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TODAY’S PAPERS



REFRESHER

• How is program data laid out in memory? 

• What does the stack look like? 

• What effect does calling (and returning from) a 
function have on memory? 

• We are focusing on the Linux process model 
• Similar to other operating systems
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ALL PROGRAMS ARE STORED IN MEMORY

0

4G 0xffffffff

0x00000000

The process’s view 
of memory is that 

it owns all of it

In reality, these are 
virtual addresses; 
the OS/CPU map 
them to physical 

addresses



THE INSTRUCTIONS THEMSELVES ARE STORED IN MEMORY

Text

0

4G 0xffffffff

0x00000000
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Text

0
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0x00000000

0x4bf mov %esp,%ebp

0x4be push %ebp

0x4c1 push %ecx
0x4c2 sub $0x224,%esp

...

...



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

Init’d data static const int y=10;



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

Uninit’d data static int x;

Init’d data static const int y=10;



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

Uninit’d data static int x;

Init’d data static const int y=10;
Known at 

compile time



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at 

compile time



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at 

compile time

Set when 
process starts



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;
Known at 

compile time

Set when 
process starts

Stack
int f() {  
    int x;

 …



DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;
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DATA’S LOCATION DEPENDS ON HOW IT’S CREATED

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at 
compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
    int x;

 …
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WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler provides instructions that  
adjusts the size of the stack at runtime

Heap

0xffffffff0x00000000

Stack

Stack 
pointer

123

return

{
apportioned by the OS; 

managed in-process 
by malloc

Focusing on the stack for now
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    ...
}
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STACK LAYOUT WHEN CALLING FUNCTION

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

Arguments 
pushed in 

reverse order 
of code

Local variables  
pushed in the 
same order as 
they appear 
in the code

void func(char *arg1, int arg2, int arg3)
{
    char loc1[4]
    int  loc2;
    int  loc3;
    ...
}

Two values between the arguments 
and the local variables
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ACCESSING VARIABLES
void func(char *arg1, int arg2, int arg3)
{
    char loc1[4]
    int  loc2;
    int  loc3;
    loc2++;
}

Q: Where is (this) loc2?
A: -8(%ebp)

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

- I don’t know where loc2 is,
- and I don’t know how many args
- but loc2 is always 8B before “???”s

%ebp
Frame pointer



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0x00000000 0xffffffff



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0x00000000 0xffffffff

0xbfff03b8



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0x00000000 0xffffffff

%ebp

0xbfff03b8

0xbfff03b8



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8

0xbfff03b8

0xbfff0720



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8

0xbfff03b8

0xbfff0720

pushl %ebp



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl  %esp %ebp /* %ebp = %esp */



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl  %esp %ebp /* %ebp = %esp */



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl  %esp %ebp /* %ebp = %esp */

0xbfff0200



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl  %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl  %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200

0xbfff03b8



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl  %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200

0xbfff03b8

movl  (%ebp) %ebp /* %ebp = (%ebp) */



NOTATION
%ebp A memory address

(%ebp) The value at memory address %ebp  
(like dereferencing a pointer)

0xbfff0720
0x00000000 0xffffffff

%ebp

0xbfff03b8
%esp

0xbfff03b8

0xbfff0720

pushl %ebp

0xbfff03b8

movl  %esp %ebp /* %ebp = %esp */

0xbfff0200

0xbfff0200

0xbfff03b8

movl  (%ebp) %ebp /* %ebp = (%ebp) */



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp %ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp

Q: How do we restore %ebp?

%ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
} Q: How do we restore %ebp?

%ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
} Q: How do we restore %ebp?

%ebp

%esp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
} Q: How do we restore %ebp?

%ebp

%ebp

1. Push %ebp before locals

%esp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp

Q: How do we restore %ebp?

%ebp

%ebp

1. Push %ebp before locals

%esp

2. Set %ebp to current %esp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp

Q: How do we restore %ebp?

%ebp

%ebp

1. Push %ebp before locals

3. Set %ebp to(%ebp) at return

%esp

2. Set %ebp to current %esp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp %ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
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before call

%ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp

Q: How do we resume here?

Push next %eip 
before call

%eip

%ebp



RETURNING FROM FUNCTIONS

Stack frame 
for this call to func

0xffffffff0x00000000

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
    ...
    func(“Hey”, 10, -3);
    ...
}

%ebp

Q: How do we resume here?

Push next %eip 
before call

Set %eip to 4(%ebp) 
at return

%eip

%ebp
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control returns to you: %eip+something 

3.Jump to the function’s address
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5.Set frame pointer %ebp to where the end of the stack is right now: %esp 
6.Push local variables onto the stack; access them as offsets from %ebp



STACK & FUNCTIONS: SUMMARY

Calling function: 
1.Push arguments onto the stack (in reverse) 
2.Push the return address, i.e., the address of the instruction you want run after 
control returns to you: %eip+something 

3.Jump to the function’s address

Called function: 
4.Push the old frame pointer onto the stack: %ebp 
5.Set frame pointer %ebp to where the end of the stack is right now: %esp 
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function: 
7.Reset the previous stack frame: %ebp = (%ebp)   /* copy it off first */ 
8.Jump back to return address: %eip = 4(%ebp)      /* use the copy */
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BUFFER OVERFLOWS: HIGH LEVEL

• Buffer = 
• Contiguous set of a given data type 
• Common in C 

- All strings are buffers of char’s 

• Overflow = 
• Put more into the buffer than it can hold 

• Where does the extra data go? 

• Well now that you’re experts in memory layouts…



A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
    char buffer[4];
    strcpy(buffer, arg1);
    ...
}

int main()
{
    char *mystr = “AuthMe!”;
    func(mystr);
    ...
}
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{
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    ...
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{
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A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
    char buffer[4];
    strcpy(buffer, arg1);
    ...
}

int main()
{
    char *mystr = “AuthMe!”;
    func(mystr);
    ...
}

&arg100 00 00 00

buffer

A  u  t  h

Upon return, sets %ebp to 0x0021654d
M e ! \0

%ebp4d 65 21 00 %eip

SEGFAULT (0x00216551)



A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
    int authenticated = 0;
    char buffer[4];
    strcpy(buffer, arg1);
    if(authenticated) { ...
}

int main()
{
    char *mystr = “AuthMe!”;
    func(mystr);
    ...
}
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void func(char *arg1)
{
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A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
    int authenticated = 0;
    char buffer[4];
    strcpy(buffer, arg1);
    if(authenticated) { ...
}

int main()
{
    char *mystr = “AuthMe!”;
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    ...
}
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void func(char *arg1)
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    int authenticated = 0;
    char buffer[4];
    strcpy(buffer, arg1);
    if(authenticated) { ...
}

int main()
{
    char *mystr = “AuthMe!”;
    func(mystr);
    ...
}
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void func(char *arg1)
{
    int authenticated = 0;
    char buffer[4];
    strcpy(buffer, arg1);
    if(authenticated) { ...
}
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{
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void func(char *arg1)
{
    int authenticated = 0;
    char buffer[4];
    strcpy(buffer, arg1);
    if(authenticated) { ...
}
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{
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    ...
}
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A BUFFER OVERFLOW EXAMPLE
void func(char *arg1)
{
    int authenticated = 0;
    char buffer[4];
    strcpy(buffer, arg1);
    if(authenticated) { ...
}

int main()
{
    char *mystr = “AuthMe!”;
    func(mystr);
    ...
}

&arg1%eip%ebp00 00 00 0000 00 00 00

authenticatedbuffer

M e ! \0

4d 65 21 00A  u  t  h

Code still runs; user now ‘authenticated’



void vulnerable()
{
    char buf[80];
    gets(buf);
}



void vulnerable()
{
    char buf[80];
    gets(buf);
}

void still_vulnerable()
{
    char *buf = malloc(80);
    gets(buf);
}



void safe()
{
    char buf[80];
    fgets(buf, 64, stdin);
}



void safe()
{
    char buf[80];
    fgets(buf, 64, stdin);
}

void safer()
{
    char buf[80];
    fgets(buf, sizeof(buf), stdin);
}





USER-SUPPLIED STRINGS

• In these examples, we were providing our own 
strings 

• But they come from users in myriad aways 
• Text input 
• Network packets 
• Environment variables 
• File input…



WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
    char buffer[4];
    strcpy(buffer, arg1);
    ...
}

&mystr%eip%ebp00 00 00 00

buffer



WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
    char buffer[4];
    strcpy(buffer, arg1);
    ...
}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)



WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
    char buffer[4];
    strcpy(buffer, arg1);
    ...
}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)

All ours!



WHAT’S THE WORST THAT CAN HAPPEN?

void func(char *arg1)
{
    char buffer[4];
    strcpy(buffer, arg1);
    ...
}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)

All ours!

What could you write to memory to wreak havoc?



FIRST A RECAP: ARGS
#include <stdio.h>

void func(char *arg1, int arg2, int arg3)
{
    printf(“arg1 is at %p\n”, &arg1);
    printf(“arg2 is at %p\n”, &arg2);
    printf(“arg3 is at %p\n”, &arg3);
}

int main()
{
    func(“Hello”, 10, -3);
    return 0;
}
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#include <stdio.h>

void func(char *arg1, int arg2, int arg3)
{
    printf(“arg1 is at %p\n”, &arg1);
    printf(“arg2 is at %p\n”, &arg2);
    printf(“arg3 is at %p\n”, &arg3);
}

int main()
{
    func(“Hello”, 10, -3);
    return 0;
}

&arg1 < &arg2 < &arg3? &arg1 > &arg2 > &arg3?

What will happen?



FIRST A RECAP: LOCALS
#include <stdio.h>

void func()
{
    char loc1[4];
    int  loc2;
    int  loc3;
    printf(“loc1 is at %p\n”, &loc1);
    printf(“loc2 is at %p\n”, &loc2);
    printf(“loc3 is at %p\n”, &loc3);
}

int main()
{
    func();
    return 0;
}



FIRST A RECAP: LOCALS
#include <stdio.h>

void func()
{
    char loc1[4];
    int  loc2;
    int  loc3;
    printf(“loc1 is at %p\n”, &loc1);
    printf(“loc2 is at %p\n”, &loc2);
    printf(“loc3 is at %p\n”, &loc3);
}

int main()
{
    func();
    return 0;
}

&loc1 < &loc2 < &loc3? &loc1 > &loc2 > &loc3?

What will happen?
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GDB: YOUR NEW BEST FRIEND

i f

i r

x/<n> <addr>

b <function>  
s

Set a breakpoint at <function> 
step through execution (into calls)

Examine <n> bytes of memory  
starting at address <addr>

Show info about registers 
(%ebp, %eip, %esp, etc.)

Show info about the current frame 
(prev. frame, locals/args, %ebp/%eip)



BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

char loc1[4];



BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

gets(loc1);  
strcpy(loc1, <user input>); 
memcpy(loc1, <user input>); 
etc.

char loc1[4];



BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>); 
memcpy(loc1, <user input>); 
etc.

char loc1[4];



BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>); 
memcpy(loc1, <user input>); 
etc.

char loc1[4];



BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>); 
memcpy(loc1, <user input>); 
etc.

char loc1[4];

Can over-write other data (“AuthMe!”)



BUFFER OVERFLOW

caller’s dataarg2arg1%ebploc1loc2 %eip+…code

Input writes from low to high addresses

gets(loc1);  
strcpy(loc1, <user input>); 
memcpy(loc1, <user input>); 
etc.

char loc1[4];

Can over-write other data (“AuthMe!”)

Can over-write the program’s control flow (%eip)



INJECTION
CODE



HIGH-LEVEL IDEA

void func(char *arg1)
{
    char buffer[4];
    sprintf(buffer, arg1);
    ...
}

&arg1%eip%ebp00 00 00 00

buffer

... …
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HIGH-LEVEL IDEA

void func(char *arg1)
{
    char buffer[4];
    sprintf(buffer, arg1);
    ...
}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load our own code into memory

Haxx0r c0d3text

%eip

(2) Somehow get %eip to point to it

... …



THIS IS NONTRIVIAL

• Pulling off this attack requires getting a few things 
really right (and some things sorta right) 

• Think about what is tricky about the attack 
• The key to defending it will be to make the hard parts 

really hard



CHALLENGE 1: LOADING CODE INTO MEMORY

• It must be the machine code instructions (i.e., 
already compiled and ready to run) 

• We have to be careful in how we construct it: 
• It can’t contain any all-zero bytes 

- Otherwise, sprintf / gets / scanf / … will stop copying 
- How could you write assembly to never contain a full zero 

byte? 

• It can’t make use of the loader (we’re injecting) 
• It can’t use the stack (we’re going to smash it)



WHAT KIND OF CODE WOULD WE WANT TO RUN?

• Goal: full-purpose shell 
• The code to launch a shell is called “shell code” 
• It is nontrivial to it in a way that works as injected code 

- No zeroes, can’t use the stack, no loader dependence 

• There are many out there 
- And competitions to see who can write the smallest 

• Goal: privilege escalation 
• Ideally, they go from guest (or non-user) to root



SHELLCODE
#include <stdio.h>
int main( ) {
   char *name[2];
   name[0] = “/bin/sh”;
   name[1] = NULL;
   execve(name[0], name, NULL);
}
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SHELLCODE
#include <stdio.h>
int main( ) {
   char *name[2];
   name[0] = “/bin/sh”;
   name[1] = NULL;
   execve(name[0], name, NULL);
}

xorl %eax, %eax
pushl %eax
pushl $0x68732f2f
pushl $0x6e69622f
movl %esp,%ebx
pushl %eax
...

A
ss

em
bl

y

“\x31\xc0”
“\x50”
“\x68””//sh”
“\x68””/bin”
“\x89\xe3”
“\x50”
...

M
achine code

(Part of) 
your 
input



PRIVILEGE ESCALATION
• More on Unix permissions later, but for now… 

• Recall that each file has: 
• Permissions: read / write / execute 
• For each of: owner / group / everyone else 

• Permissions are defined over userid’s and groupid's 
• Every user has a userid 
• root’s userid is 0 

• Consider a service like passwd 
• Owned by root (and needs to do root-y things) 
• But you want any user to be able to execute it



REAL VS EFFECTIVE USERID
• (Real) Userid = the user who ran the process 

• Effective userid = what is used to determine what 
permissions/access the process has 

• Consider passwd: root owns it, but users can run it 
• getuid() will return who ran it (real userid) 
• seteuid(0) to set the effective userid to root 

- It’s allowed to because root is the owner 

• What is the potential attack?



REAL VS EFFECTIVE USERID
• (Real) Userid = the user who ran the process 

• Effective userid = what is used to determine what 
permissions/access the process has 

• Consider passwd: root owns it, but users can run it 
• getuid() will return who ran it (real userid) 
• seteuid(0) to set the effective userid to root 

- It’s allowed to because root is the owner 

• What is the potential attack?

If you can get a root-owned process to run 
setuid(0)/seteuid(0), then you get root permissions



CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward 
• With this alone we want to get it to jump to our code 
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

... …
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CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

• All we can do is write to memory from buffer onward 
• With this alone we want to get it to jump to our code 
• We have to use whatever code is already running

Thoughts?

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... … \x0f \x3c \x2f ...



STACK & FUNCTIONS: SUMMARY

Calling function: 
1.Push arguments onto the stack (in reverse) 
2.Push the return address, i.e., the address of the instruction you want run after 
control returns to you: %eip+something 

3.Jump to the function’s address 

Called function: 
4.Push the old frame pointer onto the stack: %ebp 
5.Set frame pointer %ebp to where the end of the stack is right now: %esp 
6.Push local variables onto the stack; access them as offsets from %ebb 

Returning function: 
7.Reset the previous stack frame: %ebp = (%ebp) 
8.Jump back to return address: %eip = 4(%ebp)



HIJACKING THE SAVED %EIP
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...

0xbff
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… \x0f \x3c \x2f ...
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HIJACKING THE SAVED %EIP
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But how do we know the address?

%ebp

… \x0f \x3c \x2f ...
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HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff
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…
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HIJACKING THE SAVED %EIP

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

...

0xbff

0xbff

%ebp

…

What if we are wrong?

0xbdf

This is most likely data, 
so the CPU will panic 
(Invalid Instruction)

\x0f \x3c \x2f ...
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CHALLENGE 3: FINDING THE RETURN ADDRESS

• If we don’t have access to the code, we don’t know how 
far the buffer is from the saved %ebp

• One approach: just try a lot of different values!

• Worst case scenario: it’s a 32 (or 64) bit memory space, 
which means 232 (264) possible answers

• But without address randomization: 
• The stack always starts from the same, fixed address 
• The stack will grow, but usually it doesn’t grow very deeply 

(unless the code is heavily recursive)



IMPROVING OUR CHANCES: NOP SLEDS
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0xbff
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nop is a single-byte instruction 
(just moves to the next instruction)
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IMPROVING OUR CHANCES: NOP SLEDS

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... 0xbff

%ebp

…0xbdf nop nop nop …

nop is a single-byte instruction 
(just moves to the next instruction)

Now we improve our chances 
of guessing by a factor of #nops

Jumping anywhere 
here will work

\x0f \x3c \x2f ...
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BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

&arg1%eip%ebp00 00 00 00

buffer

text
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... …nop nop nop …

nop sled

0xbdf

good 
guesspadding
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But it has to be something; 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the input to gets/etc. begins.



DEFENSES
BUFFER OVERFLOW



RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?
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DETECTING OVERFLOWS WITH CANARIES

00 00 00 00

buffer

text

%eip

... &arg1%eip%ebp …02 8d e2 10

canary

nop nop nop …0xbdf \x0f \x3c \x2f ...

Not the expected value: abort

What value should the canary have?



CANARY VALUES

1. Terminator canaries (CR, LF, NULL, -1) 
• Leverages the fact that scanf etc. don’t allow these 

2. Random canaries 
• Write a new random value @ each process start 
• Save the real value somewhere in memory 
• Must write-protect the stored value 

3. Random XOR canaries 
• Same as random canaries 
• But store canary XOR some control info, instead

From StackGuard [Wagle & Cowan]



RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?

Option: Make this detectable with canaries
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RETURN TO LIBC

&arg1%eip%ebp00 00 00 00

buffer

text

%eip

... …

padding

0x17f

known 
location

0x20d

libc

exec()... ...printf() ... “/bin/sh”

libc



RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?

Option: Make this detectable with canaries

Non-executable stack doesn’t work so well



ADDRESS SPACE LAYOUT RANDOMIZATION

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at 
compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
    int x;

 …

Randomize where exactly these regions start



ADDRESS SPACE LAYOUT RANDOMIZATION

• Introduces return-to-libc atk 

• Probes for location of usleep 

• On 32-bit architectures,  
only 16 bits of entropy 

• fork() keeps same offsets

Shortcomings of ASLR



RECALL OUR CHALLENGES

• Putting code into the memory (no zeroes)  

• Getting %eip to point to our code (dist buff to stored eip) 

• Finding the return address (guess the raw address)

How can we make these even more difficult?

Option: Make this detectable with canaries

Non-executable stack doesn’t work so well

Address Space Layout Randomization (ASLR) 

Best defense: Good programming practices



BUFFER OVERFLOW PREVALENCE

0
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16

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Significant percent of all vulnerabilities

Data from the National Vulnerability Database 

https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119
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{
    char buf[80];
    fgets(buf, sizeof(buf), stdin);
}

void vulnerable()
{
    char buf[80];
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        return;
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}
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void vulnerable()
{
    char buf[80];
    if(fgets(buf, sizeof(buf), stdin)==NULL)
        return;
    printf(buf);
}

 caller’s 
stack frame
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FORMAT STRING VULNERABILITIES

• printf(“100% dml”);
• Prints stack entry 4 byes above saved %eip

• printf(“%s”);
• Prints bytes pointed to by that stack entry

• printf(“%d %d %d %d …”);
• Prints a series of stack entries as integers

• printf(“%08x %08x %08x %08x …”);
• Same, but nicely formatted hex

• printf(“100% no way!”)
• WRITES the number 3 to address pointed to by stack entry
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WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
    int len = read_int_from_network();
    char *p = read_string_from_network();
    if(len > BUF_SIZE) {
        printf(“Too large\n”);
        return;
    }
    memcpy(buf, p, len);
}
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WHAT’S WRONG WITH THIS CODE?

#define BUF_SIZE 16
char buf[BUF_SIZE];
void vulnerable()
{
    int len = read_int_from_network();
    char *p = read_string_from_network();
    if(len > BUF_SIZE) {
        printf(“Too large\n”);
        return;
    }
    memcpy(buf, p, len);
}

void *memcpy(void *dest, const void *src, size_t n);

typedef unsigned int size_t;

Ok

Negative

Implicit cast to unsigned



VULNERABILITIES
INTEGER OVERFLOW
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WHAT’S WRONG WITH THIS CODE?

void vulnerable()
{
    size_t len;
    char *buf;

    len = read_int_from_network();
    buf = malloc(len + 5);
    read(fd, buf, len);
    ...
}

HUGE

Wrap-around

Takeaway: You have to know the semantics 
of your programming language to avoid these errors
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