x2f ...

IMPROVING OUR CHANCES: NOP SLEDS

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…0xbdf nop nop nop …

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere
here will work

\x0f \x3c \x2f ...

IMPROVING OUR CHANCES: NOP SLEDS

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... 0xbff

%ebp

…0xbdf nop nop nop …

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere
here will work

\x0f \x3c \x2f ...

IMPROVING OUR CHANCES: NOP SLEDS

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... 0xbff

%ebp

…0xbdf nop nop nop …

nop is a single-byte instruction
(just moves to the next instruction)

Now we improve our chances 
of guessing by a factor of #nops

Jumping anywhere
here will work

\x0f \x3c \x2f ...

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

padding

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

padding

But it has to be something; 
we have to start writing wherever  

the input to gets/etc. begins.

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …0xbdf

good 
guesspadding

But it has to be something; 
we have to start writing wherever  

the input to gets/etc. begins.

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …nop nop nop …

nop sled

0xbdf

good 
guesspadding

But it has to be something; 
we have to start writing wherever  

the input to gets/etc. begins.

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …nop nop nop …

nop sled

0xbdf

good 
guesspadding

\x0f \x3c \x2f ...

malicious code

But it has to be something; 
we have to start writing wherever  

the input to gets/etc. begins.

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …nop nop nop …

nop sled

0xbdf

good 
guesspadding

\x0f \x3c \x2f ...

malicious code

But it has to be something; 
we have to start writing wherever  

the input to gets/etc. begins.

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …nop nop nop …

nop sled

0xbdf

good 
guesspadding

\x0f \x3c \x2f ...

malicious code

But it has to be something; 
we have to start writing wherever  

the input to gets/etc. begins.

DEFENSES
BUFFER OVERFLOW

RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?

DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …

DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …

DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …02 8d e2 10

canary

DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …02 8d e2 10

canary

nop nop nop …0xbdf \x0f \x3c \x2f ...

DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …02 8d e2 10

canary

nop nop nop …0xbdf \x0f \x3c \x2f ...

DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …02 8d e2 10

canary

nop nop nop …0xbdf \x0f \x3c \x2f ...

Not the expected value: abort

DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …02 8d e2 10

canary

nop nop nop …0xbdf \x0f \x3c \x2f ...

Not the expected value: abort

What value should the canary have?

CANARY VALUES

1. Terminator canaries (CR, LF, NULL, -1)
• Leverages the fact that scanf etc. don’t allow these

2. Random canaries
• Write a new random value @ each process start
• Save the real value somewhere in memory
• Must write-protect the stored value

3. Random XOR canaries
• Same as random canaries
• But store canary XOR some control info, instead

From StackGuard [Wagle & Cowan]

RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?

Option: Make this detectable with canaries

RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …nop nop nop …

nop sled

0xbdf

good 
guess

padding

\x0f \x3c \x2f ...

malicious code
libc

RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …nop nop nop …

nop sled

0xbdf

good 
guess

padding

libc

RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …0xbdf

good 
guess

padding

libc

RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

padding

libc

RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

padding

libc

exec()... ...printf() ... “/bin/sh”

libc

RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

padding

0x17f

known 
location

libc

exec()... ...printf() ... “/bin/sh”

libc

RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

padding

0x17f

known 
location

0x20d

libc

exec()... ...printf() ... “/bin/sh”

libc

RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?

Option: Make this detectable with canaries

Non-executable stack doesn’t work so well

ADDRESS SPACE LAYOUT RANDOMIZATION

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at
compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
 int x;

 …

Randomize where exactly these regions start

ADDRESS SPACE LAYOUT RANDOMIZATION

• Introduces return-to-libc atk

• Probes for location of usleep

• On 32-bit architectures,  
only 16 bits of entropy

• fork() keeps same offsets

Shortcomings of ASLR

RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?

Option: Make this detectable with canaries

Non-executable stack doesn’t work so well

Address Space Layout Randomization (ASLR)

Best defense: Good programming practices

BUFFER OVERFLOW PREVALENCE

0

4

8

12

16

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Significant percent of all vulnerabilities

Data from the National Vulnerability Database

https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119

void safe()
{
 char buf[80];
 fgets(buf, 80, stdin);
}

void safer()
{
 char buf[80];
 fgets(buf, sizeof(buf), stdin);
}

void safe()
{
 char buf[80];
 fgets(buf, 80, stdin);
}

void safer()
{
 char buf[80];
 fgets(buf, sizeof(buf), stdin);
}

void vulnerable()
{
 char buf[80];
 if(fgets(buf, sizeof(buf), stdin)==NULL)
 return;
 printf(buf);
}

void safe()
{
 char buf[80];
 fgets(buf, 80, stdin);
}

void safer()
{
 char buf[80];
 fgets(buf, sizeof(buf), stdin);
}

void vulnerable()
{
 char buf[80];
 if(fgets(buf, sizeof(buf), stdin)==NULL)
 return;
 printf(buf);
}

VULNERABILITIES
FORMAT STRING

PRINTF FORMAT STRINGS

int i = 10;
printf(“%d %p\n”, i, &i);

PRINTF FORMAT STRINGS

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

PRINTF FORMAT STRINGS

printf’s stack frame

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

PRINTF FORMAT STRINGS

 caller’s 
stack frame

printf’s stack frame

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

PRINTF FORMAT STRINGS

 caller’s 
stack frame

printf’s stack frame

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

PRINTF FORMAT STRINGS

 caller’s 
stack frame

printf’s stack frame

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

• printf takes variable number of arguments

• printf pays no mind to where the stack frame “ends”

• It presumes that you called it with (at least) as many arguments as specified in
the format string

PRINTF FORMAT STRINGS

 caller’s 
stack frame

printf’s stack frame

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

• printf takes variable number of arguments

• printf pays no mind to where the stack frame “ends”

• It presumes that you called it with (at least) as many arguments as specified in
the format string

PRINTF FORMAT STRINGS

 caller’s 
stack frame

printf’s stack frame

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

• printf takes variable number of arguments

• printf pays no mind to where the stack frame “ends”

• It presumes that you called it with (at least) as many arguments as specified in
the format string

PRINTF FORMAT STRINGS

 caller’s 
stack frame

printf’s stack frame

int i = 10;
printf(“%d %p\n”, i, &i);

0xffffffff0x00000000

&i10%eip%ebp &fmt…

• printf takes variable number of arguments

• printf pays no mind to where the stack frame “ends”

• It presumes that you called it with (at least) as many arguments as specified in
the format string

void vulnerable()
{
 char buf[80];
 if(fgets(buf, sizeof(buf), stdin)==NULL)
 return;
 printf(buf);
}

void vulnerable()
{
 char buf[80];
 if(fgets(buf, sizeof(buf), stdin)==NULL)
 return;
 printf(buf);
}

“%d %x"

void vulnerable()
{
 char buf[80];
 if(fgets(buf, sizeof(buf), stdin)==NULL)
 return;
 printf(buf);
}

 caller’s 
stack frame

0xffffffff0x00000000

%eip%ebp &fmt…

“%d %x"

void vulnerable()
{
 char buf[80];
 if(fgets(buf, sizeof(buf), stdin)==NULL)
 return;
 printf(buf);
}

 caller’s 
stack frame

0xffffffff0x00000000

%eip%ebp &fmt…

“%d %x"

void vulnerable()
{
 char buf[80];
 if(fgets(buf, sizeof(buf), stdin)==NULL)
 return;
 printf(buf);
}

 caller’s 
stack frame

0xffffffff0x00000000

%eip%ebp &fmt…

“%d %x"

FORMAT STRING VULNERABILITIES

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

• printf(“%d %d %d %d …”);

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

• printf(“%d %d %d %d …”);
• Prints a series of stack entries as integers

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

• printf(“%d %d %d %d …”);
• Prints a series of stack entries as integers

• printf(“%08x %08x %08x %08x …”);

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

• printf(“%d %d %d %d …”);
• Prints a series of stack entries as integers

• printf(“%08x %08x %08x %08x …”);
• Same, but nicely formatted hex

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

• printf(“%d %d %d %d …”);
• Prints a series of stack entries as integers

• printf(“%08x %08x %08x %08x …”);
• Same, but nicely formatted hex

• printf(“100% no way!”)

FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

• printf(“%d %d %d %d …”);
• Prints a series of stack entries as integers

• printf(“%08x %08x %08x %08x …”);
• Same, but nicely formatted hex

• printf(“100% no way!”)
• WRITES the number 3 to address pointed to by stack entry

FORMAT STRING PREVALENCE

0

0.125

0.25

0.375

0.5

2002 2004 2006 2008 2010 2012 2014 2016

% of
vulnerabilities
that involve

format string
bugs

http://web.nvd.nist.gov/view/vuln/statistics

WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
 int len = read_int_from_network();
 char *p = read_string_from_network();
 if(len > BUF_SIZE) {
 printf(“Too large\n”);
 return;
 }
 memcpy(buf, p, len);
}

WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
 int len = read_int_from_network();
 char *p = read_string_from_network();
 if(len > BUF_SIZE) {
 printf(“Too large\n”);
 return;
 }
 memcpy(buf, p, len);
}

void *memcpy(void *dest, const void *src, size_t n);

WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
 int len = read_int_from_network();
 char *p = read_string_from_network();
 if(len > BUF_SIZE) {
 printf(“Too large\n”);
 return;
 }
 memcpy(buf, p, len);
}

void *memcpy(void *dest, const void *src, size_t n);

typedef unsigned int size_t;

WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
 int len = read_int_from_network();
 char *p = read_string_from_network();
 if(len > BUF_SIZE) {
 printf(“Too large\n”);
 return;
 }
 memcpy(buf, p, len);
}

void *memcpy(void *dest, const void *src, size_t n);

typedef unsigned int size_t;

Negative

WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
 int len = read_int_from_network();
 char *p = read_string_from_network();
 if(len > BUF_SIZE) {
 printf(“Too large\n”);
 return;
 }
 memcpy(buf, p, len);
}

void *memcpy(void *dest, const void *src, size_t n);

typedef unsigned int size_t;

Ok

Negative

WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
 int len = read_int_from_network();
 char *p = read_string_from_network();
 if(len > BUF_SIZE) {
 printf(“Too large\n”);
 return;
 }
 memcpy(buf, p, len);
}

void *memcpy(void *dest, const void *src, size_t n);

typedef unsigned int size_t;

Ok

Negative

Implicit cast to unsigned

VULNERABILITIES
INTEGER OVERFLOW

WHAT’S WRONG WITH THIS CODE?

void vulnerable()
{
 size_t len;
 char *buf;

 len = read_int_from_network();
 buf = malloc(len + 5);
 read(fd, buf, len);
 ...
}

WHAT’S WRONG WITH THIS CODE?

void vulnerable()
{
 size_t len;
 char *buf;

 len = read_int_from_network();
 buf = malloc(len + 5);
 read(fd, buf, len);
 ...
}

HUGE

WHAT’S WRONG WITH THIS CODE?

void vulnerable()
{
 size_t len;
 char *buf;

 len = read_int_from_network();
 buf = malloc(len + 5);
 read(fd, buf, len);
 ...
}

HUGE

Wrap-around

WHAT’S WRONG WITH THIS CODE?

void vulnerable()
{
 size_t len;
 char *buf;

 len = read_int_from_network();
 buf = malloc(len + 5);
 read(fd, buf, len);
 ...
}

HUGE

Wrap-around

Takeaway: You have to know the semantics
of your programming language to avoid these errors

INTEGER OVERFLOW PREVALENCE

0

0.5

1

1.5

2

2.5

2002 2004 2006 2008 2010 2012 2014 2016

% of vulnerabilities that 
involve integer overflows

http://web.nvd.nist.gov/view/vuln/statistics

