MODERN MEMORY DEFENSES

GRAD SEC SEP 14 2017

TODAY'S PAPERS

cs.um	d.edu	C		cs.umd.edu	C
Dynamic Taint Analysis for and Signature Generation of P James Newsone incommittee croueds	Automatic Detection, Analysis, Saphits on Commodity Software Duan Song damanesistem, edu		Princip Martis Abadi Computer Science Dept. University of California Santa Cauz	Control-Flow Integrity Nes, Implementations, and Applications MhaiBudiu Utlar Eningsson J Microsoft Research Dept. of Sition Valley Rese	ay Ligatti Domputer Science ator University
<text><text><text><text><section-header><text></text></section-header></text></text></text></text>	Carnegic McIon University discool, we must spickly divelop flow (a.k.s., att sprance) that can be used to filter out attack pakket theory, and nense poter vanaenteences mension must will be related to the pathod. Because as wom can spread quickly, signature generation must strength, and nense poter vanaenteences mension must be related to the production of the potential for encycle to proven a large number of values. The New Conservation New Conservation and States Corectors for commen- sion can strength of the potential for the topology of the provents and the production of the production for more that, These approaches results for the respective, such as assuming or unsust activity of contain port, and fore-provide discover, that detect and provide attress of the positive, and provide tabulation at mountain the fore the positive, and provide tabulation at the state of the positive, and provide tabulation at the state of the positive, and provide tabulation at the state of the positive, and provide tabulation of the program, such as Sacchard [1] for proposalitation of the program, such as Sacchard [1] for proposalitation of the program, such as Sacchard [1] for physical [14], full-boards check [2], 31]. Uses Flow [2], Foreardison [1], and Constants theory in proposalitation of the program, such as Sacchard [1] for physical [14], full-boards check [2], 31]. Uses Flow [3], Foreardison [3], and Constants theory in physical [14], full-boards check [2], 31]. Uses Flow [3], Foreardison [3], and Constants theory in physical [3] subsect on the such as a state to the individe the area and check [3], 31]. Uses Flow [3], for constants are check uncontaints in access in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in p	nck ref- pro- sour bla Åby com ma- ma- ma- ma- ma- ma- ma- ma- ma- ma	<section-header><section-header><section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	urn nut of the most prevaing almostelity mitigations have index attacks these include ion of bulker severitors [46] patients are widely used, while to tomass they used, while to tomass they used, while to tomass they used, while a delate; utiligations and unar- informations to decommon [42,49,41]. In some they are to decommon [42,49,41]. In the severitors to decommon [42,49,41]. In the severitor to decommon [42,49,41]. In the severitor of the sec- finance on informalitenseming to the severitory, mitigation by a' would be used by the to the severitory of the several conditions of the several to the severation of the top of the several several to the severation of the top of the several several to the several several several to the several several several in high-several several several indefinition several several in the several several several is the several several several is the several several is the several several several is the several several is the several is the several several several is the several is the several several several is the several is the several several several several several is the several several several is the several several is the several several seve
bination without requiring source code or specially re- constilled binaris. This goal is difficult to achieve be- cause important information, such as type information, is not generally available in binaries. As a result, takes	erate signatures for stackfilturing. We have developed automatis tool, Jaint'Arch, to domonstrate our cynar tuint analysis ppyroads. Taint'Arch, offen severa uni broacies:	l un mic que	and machine-code rewriting that instrum time strukes. The reasons should also five remains within a given CRG. As we cook rewriting results in a practical implem most. This implementation applies to exist on roomandly systems, and yields efficien- tion and the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the eff	ents software nith run kully somer das samer entation of CH in testool in um recity or inducedy, construm control progett soction, we divide flows teel dasy aim se address meaning on half-	ny tahnipasithat, ether di- litaw Fordar surjease of the migers according to whether wherease.

CONTROL FLOW INTEGRITY

Fundamentally, code injection attacks altered the target program's control flow

Recall: Confidentiality, Integrity, Availability

Most integrity defenses seek to detect Typically they are unable to outright prevent

CONTROL FLOW GRAPH

Code injection, return to libc, ROP... all of them alter where one of the "ret"s points

REFERENCE MONITORS

Code or system responsible for checking whether data/execution matches some policy

File permissions, password checker, airline employees checking tickets...

Mediates between user and sensitive resource

CFI is an *inline* reference monitor

ENSURE COMPLETE MEDIATION

SOFTWARE FAULT ISOLATION (SFI)

Insert code at each machine code instruction to ensure that the target memory region lies within some bounds

	• • •					
	mov	ecx,	Oh	;	int	i = 0
	mov	esi,	[esp+8]	;	a[]	base ptr
	and	esi,	20FFFFFFh	;	SFI	masking
LOOP:	add	eax,	[esi+ecx*4]	;	sum	+= a[i]
	inc	ecx		;	++i	
	cmp	ecx,	edx	;	i <	len
	jl	LOOP				

Keep only the LSBs (zero with 'and' then add the target memory region's MSBs

INTEGRITY WITH LABELS

Note that we start in the trusted code.

The goal is to make sure we never ret somewhere we shouldn't

INLINING CFI

Op	code bytes			Source Instructions			Op	cod	e by	tes	Dest	inatio Instr	n ructions		
FF	E1		jmp	ecx	;	computed jump	8B	. 44	24	04	mov	eax,	[esp+4]	;	dst
					ca	n be instrumented as (a)	ı):								
81 75 8D FF	39 78 56 13 49 04 E1	34 12	cmp jne lea jmp	[ecx], 12345678h error_label ecx, [ecx+4] ecx	•••••••••••••••••••••••••••••••••••••••	comp ID & dst if != fail skip ID at dst jump to dst	78 8B 	56 44	34 24	12 04	; da mov	ta 123 eax,	345678h [esp+4]	;	ID dst
				or, a	lter	matively, instrumented	as (b)	:							
B8 40 39 75 FF	77 56 34 41 04 13 E1	12	mov inc cmp jne jmp	eax, 12345677h eax [ecx+4], eax error_label ecx	., ., ., ., .,	load ID-1 add 1 for ID compare w/dst if != fail jump to label	3E 78 8B	0F 56 44	18 34 24	05 12 04	pref [mov	etchn ⁴ 12345 eax,	ta 678h] [esp+4]	;;;;	labəl ID dst

Figure 2: Example CFI instrumentations of a source x86 instruction and one of its destinations.

Will only jump to a part of the code with the label 0x12345678

SECURITY GUARANTEES

Attack model: arbitrary control over the data portion of memory

UNQ: No label appears elsewhere in code

NWC: Code segment is not writable

NXD: Data segment is not executable

SOFTWARE FAULT ISOLATION (SFI)

Insert code at each machine code instruction to ensure that the target memory region lies within some bounds

```
mov ecx, Oh ; int i = 0
mov esi, [esp+8] ; a[] base ptr
and esi, 20FFFFFh ; SFI masking
LOOP: add eax, [esi+ecx*4] ; sum += a[i]
inc ecx ; ++i
cmp ecx, edx ; i < len
jl LOOP</pre>
```

Normally you want the 'and' in the loop, But CFI ensures no jumps into the loop

LABELS ARE NOT UNIQUE

Attacker could potentially cause sort() to return to either of the memory locations labelled 55

LABELS ARE NOT UNIQUE

Code duplication

Shadow stack

SHADOW CALL STACKS

One possibility: SFI to maintain a region of memory (e.g., 0x1*) specifically for the shadow call stack

Hardware support: x86 offers memory segments

	call	eax	;	call func ptr	ret		;	return
	with	a CFI-based implem	en	tation of a protected shadow call stac	ek usin	g hardware segments,	ca	n become:
	add mov mov cmp jne call	gs:[Oh], 4h ecx, gs:[Oh] gs:[ecx], LRET [eax+4], ID error_label eax	., ., ., ., .,	<pre>inc stack by 4 get top offset push ret dst comp fptr w/ID if != fail call func ptr</pre>	mov mov sub add jmp	ecx, gs:[Oh] ecx, gs:[ecx] gs:[Oh], 4h esp, 4h ecx	** ** ** **	get top offset pop return dst dec stack by 4 skip extra ret jump return dst
LRET								

%gs always points to shadow stack segment Protected by CFI + static analysis of code Attack model: arbitrary control over the data portion of memory

UNQ: No label appears elsewhere in code

NWC: Code segment is not writable

NXD: Data segment is not executable

Let S_0 be a state with code memory M_c such that $I(M_c)$ and pc = 0, and let S_1, \ldots, S_n be states such that $S_0 \rightarrow S_1 \rightarrow \ldots \rightarrow S_n$. Then, for all $i \in 0..(n-1)$, either $S_i \rightarrow_a S_{i+1}$ or the pc at S_{i+1} is one of the allowed successors for the pc at S_i according to the given CFG.

Figure 4: Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

Figure 8: Enforcement overhead for CFI with a protected shadow call stack on SPEC2000 benchmarks.

Shadow stack reduces some unnecessary ID checks during returns

CFI: SHORTCOMINGS

. .

.

CFI: SHORTCOMINGS

No dynamically generated code (functional programming?)

Requires recompiling the code

TODAY'S PAPERS

cs.um	d.edu	C		cs.umd.edu	C
Dynamic Taint Analysis for and Signature Generation of P James Newsone incommittee croueds	Automatic Detection, Analysis, Saphits on Commodity Software Duan Song damanesismu.edu		Princip Martis Abadi Computer Science Dept. University of California Santa Cauz	Control-Flow Integrity Nes, Implementations, and Applications MhaiBudiu Utlar Eningsson J Microsoft Research Dept. of Sition Valley Rese	ay Ligatti Domputer Science ator University
<text><text><text><text><section-header><text></text></section-header></text></text></text></text>	Carnegic McIon University discool, we must spickly divelop flow (a.k.s., att sprance) that can be used to filter out attack pakket theory, and nense poter vanaenteences mension must will be related to the pathod. Because as wom can spread quickly, signature generation must strength, and nense poter vanaenteences mension must be related to the production of the potential for encycle to proven a large number of values. The New Conservation New Conservation and States Corectors for commen- sion can strength of the potential for the topology of the provents and the production of the production for more that, These approaches results for the respective, such as assuming or unsust activity of contain port, and fore-provide discover, that detect and provide attress of the positive, and provide tabulation at mountain the fore the positive, and provide tabulation at the state of the positive, and provide tabulation at the state of the positive, and provide tabulation at the state of the positive, and provide tabulation of the program, such as Sacchard [1] for proposalitation of the program, such as Sacchard [1] for proposalitation of the program, such as Sacchard [1] for physical [14], full-boards check [2], 31]. Uses Flow [2], Foreardison [1], and Constants theory in proposalitation of the program, such as Sacchard [1] for physical [14], full-boards check [2], 31]. Uses Flow [3], Foreardison [3], and Constants theory in physical [14], full-boards check [2], 31]. Uses Flow [3], Foreardison [3], and Constants theory in physical [3] subsect on the such as a state to the individe the area and check [3], 31]. Uses Flow [3], for constants are check uncontaints in access in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in physical state of the success of a physical is accessed in p	nck ref- pro- sour bla Åby com ma- ma- ma- ma- ma- ma- ma- ma- ma- ma	<section-header><section-header><section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	urn nut of the most prevaing almostelity mitigations have index attacks these include ion of bulker severitors [46] patients are widely used, while to tomass they used, while to tomass they used, while to tomass they used, while a delate; utiligations and unar- informations to decommon [42,49,41]. In some they are to decommon [42,49,41]. In the severitors to decommon [42,49,41]. In the severitor to decommon [42,49,41]. In the severitor of the sec- finance on informalitenseming to the severitory, mitigation by a' would be used by the to the severitory of the several conditions of the several to the severation of the top of the several several to the severation of the top of the several several to the several several several to the several several several in high-several several several indefinition several several in the several several several is the several several several is the several several is the several several several is the several several is the several is the several several several is the several is the several several several is the several is the several several several several several is the several several several is the several several is the several several seve
bination without requiring source code or specially re- constilled binaris. This goal is difficult to achieve be- cause important information, such as type information, is not generally available in binaries. As a result, takes	erate signatures for stackfilturing. We have developed automatis tool, Jaint'Arch, to domonstrate our cynar tuint analysis ppyroads. Taint'Arch, offen severa uni broacies:	l un mic que	and machine-code rewriting that instrum time strukes. The reasons should also five remains within a given CRG. As we cook rewriting results in a practical implem most. This implementation applies to exist on roomandly systems, and yields efficien- tion and the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the efficiency of the eff	ents software nith run kully somer das samer entation of CH in testool in um recity or inducedy, construm control progett soction, we divide flows teel dasy aim se address meaning on half-	ny tahnipasithat, ether di- litaw Fordar surjease of the migers according to whether wherease.

TAINT TRACKING: HIGH LEVEL IDEA

Potentially malicious input "taints" memory

Track what gets tainted

Enforce that some operations only work on untainted data

TAINT TRACKING: CHALLENGES

How do we track memory accesses?

How do we keep track of what's tainted?

How do we protect the taint info?

How do we "propagate" taint?

TAINT PROPAGATION (TAINTDROID)

Table 1: DEX Taint Propagation Logic. Register variables and class fields are referenced by v_X and f_X , respectively. *R* and *E* are the return and exception variables maintained within the interpreter. *A*, *B*, and *C* are byte-code constants.

Op Format	Op Semantics	Taint Propagation	Description
const-op $v_A C$	$v_A \leftarrow C$	$ au(v_A) \leftarrow \emptyset$	Clear v_A taint
move-op $v_A v_B$	$v_A \leftarrow v_B$	$\tau(v_A) \leftarrow \tau(v_B)$	Set v_A taint to v_B taint
move-op-R v A	$v_A \leftarrow R$	$\tau(v_A) \leftarrow \tau(R)$	Set v_A taint to return taint
return-op v_A	$R \leftarrow v_A$	$\tau(R) \gets \tau(v_A)$	Set return taint (Ø if void)
move-op-E v _A	$v_A \leftarrow E$	$\tau(v_A) \leftarrow \tau(E)$	Set v_A taint to exception taint
throw-op v_A	$E \leftarrow v_A$	$ au(E) \leftarrow au(v_A)$	Set exception taint
unary-op $v_A v_B$	$v_A \leftarrow \otimes v_B$	$\tau(v_A) \leftarrow \tau(v_B)$	Set v_A taint to v_B taint
binary-op $v_A v_B v_C$	$v_A \leftarrow v_B \otimes v_C$	$\tau(v_A) \leftarrow \tau(v_B) \cup \tau(v_C)$	Set v_A taint to v_B taint $\cup v_C$ taint
binary-op $v_A v_B$	$v_A \leftarrow v_A \otimes v_B$	$\tau(v_A) \leftarrow \tau(v_A) \cup \tau(v_B)$	Update v_A taint with v_B taint
binary-op $v_A v_B C$	$v_A \leftarrow v_B \otimes C$	$ au(v_A) \leftarrow au(v_B)$	Set v_A taint to v_B taint
aput-op $v_A v_B v_C$	$v_B[v_C] \leftarrow v_A$	$\tau(v_B[\cdot]) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_A)$	Update array v_B taint with v_A taint
aget-op $v_A v_B v_C$	$v_A \leftarrow v_B[v_C]$	$\tau(v_A) \leftarrow \tau(v_B[\cdot]) \cup \tau(v_C)$	Set v_A taint to array and index taint
sput-op $v_A f_B$	$f_B \leftarrow v_A$	$ au(f_B) \leftarrow au(v_A)$	Set field f_B taint to v_A taint
sget-op $v_A f_B$	$v_A \leftarrow f_B$	$\tau(v_A) \leftarrow \tau(f_B)$	Set v_A taint to field f_B taint
iput-op $v_A v_B f_C$	$v_B(f_C) \gets v_A$	$ au(v_B(f_C)) \leftarrow au(v_A)$	Set field f_C taint to v_A taint
iget-op $v_A v_B f_C$	$v_A \leftarrow v_B(f_C)$	$\tau(v_A) \leftarrow \tau(v_B(f_C)) \cup \tau(v_B)$	Set v_A taint to field f_C and object reference taint

Define what propagation rules for all operations

TAINT TRACKING

Instrument every (relevant) operation

- Mechanism: Valgrind
 - Translates x86 into its own instruction set
 - Passes these to TaintCheck
 - TaintCheck passes back modified instructions
 - Add code to update taint info

TAINT STORING: RETURN OF THE SHADOW

1 byte memory -> 4 byte pointer -> taint data structure

Each byte of memory, including the registers, stack, heap, *etc.*, has a four-byte shadow memory that stores a pointer to a Taint data structure if that location is tainted, or a NULL pointer if it is not. We use a page-table-like structure to ensure that the shadow memory uses very little memory in practice. TaintSeed examines the arguments and results of each system call, and determines whether any memory written by the system call should be marked as tainted or untainted according to the TaintSeed policy. When the memory is tainted, TaintSeed allocates a Taint data structure that records the system call number, a snapshot of the current stack, and a copy of the data

POLICY CHECKING

Must specify what operations aren't permitted on tainted data

Has the possibility for false positives, false negatives

Program	Overwrite Method	Overwrite Target	Detected
ATPhttpd	buffer overflow	return address	~
synthetic	buffer overflow	function pointer	~
synthetic	buffer overflow	format string	~
synthetic	format string	none (info leak)	~
cfingerd	syslog format string	GOT entry	~
wu-ftpd	vsnprintf format string	return address	~

Table 1. Evaluation of TaintCheck's ability to detect exploits

Has the possibility to adversely affect performance

Figure 3. Performance overhead for Apache. Y-axis is the performance overhead factor: execution time divided by native execution time. Native execution times are listed below each experiment.

Has the possibility to be overtrained to known vulnerabilities

TAINTDROID

Table 2: Applications grouped by the requested permissions (L: location, C: camera, A: audio, P: phone state). Android Market categories are indicated in parenthesis, showing the diversity of the studied applications.

Applications*		Permissions [†]				
		L	С	А	Р	
The Weather Channel (News & Weather); Cestos, Solitaire (Game); Movies (Entertainment);	6	X				
Babble (Social); Manga Browser (Comics)						
Bump, Wertago (Social); Antivirus (Communication); ABC — Animals, Traffic Jam, Hearts,	14	X			X	
Blackjack, (Games); Horoscope (Lifestyle); Yellow Pages (Reference); 3001 Wisdom Quotes						
Lite, Dastelefonbuch, Astrid (Productivity), BBC News Live Stream (News & Weather); Ring-						
tones (Entertainment)						
Layar (Lifestyle); Knocking (Social); Coupons (Shopping); Trapster (Travel); Spongebob Slide	6	x	х		x	
(Game); ProBasketBall (Sports)						
MySpace (Social); Barcode Scanner, ixMAT (Shopping)	3		х			
Evernote (Productivity)	1	Х	Х	Х		

* Listed names correspond to the name displayed on the phone and not necessarily the name listed in the Android Market.

[†] All listed applications also require access to the Internet.

TAINTDROID

Table 3: Potential privacy violations by 20 of the studied applications. Note that three applications had multiple violations, one of which had a violation in all three categories.

.

Observed Behavior (# of apps)	Details
Phone Information to Content Servers (2)	2 apps sent out the phone number, IMSI, and ICC-ID along with the
	geo-coordinates to the app's content server.
Device ID to Content Servers (7)*	2 Social, 1 Shopping, 1 Reference and three other apps transmitted
	the IMEI number to the app's content server.
Location to Advertisement Servers (15)	5 apps sent geo-coordinates to ad.qwapi.com, 5 apps to admob.com,
	2 apps to ads.mobclix.com (1 sent location both to admob.com and
	ads.mobclix.com) and 4 apps sent location [†] to data.flurry.com.

* TaintDroid flagged nine applications in this category, but only seven transmitted the raw IMEI without mentioning such practice in the EULA. [†]To the best of our knowledge, the binary messages contained tainted location data (see the discussion below).