CLASSIC
MEMORY ATKS & DEFS

GRAD SEC

SEP 07 2017

&

TODAY'S PAPERS

.00 Farack 4% Do.

Volume Soven, Issue Forty-Nine
rile 14 of L&

nmegreag, race, ard andargrannd.irg
bring you

EXAXNKXAKAREARKEXARR XA KRAKXCXARXCXAK
Spashing The Stack For Fun and Profit
sttt dtedbdtediitedbitestistedsdeedd

by fleph Crne
alephléunderqround.cxrg

“umash the stagd” [C programming) n. On many C implenentatiooe
il .s possible L0 corxudl Lhe execullon silack by wriling past
tha ard of an array édaclarad avte ‘r a rantine. OCndm thae dnan
this is said to smash the stagk, anc can oause return fron the
rcatine Lo jumg Lo a randon address. Thais can produse sone ol
the xost lnsidiour data-dependent bugs konown to maniind.
Variants nclude trash Lthe stack, scribole Lhe stack, mangle

tha atpck; tha carm aung <he asaek ia rot wsad, aa thia ia

never done intentiomally. See cpam; see alsco alias bug,

tandango on core, menory leak, precedence lossage, OVErIUR SCIew.

Introduction

Over the last few months there has been & large increase of butler
avartleow va'naranilivies kairg hath dissoverad and explaited. Evamn’an
of these are eyelog, splitvt, vweodnsil B.7.5, Linux/FreeBSC nount, Xt
library, at, etc. This pader attenpts to explain what butfer owerilows
are, anéd houw their pun’olea wark.

Ras e knowimige 0t assenbly is required. An anderstanding of virtosl
mumory concwpis, and sxpesiwnoe with gdb are very helpful but not necessary.
We also assure we are workinc with an Inte. xB¢ C2U, and that the coerating
agseem fa Linux.

Scme basic detinitions detore we decin: A butfer is simply a contiqucus
alonk af corputar apmary that halda malein’e inatancea of the aame datn
type, € prugrammere aornelly associste with the vood buifer arrays. Host
comncnny, character arrays. Asrays, -ike all variables in C, can be
declared either ataeia or dyramie. aStaeie varinklies are allneated ar lead
time oo the date swsmsot, Dyownic varisblee ace allocated at run tioe on
the stack. Zo overtlow is to tlow, or till over the top, orins, oOr >oundcs.
We will monpern ocuraeleca only with the everflow of dynamie bmffara, otharviae
houwn ae staci-based ulfer vverflows.

Prucess Memsy Orcanisation

StackGuard: Automatic Adaptive Detection and Prevention of
RBuffer-Overflow Attacks™

Crispin Cowan, Calton Pu, Dave Muser, Healer Hinton ! Junathiag Walsole,
Prat Bakke, Steve Beattic, Aaron Gricr, Porry Wagle and Qian Zhang
Department of Compiater Scivnce oand Engineering
Oregon Graduale Institute of Science & Tecknology
immorixreyuestGose ogledu, htpo/oszo g od 2 DISC/projrctsicemunia

Abstract

Tais paper presents 2 systemadc sclmlon to the per-
sistzm oroblam of buffer cverflons amacks. Buff'sr over-
Jow attedks i noterietyin |96 s part of the Mueris
Wiz mivcilenl om e Tuternet. Wisle it is "aily simpe
m fic Indivitusl boffer mverflow valnemtlids, b e
oerfloa siacks aratinue & thic dgy. Humdreds of o
tacks have baen discuversd, sed whiile wost of the oba.
oo valnensbliges havs now been satcted | mose sophis.

stz bl oo Tow dlsdos continge o e e

We describe StacoGaerd: asimgle compiler technique
that virtually eliminstes bufTer overfow valnerabilities
wihvaly okl pafimeace pasd ks, 2 vikyed pro-
grams that ae recompiled wih the StackGuard conss
pler extension 0o longer yieke comtrol tn the attacker,
bt rathcr ootor a fal-sefc staie, Theac progrms xquaire
a0 soarce code shanges at wl, and arc binary-compatiblc
with ovstng operating systorms mxd libranics. We de-
seribe the comp ler tecmigue (e sinple paten to aceh
as well &8 o sct of vanacicas on the lechraque that trade-
off betwemn perstmtion ~eastir<c ard pecformunce. We
prescat o penmeatal results of bolh the penctration resis-
tence and the perfanance mmpeet of this eehnigr,

*THis rowcar o s b pantia by supgaxal by DARFA catimts P2
W L0AR] ard FYO2.98. 1OV
TRycesen Folp oo Usive sity

1 Introduction

This waper peesents a systematic solutice to the pers
sisticat preblem of Huffer ovaflow miacks. Duffer over-
How nitack gamcd notorety 13 AR s pact of the Morris
Weem incideat on the Intornct 1231, Desplie the fax thot
fixing iedividua bafkr oveeflow valaceabilitics is fuirdy
simple, buffar overflow uttncke contiane ‘o thiscoy. asre
ported in the SANS Natwork Sccurity Digost:

PuFer overows sppear ta be the mest
comrxn peoblems reported in May, with
depradaim-ol-scvive pecbicas 3 disent sa-
oed, Many of the buFer overflow problems az
perhably the result of carelzss amgramming,
undd coald have bocn Found and conecked by
ths vendors. before relcesing the softwar, if
ths varcers hed perormed clemenaay test ng
oe ook reviews elong the wayl4

The twese woedilznis that, while il vidial e Mes oner-
Now vilserah lities we s ople 0 wach, the voloeatili-
tes ara peof igate. Thousancs of lines of kgacy code are
st running s privileged dacrens (317120 soot) that
aowtedn sanxxces softeare anoes. New progias ac e
ing developed with more care, bat are ofter still dowel-
aped using unsafe largasges sadk s C, wheee simp e er-
rars can leeve sericus vilnerabilities.

“Ihe contmued sa00ess of thess wtecks & alse dx to
the "patchy™ neture by whieh we protoct against sech ot-
taxcs, The lifzeycle of abuifer overflow attack is simple:
A (rnleions) user tinds the vulecraxity ie ahigh v priv-

REFRESHER

* How is program data laid out in memory?
* What does the stack look like?

« What effect does calling (and returning from) a
function have on memory?

» We are focusing on the Linux process model

» Similar to other operating systems

ALL PROGRAMS ARE STORED IN MEMORY

ALL PROGRAMS ARE STORED IN MEMORY

4G Oxffffffff

0 0x00000000

ALL PROGRAMS ARE STORED IN MEMORY

4G Oxffffffff

The process’s view
of memory is that
it owns all of it

0 0x00000000

ALL PROGRAMS ARE STORED IN MEMORY

4@ Oxffffffff

\

The process’s view In reality, these are
of memory is that virtual addresses;
it owns all of it the OS/CPU map

them to physical
addresses

/

0 0x00000000

THE INSTRUCTIONS THEMSELVES ARE STORED IN MEMORY

4G Oxffffffff

O| 0x00000000

THE INSTRUCTIONS THEMSELVES ARE STORED IN MEMORY

4G Oxffffffff

0x4c2 sub $0x224,%esp
0x4cl push %ecx

O0x4bf mov %esp, %ebp

Ox4be push %ebp

0x00000000

0

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

static const int y=10;

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

static int x;

static const int y=10;

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

static int x;

Known at

. . static const int y=10;
compile time

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

static int x;

Known at

. . static const int y=10;
compile time

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Set when O | OXffFEEFEE
process starts _

static int x;

Known at

. . static const int y=10;
compile time

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Set when O OXffFEEFEE
process starts F int £0) 1
_ int x;

_ static const int y=10;

0 0x00000000

Known at
compile time

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff
S| T e
int X;

_ static const int y=10;

0 0x00000000

Set when
process starts

Known at
compile time

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Set when 4G Oxffffffff
process starts int £() {
int X;
Runtime
malloc(sizeof(long));
static int x;
Known at

_ static const int y=10;

0 0x00000000

compile time

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

0x00000000 Oxffffffff

|| Hep — +- Stack

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

_ Heap —— <—T_

Stack
pointer

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

_ Hesp — <—T_

Stack PHSE ;
. pus
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T_

Stack PHSE ;
. pus
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

|

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T._

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

|

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T.._

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

|

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T..._

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T..._

Stack push 1
. push 2
pomter push 3

return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

...T_

Stack push 1

. push 2
pointer " 3

return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

00

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
apportioned by the OS; Stack push 1
managed in-process pointer gﬁzﬁ ;
by ma”OC return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

00

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
apportioned by the OS; Stack push 1
managed in-process pointer gﬁzﬁ ;
by ma”OC return

Focusing on the stack for now

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

0x00000000 Oxffffffff

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
0x00000000 Oxffffffff
Arguments
pushed in

reverse order
of code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
0x00000000 Oxffffffff
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
0x00000000 Oxffffffff
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
Two values between the arguments

0x00000000 and the local variables OXfEfEfEfff
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]
int loc2;
int 1loc3;
loc2++;

0x00000000 Oxffffffff

|~ loc2 locl 772 777 argl arg2 arg3 callersdata

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]
int loc2;

int loc3; Q: Where is (this) loc2?
loc2++;

0x00000000 Oxffffffff

| loc2 locl 777 777 argl arg2 arg3 callersdata |

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]
int loc2;

int loc3; Q: Where is (this) loc2?
loc2++;

0x00000000 Oxffffffff

Oxbfff£f323

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]
int loc2;

int loc3; Q: Where is (this) loc2?
loc2++;
}
0x00000000 Oxffffffff
Oxbfff£f323

Undecidable at
compile time

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]
int loc2;

int loc3; Q: Where is (this) loc2?
loc2++;
}
0x00000000 Oxffffffff
Oxbfff£f323
Undecidable at - | don't know where loc2 is,

compile time

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3; Q: Where is (this) loc2?
loc2++;

}

0x00000000 Oxffffffff
loc2 loc1 7?77 7?7 argl arg2 arg3 caller’s data

]

Oxbfff£f323

Variable args?

Undecidable at - | don't know where loc2 is,
compile time - and | don’t know how many args

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3; Q: Where is (this) loc2?
loc2++;

}

0x00000000 Oxffffffff

loc2 loc1 7?77 7?7 argl arg2 arg3 caller’s data

T4B 4B 4B 4B \Variable args?

Oxbfff£f323

Undecidable at - | don't know where loc2 is,
compile time - and | don’t know how many args

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3; Q: Where is (this) loc2?
loc2++;

}

0x00000000 Oxffffffff

loc2 loc1 7?77 7?7 argl arg2 arg3 caller’s data

T4B 4B 4B 4B \Variable args?

Oxbffff323
Undecidable at - | don't know where loc2 is,
compile time - and | don’t know how many args

- but loc2 is always 8B before “?77?"s

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3; Q: Where is (this) loc2?
loc2++;

}

0x00000000 Oxffffffff

loc2 loc1 7?77 7?7 argl arg2 arg3 caller’s data

- | don't know where loc2 is,
- and | don’t know how many args
- but loc2 is always 8B betfore “?77?"s

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3; Q: Where is (this) loc2?
loc2++;

}

0x00000000 Oxffffffff

Stack frame
for this call to func

- | don't know where loc2 is,
- and | don’t know how many args
- but loc2 is always 8B betfore “?77?"s

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3; Q: Where is (this) loc2?
loc2++;

}

0x00000000 Oxffffffff

Stack frame
2 ebp for this call to func
Frame pointer - | don't know where loc2 is,
- and | don’t know how many args
- but loc2 is always 8B betfore “?77?"s

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)
{
char locl[4]
int loc2;
int loc3; Q: Where is (this) loc2?
} loc2++; A -8(%ebp)
0x00000000 Oxffffffff

Stack frame
2 ebp for this call to func
Frame pointer - | don't know where loc2 is,
- and | don’t know how many args
- but loc2 is always 8B betfore “?77?"s

NOTATION

sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

NOTATION

sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

0x00000000 Oxffffffff

NOTATION

0xbff£03b8 sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

0x00000000 Oxffffffff

NOTATION

0xbff£03b8 sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

Oxbfff03b8

0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
zesp
l 0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
zesp
l 0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
zesp
{ 0xbf££03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

zesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

zesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

zesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

6xbf££6726- (¥€bP) The value at memory address %ebp
0xbff£03b8 . . .
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

6xbf££6726- (¥€bP) The value at memory address %ebp
0xbff£03b8 . . .
(like dereferencing a pointer)

pushl %ebp
mov.l %eSp %ebp /* %ebp = %esp */
movl (%ebp) %ebp /+ sebp = (3ebp) */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

6xbf££6726- (¥€bP) The value at memory address %ebp
0xbff£03b8 . . .
(like dereferencing a pointer)

pushl %ebp
mov.l %eSp %ebp /* %ebp = %esp */
movl (%ebp) %ebp /+ sebp = (3ebp) */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

3ebp

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, -3);

0x00000000 Oxffffffff

Stack frame
2 ebp for this call to func

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, -3);

0x00000000 Oxffffffff

Stack frame
2 ebp for this call to func

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, -3);

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, -3);

"* Q: How do we restore %ebp?

}

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, -3);

"* Q: How do we restore %ebp?

}

0x00000000 Oxffffffff

Stack frame
for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, -3);

"* Q: How do we restore %ebp?

}

0x00000000 sesp OXFEfFffff

Stack frame
for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, -3);

"* Q: How do we restore %ebp?

}

000000000 sesp OxffEfFEfEf

Stack frame
for this call to func Sebp

1. Push %ebp before locals

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, -3);

"* Q: How do we restore %ebp?

}

000000000 sesp OxffEfFEfEf

Stack frame
sebp for this call to func Sebp

1. Push %ebp before locals
2. Set Y%ebp to current %esp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, -3);

"* Q: How do we restore %ebp?

}

000000000 sesp OxffEfFEfEf

Stack frame
sebp for this call to func Sebp

1. Push %ebp before locals

2. Set %ebp to current %esp
3. Set Y%ebp to(%ebp) at return

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, -3);

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{

func (“Hey”, 10, -=-3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax

O0x4a2 call <func>

0x49b movl $0x804.., (%esp)
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax
Ox4a2 call <func>
0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp) —— Zeip

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax
Ox4a2 call <func>

0x49b movl $0x804.., (%eSp) ¢ %eip
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax

Ox4a2 call <func> — %eip
0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

0x5bf mov %esp, 3ebp

0x5be push %ebp

Ox4a7 mov $S0x0, %eax

Ox4a2 call <func> — %eip
0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

0x5bf mov %esp, %ebp
0x5be push %ebp <4— %eip

Ox4a7 mov $S0x0, %eax

O0x4a2 call <func>

0x49b movl $0x804.., (%esp)
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

- +«——— %eip
0x5bf mov %esp, 3ebp

0x5be push %ebp

Ox4a7 mov $S0x0, %eax

O0x4a2 call <func>

0x49b movl $0x804.., (%esp)
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

0x5bf mov %esp, 3ebp

0x5be push %ebp

Ox4a7 mov $0x0,%eax — %ej_p
O0x4a2 call <func>

0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp)

0x00000000

RETURNING FROM FUNCTIONS

int main()

{

func (“Hey”, 10, -=-3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{

func (“Hey”, 10, -=-3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

Push next %eip
before call

RETURNING FROM FUNCTIONS

int main()

{

func (“Hey”, 10, -=-3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

Push next %eip
before call

RETURNING FROM FUNCTIONS

int main()

{

func (“Hey”, 10, -=-3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
sebp for this call to func Sebp

Set %eip to 4(%ebp) Push next %eip
at return before call

STACK & FUNCTIONS: SUMMARY

STACK & FUNCTIONS: SUMMARY

00

Calling function:

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

STACK & FUNCTIONS: SUMMARY

00

Calling function:

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

Called function:

4.Push the old frame pointer onto the stack: %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

STACK & FUNCTIONS: SUMMARY

00

Calling function:

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: %eip+something

3.Jump to the function’s address

Called function:

4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:

/.Reset the previous stack frame: %ebp = (%ebp) /* copy it off first */
8.Jump back to return address: %eip = 4(%ebp) /* use the copy */

BUFFER OVERFLOW
ATTACKS

BUFFER OVERFLOWS: HIGH LEVEL

00

e Buffer =

- Contiguous set of a given data type

+ CommoninC
- All strings are buffers of char’s

e Qverflow =

« Put more into the buffer than it can hold
* Where does the extra data go?

* Well now that you're experts in memory layouts...

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];

strcpy(buffer, argl);

}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
char buffer[4];

strcpy(buffer, argl);

}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

&argl

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];

strcpy(buffer, argl);

}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

| 090000 sebp ‘teip sargl

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

Upon return, sets $ebp to 0x0021654d

M e ! \O

| nu b ascsmo0 seip sargl |

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

Upon return, sets $ebp to 0x0021654d

M e ! \O

buf fer SEGFAULT (0x00216551)

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...
}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...
}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

&arqgl

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

elp &argl

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

%ebp %elip &argl

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

authenticated

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

buffer authenticated

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

At n 00000000 tebp Seip sargl

buffer authenticated

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

M e ! \O

buffer authenticated

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

Code still runs: user now 'authenticated’

M e ! \O

buffer authenticated

volid vulnerable()

{
char buf[80];
gets(buf);

volid vulnerable()
{
char buf[80];
gets(buf);
}

volid still vulnerable()

{
char *buf = malloc(80);

gets(buf);

volid safe()

{
char buf[80];
fgets(buf, 64, stdin);

volid safe()

{

char buf[80];
fgets(buf, 64, stdin);

volid safer ()

{

char buf[80];

fgets (buf,

sizeof (buf),

stdin);

IE's Role in the Google-China War

By Richard Adhikari AA Text Size
TechNewsWorld

01/15/10 12:25 PM PT

The hack attack on Google that set off the
company's ongoing standoff with China appears to have
come through a zero-day flaw in Microsoft's Internet
Explorer browser. Microsoft has released a security
advisory, and researchers are hard at work studying the
exploit. The attack appears to consist of several files, each a different piece of
malware.

= Print Version
3 E-Mail Article

Computer security companies are scurrying to cope with the fallout from the Internet Explorer
(IE) flaw that led to cyberattacks on Google and its corporate and individual customers.

The zero-day attack that exploited IE is part of a lethal cocktail of malware that is keeping
researchers very busy.

"We're discovering things on an up-to-the-minute basis, and we've seen about a dozen files
dropped on infected PCs so far,” Dmitri Alperovitch, vice president of research at McAfee Labs,
told TechNewsWorld.

The attacks on Google, which appeared to originate in China, have sparked a feud between the
Internet giant and the nation's government over censorship, and it could result in Google
pulling away from its business dealings in the country.

Pointing to the Flaw

The vulnerability in IE is an invalid pointer reference, Microsoft said in security advisory
979352, which it issued on Thursday. Under certain conditions, the invalid Eointer can be

accessed after an ob]ect is deleted, the advisory states. In specially crafted attacks, like the
ones launched against Google and its customers, IE can allow remote execution of code when

the flaw is exploited.

USER-SUPPLIED STRINGS

00

* In these examples, we were providing our own
strings

e But they come from users in myriad aways

ext input
» Network packets
- Environment variables

» File input...

WHAT'S THE WORST THAT CAN HAPPEN?

WHAT'S THE WORST THAT CAN HAPPEN?

void func(char *argl)
{
char buffer[4];
strcpy(buffer, argl);
}

buffer

strcpy will let you write as much as you want (til a "\0’)

WHAT'S THE WORST THAT CAN HAPPEN?

void func(char *argl)
{
char buffer[4];
strcpy(buffer, argl);
}
All ours!
buffer

strcpy will let you write as much as you want (til a "\0’)

WHAT'S THE WORST THAT CAN HAPPEN?

void func(char *argl)
{
char buffer[4];
strcpy(buffer, argl);
}
All ours!
buffer

strcpy will let you write as much as you want (til a "\0’)

What could you write to memory to wreak havoc?

FIRST A RECAP: ARGS

#include <stdio.h>

void func(char *argl, int arg2, int arg3)

{
printf(“argl is at %p\n”, &argl);
printf(“arg2 is at %p\n”, &argl2);
printf(“arg3 is at %p\n”, &arg3);
}

int main()

{
func(“Hello”, 10, -=-3);

return 0;

FIRST A RECAP: ARGS

00

#include <stdio.h>

void func(char *argl, int arg2, int arg3)

{
printf(“argl is at %$p\n”, &argl);
printf(“arg2 is at %$p\n”, &arg2);
printf(“arg3 is at %$p\n”, &arg3);
}
int main()
{
func(“Hello”, 10, -3);
return 0;
}

What will happen?

&argl < &arg2 < &arg3? &argl > &arg2 > &arg3?

FIRST A RECAP: LOCALS

00

#include <stdio.h>

void func()
{
char locl[4];
int 1loc2;
int loc3;
printf(“locl is at %p\n”, &locl);
printf(“loc2 is at %p\n”, &loc2);
printf(“loc3 is at %p\n”, &loc3);
}

int main()

{

func();
return 0;

FIRST A RECAP: LOCALS

00

#include <stdio.h>

void func()

{
char locl[4];
int 1loc2;
int loc3;
printf(“locl is at %p\n”, &locl);
printf(“loc2 is at %p\n”, &loc2);
printf(“loc3 is at %p\n”, &loc3);
}
int main()
{
func();
return 0;
}

What will happen?

&locl < &loc2 < &loc3? &locl > &loc2 > &loc3?

STACK & FUNCTIONS: SUMMARY

STACK & FUNCTIONS: SUMMARY

00

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Selp sebp

code caller's data

0x0

0X0~

STACK & FUNCTIONS: SUMMARY

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Selp sebp

code arg2 | caller’s data

0x0

0X0~

STACK & FUNCTIONS: SUMMARY

000

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Selp sebp

code argl arg2

0x0

0X0~

STACK & FUNCTIONS: SUMMARY

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Selp sebp

code teip+.. argl arg2 | caller’s data

0x0

0X0~

STACK & FUNCTIONS: SUMMARY

000

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Selp sebp

code teip+.. argl arg2 | caller’s data

) I

0x0

0X0~

0x0

STACK & FUNCTIONS: SUMMARY

000

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

$elp sebp

code teip+.. argl arg2 | caller’s data

0X0~

) I

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

$elp sebp

code teip+.. argl arg2 | caller’s data

) I

0X0~

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

$elp sebp

code %ebp s%eip+. argl arg2 | caller’s data

) I

0X0~

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

$elp sebp

caller's data

code 3ebp seipt. argl arg2

5 —

0X0~

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

3elp sebp

! !

0X0~

code %ebp teip+. argl arg2 | caller's data
* | l

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

3elp sebp

! !

0X0~

code loc1 %ebp %eip+. argl arg2 | caller’s data
* | l

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

3elp sebp

! !

0X0~

code loc2 loc1 %ebp teipt. argl arg2 | caller's data
* | l

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:

/.Reset the previous stack frame: %ebp = (%ebp)

8.Jump back to return address: %eip = 4(%ebp)
Telp %eb

! !

0X0~

code loc2 loc1 %ebp teipt. argl arg2 | caller's data
* | l

0x0

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:

/.Reset the previous stack frame: %ebp = (%ebp)

8.Jump back to return address: %eip = 4(%ebp)
Selip sebp

caller's data

code loc2 loc1 %ebp steip+. argl arg2

5 —

0X0~

STACK & FUNCTIONS: SUMMARY

oo

1.Push arguments of the function you're calling onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: the current %eip + (some amount)

3.Jump to the address of the function you are calling

Called function:

4.Push the old frame pointer onto the stack: %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %esp
6.Push local variables onto the stack; access them as offsets from %ebp

Returning function:

/.Reset the previous stack frame: %ebp = (%ebp)

. 8. Jump back to return address: %eip = 4(%ebp)
Seip sebp

caller's data

code loc2 loc1 %ebp steip+. argl arg2

5 —

0x0

0X0~

GDB: YOUR NEW BEST FRIEND

000000000000000000000000000000000000

1

x/<n> <addr>

b <function>

. .
0))
A Hh

00

Show info about the current frame
(prev. frame, locals/args, %ebp/%eip)

Show info about registers

(Y%oebp, %eip, %esp, etc.)

Examine <n> bytes of memory
starting at address <addr>

Set a breakpoint at <tunction>
step through execution (into calls)

BUFFER OVERFLOW

char loc1[4];

BUFFER OVERFLOW

char loc1[4

e e e e [

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

char loc1[4];

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

char loc1[4

e e e e R [

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

Can over-write other data (“AuthMe!")

char loc1[4

T e e e e)

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

Can over-write other data (“AuthMe!")

Can over-write the program’s control flow (%eip)

char loc1[4

T e e e)

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

CODE
INJECTION

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

|

buffer

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

+-00 00 00 00 %ebp teip sargl . BGECULTERN

buffer

(1) Load our own code into memory

HIGH-LEVEL IDEA

void func(char *argl)

{
char buffer[4];

sprintf (buffer, argl);

Selp

+-00 00 00 00 %ebp teip sargl . BGECULTERN

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

Selp

T Tl Haxcor c0d3 |

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

Selp

T I Haxcor 03|

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

THIS IS NONTRIVIAL

 Pulling off this attack requires getting a few things

really right (and some things sorta right)

* Think about what is tricky about the attack

» The key to defending it will be to make the hard parts
really hard

CHALLENGE 1: LOADING CODE INTO MEMORY

00

e |t must be the machine code instructions (i.e.,
already compiled and ready to run)

e \We have to be careful in how we construct it:

» |t can't contain any all-zero bytes

Otherwise, sprintf / gets / scanf / ... will stop copying
How could you write assembly to never contain a full zero

byte?
» |t can’t make use of the loader (we're injecting)

» It can't use the stack (we're going to smash it)

WHAT KIND OF CODE WOULD WE WANT TO RUN?

00

» Goal: full-purpose shell

« The code to launch a shell is called “shell code”

» Itis nontrivial to it in a way that works as injected code

- No zeroes, can’t use the stack, no loader dependence

+ There are many out there

- And competitions to see who can write the smallest

» Goal: privilege escalation

- |deally, they go from guest (or non-user) to root

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

Xorl %eax, %eax
pushl %eax

pushl $0x68732f2f
pushl $0x6e69622f
movl 3esp, 3ebx
pushl %eax

Assembly

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

Xorl %eax, %eax
pushl %eax

pushl $0x68732f2f
pushl $0x6e69622f
movl 3esp, 3ebx
pushl %eax

Assembly

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

}
xorl %eax, %eax “\x31\xc0” Z
> |pushl %eax “\x50" Q
e 0
O |pushl $0x68732f2f “\x68""//sh" | 3,
qg’ pushl $0x6e69622f “\x68"" /bin" |3
A |movl %esp, %ebx #\x89\xe3" A
< |pushl %eax “\x50" 9
®

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

}

xorl %eax, %eax “\x31\xc0"”
> |[pushl %eax “\x50"
O |pushl $0x68732f2f “\x68""//sh"
GE, pushl $0x6e69622f “\x68""/bin"
A |movl %esp, $ebx “\x89\xe3"
< |pushl %eax “\x50"

(Part of)

your
Input

9pOd dulyde||

PRIVILEGE ESCALATION

* More on Unix permissions later, but for now...

e Recall that each file has:
Permissions: read / write / execute

For each of: owner / group / everyone else

* Permissions are defined over userid’s and groupid's
Every user has a userid
root's userid is O

» Consider a service like passwa

« Owned by root (and needs to do root-y things)
But you want any user to be able to execute it

REAL VS EFFECTIVE USERID

* (Real) Userid = the user who ran the process

» Effective userid = what is used to determine what
permissions/access the process has

» Consider passwd: root owns it, but users can run it
getuid() will return who ran it (real userid)

seteuid(0) to set the eftective userid to root

It's allowed to because root is the owner

« What is the potential attack?

REAL VS EFFECTIVE USERID

00

* (Real) Userid = the user who ran the process

» Effective userid = what is used to determine what
permissions/access the process has

» Consider passwd: root owns it, but users can run it
getuid() will return who ran it (real userid)

+ seteuid(0) to set the eftective userid to root

It's allowed to because root is the owner

« What is the potential attack?

If you can get a root-owned process to run
setuid(0)/seteuid(0), then you get root permissions

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

00

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

-+ 00 00 00 00 %ebp %elip &argl ..

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

B T |

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

<[00 00 00 00 sebp seip sargl - IETRCTRCININ

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

Selp

<[00 00 00 00 sebp seip sargl - IETRCTRCININ

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

$elp

St oo 00w vere seip carer [N

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

Selp

St oo 00w vere seip carer R

buffer

Thoughts?

STACK & FUNCTIONS: SUMMARY

HIJACKING THE SAVED ZEIP

Selp sebp

HIJACKING THE SAVED ZEIP

Selp sebp

HIJACKING THE SAVED ZEIP

sebp Selp

HIJACKING THE SAVED ZEIP

sebp Selp

buffer

But how do we know the address?

HIJACKING THE SAVED ZEIP

What if we are wrong?

Selp sebp

buffer

HIJACKING THE SAVED ZEIP

What if we are wrong?

Selp sebp

buffer

HIJACKING THE SAVED ZEIP

What if we are wrong?

sebp Telp

buffer

HIJACKING THE SAVED ZEIP

What if we are wrong?

3ebp selp

buffer
Oxbff

This is most likely data,
so the CPU will panic
(Invalid Instruction)

CHALLENGE 3: FINDING THE RETURN ADDRESS

CHALLENGE 3: FINDING THE RETURN ADDRESS

e |f we don’t have access to the code, we don’t know how
far the bufter is from the saved %ebp

CHALLENGE 3: FINDING THE RETURN ADDRESS

e |f we don’t have access to the code, we don’t know how
far the bufter is from the saved %ebp

» One approach: just try a lot of different values!

CHALLENGE 3: FINDING THE RETURN ADDRESS

00

e |f we don’t have access to the code, we don’t know how
far the bufter is from the saved %ebp

* One approach: just try a lot of different values!

» Worst case scenario: it's a 32 (or 64) bit memory space,
which means 232 (2%%) possible answers

CHALLENGE 3: FINDING THE RETURN ADDRESS

00

e |f we don't have access to the code, we don’t know how
far the bufter is from the saved %ebp

* One approach: just try a lot of different values!

» Worst case scenario: it's a 32 (or 64) bit memory space,
which means 232 (2%%) possible answers

e But without address randomization:

+ The stack always starts from the same, fixed address

» The stack will grow, but usually it doesn’t grow very deeply
(unless the code is heavily recursive)

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Selp Sebp

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

$elp Sebp

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere

o> a1 o .
°€1P sebp here will work

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere

S A q o .
°€1P sebp here will work

¢ o Oxbdf lnop nop nop .. ‘ \x0f \x3c \x2f ...

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere

S A q o .
°€1P sebp here will work

buffer

Now we improve our chances
of guessing by a factor of #nops

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

!

seip padding

buffer

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

. good
3elp padding guess

buffer

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

!

padding good

3elp guess

‘[Oxbdf | nop nop nop ..

buffer

nop sled

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

!

. ood
: addin J
selp P J guess

buffer

nop sled malicious code

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

good
guess %elp

padding

nop sled malicious code

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

good
guess Telp

padding

‘[()def nop nop nop ..| \x0f \x3c \x2f ...

buffer

nop sled malicious code

BUFFER OVERFLOW
DEFENSES

RECALL OUR CHALLENGES

00

How can we make these even more difficult?

» Putting code into the memory (no zeroes)
» Getting %eip to point to our code (dist buff to stored eip)

* Finding the return address (guess the raw address)

DETECTING OVERFLOWS WITH CANARIES

DETECTING OVERFLOWS WITH CANARIES

DETECTING OVERFLOWS WITH CANARIES

DETECTING OVERFLOWS WITH CANARIES

$elp

DETECTING OVERFLOWS WITH CANARIES

DETECTING OVERFLOWS WITH CANARIES

DETECTING OVERFLOWS WITH CANARIES

= \x0f \x3c \x2f ...

buffer canary

What value should the canary have?

CANARY VALUES

00

From StackGuard [Wagle & Cowan]

1. Terminator canaries (CR, LF, NULL, -1)

* Leverages the fact that scanf etc. don't allow these

2. Random canaries

* Write a new random value @ each process start
e Save the real value somewhere in memory

e Must write-protect the stored value

3. Random XOR canaries

e« Same as random canaries

e But store canary XOR some control info, instead

RECALL OUR CHALLENGES

00

How can we make these even more difficult?

» Putting code into the memory (no zeroes)
Option: Make this detectable with canaries

» Getting %eip to point to our code (dist buff to stored eip)

* Finding the return address (guess the raw address)

RETURN TO LIBC

|IbC buffer

nop sled malicious code

RETURN TO LIBC

|IbC buffer

nop sled

RETURN TO LIBC

selp guess

|IbC buffer

RETURN TO LIBC

RETURN TO LIBC

printf ()

libc

RETURN TO LIBC

known

location

printf ()

libc

RETURN TO LIBC

padding known

3elp

location

] Ox17f| 0x20d .

|IbC buffer

libc

RECALL OUR CHALLENGES

00

How can we make these even more difficult?

» Putting code into the memory (no zeroes)
Option: Make this detectable with canaries

» Getting %eip to point to our code (dist buff to stored eip)

Non-executable stack doesn’t work so wel

* Finding the return address (guess the raw address)

ADDRESS SPACE LAYOUT RANDOMIZATION

Set when 4G Oxffffffff
process starts int £() {
int X;
Runtime
malloc(sizeof(long));
static int x;
Known at

_ static const int y=10;

0 0x00000000

compile time

Randomize where exactly these regions start

ADDRESS SPACE LAYOUT RANDOMIZATION

On the Effectiveness of Address-Space Randomization

Havav Shacham
Stanfard University

hovav@ cs.stanford .edu

Eu-Jin Geh
euj n@cs.stanford.edu

ABSTRACT
Address space rondornation ¥ o texhinigqus wel to lostidy
sysoms agoinst buber cverbiowr ottocks, The dos = to 1
trodeie atifick] diveesity oy randcmizing the mevacey b
cacion o cectoan syvetem compotients, Lhe e wnsm 15
available “or both Linux (via ["aX ASLID and OnenBSD.
Wo stwly the ellfeiivwnms o sldivssespmce randomiaton
soml Gk that as ul;l;l‘v oo 320t cachitret won = limim |l |n‘.
tha nuznbor of bis avallable for sddross randombacion. [n
prticular, wo demonetrass o deraadomizalion aftack that
wil. corvert nny stontdasd buffee avesfiow exploit into an ex
pooit that wor ks againet evstoms proteetod by adidrece epaon
roaxdotntacion. The seulting exploit ¥ as cffctive as the
orgned cxplow, although # takes o etle g to cotpr>-
wise a targrt wachine: cn average 216 seconds to conypror
11 i’.' "._m- l"' llllll.’llz‘ oo ljll-\ pvl:\- .\ﬁ-n walein Tb'
st l l‘l”\ nek e l.ll" “m ;-" o l'l’ “"wa |'ll' \lﬂlk

We abo mploce curions ways of stremgehening aklross.
space random acior aod point ove wes kpesses in each. Sor.
pe bsinply increasiag tha frequoneyr of re-randomlanbons aidds
Stomest | b of scenrity, Further more, comails tims ran
domnrazion appxus to be more effective thon rustame ran
domnraion, Ve coreude shas, on 42-bat archrec s, the
ondy benefic of PaX-libe nddressspecs randanzacion s a
smal slowriown i woew propazation speal. The cost of
s l'l-ll.lll e ;\ "ia lnll‘l‘.”; :.' i 1 h’\ -n ‘llll‘l rl

Cutegories and Subject Descriplors
DAL |Operating Systems): Security and Pretection

General Terms

Secur iy, Moosarement

Permucton 1o make cigital o hand ocpies of all or et of this woek for
pemecnal or classoem vse s gremed witkow: foe eod St copiey s
rol made or detnbuted tor profil ¢ 2orumeroml advamage and that sopuwes
besy A's aotiee and the full chazioa ca the £ page. To copy stemis,
g blivy 00 posl oo sevess of w0 rodatEaie 1o L, requises xoe speiiic
pemusaa endor s K¢,

CT504, Derober 2829, 200 W on DC, USA.

Cixprigle 2004 ACN 5311756 -A0400 10 5500

Matthew Page
Stankard Lin versity

mpage@stanford.edu
Nagendra

Stanford Un versity Stanfoed Un veraity
nagendra@cs.stanford.edu

Modadugu

Ben Pfaff
Stadors Lniuersity

blp@cs.s:anford.edu

Dan Boneh
Senford Univeraty

dabo@cs.starford.edu

Keywords

Adidteso srwes rondomgactecn, disersity, automsted ettacks

1. INTRODUCTION

Rumibinin . the s n_v-..llinw T |¢1~n-|l ol ol
uwre les rocemtly gacrerad groet imcorest ae a means of i
vordfvlg the msonceukuro of sofltware (20, 18, 26 7). It
8 wicely Leliovd that sandomizing the addrss gpace av
o of o scdtware progroim peovetts asiackots from using the
=ame exploat code dffectively against all insinxdiaciors of the
peogram containing the same Eaw The attackes must -
ther cxaft a sprribe sxploi Jor eat imgtence of a rendocyr
il“l Fln'l‘lnl "w ll"ir-.l lamine [IQI‘ ”alom kh 11 PALLE L l‘l'
skl oy Lgvnt Bovie forer sncw ks e o gusell,
thrarod by comstomtly ranlomidng che ard-osspace 2
ox each thre the wogrmmw Is yesturted. [n partboular, ks
toclm Qe eeoie to hokl groar peomise in peeventing the oy
poncetin] propogation of werne that ccar the Iitereer and
compromiax hoot: wang a wrd coded ottach [11. 31

In bthe peper, v exphlore the cbectiveness of skl s
=pace randomizaton ic preventing an actackes from using
the same attack code to exploit the ssme flaw in waltiple
'N‘I'l"'l;ﬂil ;‘l‘.a'""\ ‘ " N;' ’.I.' - "\-’3‘.' ;'l»"'u-l ') 'I.-
txular, wo muplerent 3 pove version of @ returoeoe ihe
attack o thwe Apselw HTTP Sorver 3| on a mactine rus-
ning L w ol PaXl Adidzess Spacs Layost Bancdomiation
(ASLR; and Wiite or Exocute Only (W LX) paxs.

Traditicnal return to Jabe a<poits relv on know edge of
adkdresses m both Al stack and the [125¢) text segents,
With PaX ASLI m place, such explonts must gucss tbe sez-
woeut offsts Gioen a swuchy spee of vithes 40 it (F deux
wal Vihe cWais & purssed cmene vnt) o 25 Las (37 o=
quentially). In rontrast . our recarmetadibe terduninme uvs
anklivsaus e d iy Ul Faapyd g oda thevous At-
tacks usimg vas coachoigpue peed only goess che S4be teae s
went offscr, redudng the search space to sn sutirely prac-
tieal 16 bits, While cur spocilie mrack s only a sinale
cniry poirt in 1ibo, the exploit tecbmagues is ales applicable
to chamec recurn-to-like alloeks,

Our mpdomentation shows that buffis osvviflow attecks
(a3 wsed Dy, cg, the Slacaa worm |[11)) exe as elective on
coce tandomzed by MaN ASLIL as on nonerandomn ized rode.
r.n'lniru'uh"\ oar allaek tias on e soe e 0 s
amls co ahtain & cemate sbel Brote figoe sttaees, Like aor
artack, can be detected in pramice, b reasocable couns -

L —

——

Shortcomings of ASLR

* Introduces return-to-libc atk
* Probes for location of usleep

e On 32-bit architectures,
only 16 bits of entropy

* fork() keeps same offsets

RECALL OUR CHALLENGES

How can we make these even more difficult?

» Putting code into the memory (no zeroes)
Option: Make this detectable with canaries

» Getting %eip to point to our code (dist buff to stored eip)

Non-executable stack doesn’t work so wel

* Finding the return address (guess the raw address)
Address Space Layout Randomization (ASLR)

Best defense: Good programming practices

BUFFER OVERFLOW PREVALENCE

Significant percent of all vulnerabilities

16

12

0
1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Data from the National Vulnerability Database

https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-119

vold safe()

{

char buf[80];
fgets(buf, 80, stdin);

volid safer()

{

char buf[80];

fgets (buf,

sizeof (buf),

stdin);

vold safe()

{

char buf[80];
fgets(buf, 80, stdin);

volid safer()

{

fgets (buf,

char buf[80];

sizeof (buf),

stdin);

void vulnerable()

{

char buf[80];

1f (fgets(buf,
return;

printf (buf);

sizeof (buf),

stdin)==NULL)

vold safe()

{

char buf[80];
fgets(buf, 80, stdin);

volid safer()

{

fgets (buf,

char buf[80];

sizeof (buf),

stdin);

void vulnerable()

{

char buf[80];

1f (fgets(buf,
return;

printf (buf);

}

sizeof (buf),

stdin)==NULL)

FORMAT STRING
VULNERABILITIES

PRINTF FORMAT STRINGS

int 1 = 10;
printf(“%d %p\n”, i, &i);

PRINTF FORMAT STRINGS

int 1 = 10;
printf(“%d %p\n”, i, &i);

0x00000000 Oxffffffff

PRINTF FORMAT STRINGS

int 1 = 10;
printf(“%d %p\n”, i, &i);

0x00000000 Oxffffffff

printf’s stack frame

PRINTF FORMAT STRINGS

int 1 = 10;
printf(“%d %p\n”, i, &i);

0x00000000 Oxffffffff
printf’s stack frame caller’s

stack frame

PRINTF FORMAT STRINGS

int i = 10;
printf (“%d %an", i, &i);

0x00000000 ~, "’*. "’*. Oxffffffff

printf’s stack frame caller’s
stack frame

PRINTF FORMAT STRINGS

int i = 10;
printf (“%d %p\n", i, &i);

0x00000000 " o, e Oxffffffff

printf’s stack frame caller’s
stack frame

* printf takes variable number of arguments
* printf pays no mind to where the stack frame “ends”

* |t presumes that you called it with (at least) as many arguments as specified in
the format string

PRINTF FORMAT STRINGS

int 1 = 10:
printf (“ %p\n” , 1, &1);
0x00000000 OXfFFEFFEE

printf’s stack frame caller’s
stack frame

* printf takes variable number of arguments
* printf pays no mind to where the stack frame “ends”

* |t presumes that you called it with (at least) as many arguments as specified in
the format string

PRINTF FORMAT STRINGS

int 1 = 10:
printf (” %p\n” , 1, &1);
0x00000000 OXfFFEFFEE

printf’s stack frame caller’s
stack frame

* printf takes variable number of arguments
* printf pays no mind to where the stack frame “ends”

* |t presumes that you called it with (at least) as many arguments as specified in
the format string

PRINTF FORMAT STRINGS

int i = 10;

printf (“%d n”, 1, &1);
’, A ¥
*

2

0x00000000 " o, e Oxffffffff

printf’s stack frame caller’s
stack frame

* printf takes variable number of arguments
* printf pays no mind to where the stack frame “ends”

* |t presumes that you called it with (at least) as many arguments as specified in
the format string

void vulnerable()

{

char buf[80];

1f (fgets(buf,
return;

printf (buf);

sizeof (buf),

stdin)==NULL)

void vulnerable()

{

char buf[80];

1f (fgets(buf,
return;

printf (buf);

sizeof (buf),

stdin)==NULL)

void vulnerable()
{

char buf[80];

1f(fgets(buf, sizeof(buf), stdin)==NULL)

return;

printf (buf);

}
“gsd $x"
0x00000000 Oxffffffff
caller’s

stack frame

void vulnerable()
{

char buf[80];

1f(fgets(buf, sizeof(buf), stdin)==NULL)

return;

printf (buf);

}
“gsd $x"
0x00000000 Oxffffffff
caller’s

stack frame

void vulnerable()
{

char buf[80];

1f(fgets(buf, sizeof(buf), stdin)==NULL)

return;

printf (buf);

}
“gsd $x"
0x00000000 Oxffffffff
caller’s

stack frame

FORMAT STRING VULNERABILITIES

FORMAT STRING VULNERABILITIES

* printf(“100% dml”);

FORMAT STRING VULNERABILITIES

o printf(”loo% dml”);
- Prints stack entry 4 byes above saved %eip

FORMAT STRING VULNERABILITIES

o printf(”loo% dml”);
- Prints stack entry 4 byes above saved %eip

* printf(“%s"”);

FORMAT STRING VULNERABILITIES

o printf(”lOO% dml”);
- Prints stack entry 4 byes above saved %eip

* printf(“%s”);
- Prints bytes pointed to by that stack entry

FORMAT STRING VULNERABILITIES

o printf(”lOO% dml”);
Prints stack entry 4 byes above saved %eip

* printf(“%s”);
Prints bytes pointed to by that stack entry

» printf(“sd 3d 3d %d ..");

FORMAT STRING VULNERABILITIES

o printf(”lOO% dml”);
Prints stack entry 4 byes above saved %eip

* printf(“%s”);
Prints bytes pointed to by that stack entry

* printf(“%d %d %d %d ..”);
Prints a series of stack entries as integers

FORMAT STRING VULNERABILITIES

00

printf(“100% dml”);
Prints stack entry 4 byes above saved %eip

printf(“%s”);
Prints bytes pointed to by that stack entry

printf(“3%d %d %d %d ..”);
Prints a series of stack entries as integers

printf(“%08x %08x %08x %08x ..”);

FORMAT STRING VULNERABILITIES

00

printf(“100% dml”);
Prints stack entry 4 byes above saved %eip

printf(“%s”);
Prints bytes pointed to by that stack entry

printf(“%d %d %d %d ..”);
Prints a series of stack entries as integers

printf(“%$08x %08x %08x %08x ..”);
- Same, but nicely formatted hex

FORMAT STRING VULNERABILITIES

00

printf(“100% dml”);
Prints stack entry 4 byes above saved %eip

printf(“%s”);
Prints bytes pointed to by that stack entry

printf(“%d %d %d %d ..”);
Prints a series of stack entries as integers

printf(“%$08x %08x %08x %08x ..”);
- Same, but nicely formatted hex

printf(“100% no way!")

FORMAT STRING VULNERABILITIES

00

printf(“100% dml”);
Prints stack entry 4 byes above saved %eip

printf(“%s”);
Prints bytes pointed to by that stack entry

printf(“%d %d %d %d ..”);
Prints a series of stack entries as integers

printf(“%$08x %08x %08x %08x ..”);
- Same, but nicely formatted hex

printf(“100% no way!”)
WRITES the number 3 to address pointed to by stack entry

FORMAT STRING PREVALENCE

% of

T ,——sl_A t r . i vulnerabilities

that involve
0375 o e B format string
bugs
0.25 -l i B e B
0.125 - I --------- I ---------------------- I -- I -----
q M

2002 2004 2006 2008 2010 2012 2014 2016

http://web.nvd.nist.gov/view/vuln/statistics

WHAT'S WRONG WITH THIS CODE?

00

#define BUF SIZE 16
char buf[BUF SIZE];
void vulnerable()

{
int len = read int from network();
char *p = read string from network();
if (len > BUF SIZE) {

printf(“Too large\n”);
return;

}
memcpy (buf, p, len);

WHAT'S WRONG WITH THIS CODE?

00

#define BUF SIZE 16
char buf[BUF SIZE];
void vulnerable()
{
int len = read int from network();
char *p = read string from network();
if (len > BUF SIZE) {
printf(“Too large\n”);
return;
}
memcpy (buf, p, len);
}

volid *memcpy(void *dest, const void *src, size t n);

WHAT'S WRONG WITH THIS CODE?

00

#define BUF SIZE 16
char buf[BUF SIZE];
void vulnerable()
{
int len = read int from network();
char *p = read string from network();
if (len > BUF SIZE) {
printf(“Too large\n”);
return;
}
memcpy (buf, p, len);
}

volid *memcpy(void *dest, const void *src, size t n);

typedef unsigned int size t;

WHAT'S WRONG WITH THIS CODE?

00

#define BUF SIZE 16
char buf[BUF SIZE];
void vulnerable()

{ Negative
read int from network();

char *p = read string from network();
if (len > BUF SIZE) {

printf(“Too large\n”);

return;

}
memcpy (buf, p, len);

volid *memcpy(void *dest, const void *src, size t n);

typedef unsigned int size t;

WHAT'S WRONG WITH THIS CODE?

00

#define BUF SIZE 16
char buf[BUF SIZE];
void vulnerable()

{ Negative
read int from network();

char *p = read string from network();
Okif(len > BUF SIZE) {
printf(“Too large\n”);
return;

}
memcpy (buf, p, len);

volid *memcpy(void *dest, const void *src, size t n);

typedef unsigned int size t;

WHAT'S WRONG WITH THIS CODE?

00

#define BUF SIZE 16
char buf[BUF SIZE];
void vulnerable()

{ Negative
read int from network();

char *p = read string from network();
Okif(len > BUF SIZE) {
printf(“Too large\n”);

return;
}
memcpy (buf, p, ;
} Implicit cast to unsigned

volid *memcpy(void *dest, const void *src, size t n);

typedef unsigned int size t;

INTEGER OVERFLOW
VULNERABILITIES

WHAT'S WRONG WITH THIS CODE?

00

void vulnerable()
{
size t len;
char *buf;

len = read int from network();
buf = malloc(len + 5);
read(fd, buf, len);

WHAT'S WRONG WITH THIS CODE?

00

void vulnerable()
{
size t len;
char *buf;
HUGE
read_int from network();
buf = malloc(len + 5);
read(fd, buf, len);

WHAT'S WRONG WITH THIS CODE?

00

void vulnerable()

{
size t len;
char *buf;

HUGE
read int from network();

but = mallocflen + 5); Wrap-around
read(fd, buf, len);

WHAT'S WRONG WITH THIS CODE?

00

void vulnerable()

{
size t len;
char *buf;

HUGE
read int from network();

but = mallocf[len + 5); Wrap-around
read(fd, buf, len);

Takeaway: You have to know the semantics
of your programming language to avoid these errors

INTEGER OVERFLOW PREVALENCE

% of vulnerabilities that
involve integer overflows

> involveintegeroverflows |

o S— . S—
"t oL o

s 11 | .. 1l I
o

2002 2004 2006 2008 2010 2012 2014 2016

2 T/ iiit

http://web.nvd.nist.gov/view/vuln/statistics

