
MODERN 
MEMORY DEFENSES

GRAD SEC
SEP 14 2017

TODAY’S PAPERS

CONTROL FLOW INTEGRITY
Fundamentally, code injection attacks

altered the target program’s control flow

Recall: Confidentiality, Integrity, Availability

Most integrity defenses seek to detect
Typically they are unable to outright prevent

CONTROL FLOW GRAPH

Code injection, return to libc, ROP… all of them alter
where one of the “ret”s points

REFERENCE MONITORS
Code or system responsible for checking

whether data/execution matches some policy

File permissions, password checker,
airline employees checking tickets…

Mediates between user and sensitive resource

CFI is an inline reference monitor

ENSURE COMPLETE MEDIATION

SOFTWARE FAULT ISOLATION (SFI)

Keep only the LSBs (zero with ‘and’ then
add the target memory region’s MSBs

Insert code at each machine code instruction to ensure

that the target memory region lies within some bounds

INTEGRITY WITH LABELS

Note that we start in the trusted code.
The goal is to make sure we never ret somewhere we shouldn't

INLINING CFI

Will only jump to a part of the code with the label 0x12345678

SECURITY GUARANTEES

Attack model: arbitrary control over the data portion of memory

UNQ: No label appears elsewhere in code

NWC: Code segment is not writable

NXD: Data segment is not executable

SOFTWARE FAULT ISOLATION (SFI)

Normally you want the ‘and’ in the loop,

But CFI ensures no jumps into the loop

Insert code at each machine code instruction to ensure

that the target memory region lies within some bounds

LABELS ARE NOT UNIQUE

Attacker could potentially cause sort() to return to
either of the memory locations labelled 55

LABELS ARE NOT UNIQUE

Code duplication

Shadow stack

SHADOW CALL STACKS
One possibility: SFI to maintain a region of memory
(e.g., 0x1*) specifically for the shadow call stack

Hardware support: x86 offers memory segments

%gs always points to shadow stack segment
Protected by CFI + static analysis of code

SECURITY GUARANTEES

Attack model: arbitrary control over the data portion of memory

UNQ: No label appears elsewhere in code

NWC: Code segment is not writable

NXD: Data segment is not executable

EVALUATION

Shadow stack reduces some
unnecessary ID checks during returns

CFI: SHORTCOMINGS

CFI: SHORTCOMINGS
No dynamically generated code (functional programming?)

Requires recompiling the code

TODAY’S PAPERS

TAINT TRACKING: HIGH LEVEL IDEA

Potentially malicious input “taints” memory

Track what gets tainted

Enforce that some operations only work on untainted data

TAINT TRACKING: CHALLENGES

How do we track memory accesses?

How do we keep track of what's tainted?

How do we “propagate” taint?

How do we protect the taint info?

TAINT PROPAGATION (TAINTDROID)

Define what propagation rules for all operations

TAINT TRACKING
Instrument every (relevant) operation

Mechanism: Valgrind
 Translates x86 into its own instruction set
 Passes these to TaintCheck
 TaintCheck passes back modified instructions
 Add code to update taint info

TAINT STORING: RETURN OF THE SHADOW
1 byte memory -> 4 byte pointer -> taint data structure

POLICY CHECKING
Must specify what operations aren't permitted
on tainted data

EVALUATION
Has the possibility for false positives, false negatives

EVALUATION
Has the possibility to adversely affect performance

EVALUATION
Has the possibility to be overtrained to known vulnerabilities

TAINTDROID

TAINTDROID

