NETWORKING
BASICS

CMSC 8180

NOV 12 2019

Q&

WHY DOES THE INTERNET WORK?

1. PRUTOCULS Agreements on how to communicate

Publicly standardized, esp. via Requests for Comments (RFCs)

RFC 826: ARP RFC 103{4,5}: DNS RFC 793: TCP

Code to the protocol and your product will work with other products

WHY DOES THE INTERNET WORK?

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
20-byte
8-bit 8-bit 16-bit
header | Time-to-live (TTL) Protocol Header checksum
32-bit
Source IP address
32-bit
Destination IP address

The payload is the “data” that IP is delivering:
May contain another protocol’s header & payload, and so on

WHY DOES THE INTERNET WORK?

2. THE NETWORK IS DUMB

End-hosts are the periphery (users, devices)
Routers and switches are interior nodes that
Route (figure out where to forward)

Forward (actually send)

 Principle: the routers have no knowledge of ongoing
connections through them

They do “destination-based” routing and forwarding

Given the destination in the packet, send it to the “next hop” that is best
suited to help ultimately get the packet there

WHY DOES THE INTERNET WORK?

2. THE NETWORK IS DUMB

End-hosts are the periphery (users, devices)
Routers and switches are interior nodes that
Route (figure out where to forward)

Forward (actually send)

 Principle: the routers have no knowledge of ongoing
connections through them

They do “destination-based” routing and forwarding

Given the destination in the packet, send it to the “next hop” that is best
suited to help ultimately get the packet there

Mental model: The postal system

WHY DOES THE INTERNET WORK?

3. LAYERS

* The design of the Internet is strongly partitioned into layers

» Each layer relies on the services provided by the layer
immediately below it...

» ... and provides service to the layer immediately above it

LAYERS OF THE INTERNET

PHYSICAL

— Broadcasts on shared link

LAYERS OF THE INTERNET

LINK — Adds framing & destination;
Still assumes shared link
PHYSICAL — Broadcasts on shared link

LAYERS OF THE INTERNET

NETWORK “P) - Adds fglobal afldresses;
Requires routing

LINK — Adds framing & destination;
Still assumes shared link

PHYSICAL — Broadcasts on shared link

LAYERS OF THE INTERNET

E2E communication between
TRANSPURT (TCRUDH — processes; Adds ports/reliability
NETWORK “P) - Adds global addresses;
Requires routing
LINK — Adds framing & destination;
Still assumes shared link
PHYSICAL — Broadcasts on shared link

LAYERS OF THE INTERNET

— Application-specific semantics
E2E communication between

TRANSPORT (TCRUDH — processes; Adds ports/reliability

NETWORK “P) — Adds global addresses;
Requires routing

LINK — Adds framing & destination;
Still assumes shared link

PHYSICAL — Broadcasts on shared link

APPLICATION

Hop-by-Nop vs. end-to-end layers

Host C communicates with host A

Router 3

Router 1

End-host A L

End-host C End-host D

Router 2 e \[- ;

Router 4 End-host E

End-host B

HOP-DYy-nhop vS. end-to-end layers

Different physical & link layers

Router 3 Router 6

Ethernet

[T

End-host A

End-host C End-host D

Router 2

End-h
nd-host B Router 4 End-host E

Hop-by-Nop vs. end-to-end layers

Same network, transport, and application layers (3/4/7)
Routers ignore transport & applicatio

—_— Router 3 Router 6
R —

-

s Router 1 i

End-host A / :0 ‘.“
E.g., HTTP over [] [‘]]
TéP over IP [Lg Le

End-host C End-host D

Router 2 e \[- :

Router 4 End-host E

End-host B

20-byte
header

P packet "header”

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum
32-bit

Source IP address

32-bit
Destination IP address

P Packet Header Fields (1)

e \ersion number (4 bits)
- |ndicates the version of the |IP protocol

- Necessary for knowing what fields follow
« “4” (for IPv4) or “6” (for IPvb)

e Header length (4 bits)
- How many 32-bit words (rows) in the header
- Typically 5
» (Can provide IP options, too

o [ype-of-service (8 bits)
- Allow packets to be treated differently based on different needs
- Low delay for audio, high bandwidth for bulk transfer, etc.

P Packet Header Fields (2)

* Two IP addresses
* Source (32 bits)
» Destination (32 bits)

* Destination address
- Unique identifier/locator for the receiving host

- Allows each node (end-host and router) to make
forwarding decisions

e Source address
- Unigue identifier/locator for the sending host
- Recipient can decide whether to accept the packet
- Allows destination to reply to the source

|P: “Best effort” packet delivery

 Routers inspect destination address, determine
“‘next hop” in the forwarding table

* Best effort = “I'll give it a try”
* Packets may be lost
- Packets may be corrupted
- Packets may be delivered out of order

Fixing these is the job of the transport layer!

Attacks on |P

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum
32-bit
Source IP address
32-bit
Destination IP address

Attacks on [P

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum

32-bit
Source IP address

32-bit
Destination IP address

Source-spoof

There is nothing Iin |IP that
enforces that your source
|IP address is really “yours”

Attacks on [P

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum

32-bit
Source IP address
32-bit
Destination IP address

Source-spoof

There is nothing Iin |IP that
enforces that your source
|IP address is really “yours”

Eavesdrop / Tamper

IP provides no protection

of the payload or header

Source-spoofing

* \Why source-spoof?
- Consider spam: send many emails from one
computer

- Easy defense: block many emails from a given
(source) IP address

- Easy countermeasure: spoof the source |IP address
- Counter-countermeasure?

« How do you know if a packet you receive has a
spoofed source”

Salient network features

 Recall: The Internet operates via destination-based
routing

o attacker: pkt (spoofed source) -> destination
destination: pkt -> spoofed source

* |n other words, the response goes to the spoofed
source, notthe attacker

Defending against source-spoofing

« How do you know If a packet you receive has a
spoofed source?

- Send a challenge packet to the (possibly spoofed)
source (e.qg., a difficult to guess, random nonce)

- |f the recipient can answer the challenge, then likely
that the source was not spoofed

So do you have to do this with every packet??

- Every packet should have something that's difficult to
guess

- Recall the query ID in the DNS queries! Easy to
predict => Kaminsky attack

Source spoofing

 \Why soL
- Consic

rce-spooft?
er DoS attacks: generate as much traffic as

DOSSID

e to congest the victim’'s network

- Easy defense: block all traftic from a given source

near th

e edge of your network

- Easy countermeasure: spoof the source address

 Challenges won't help here; the damage has been

done by
network

the time the packets reach the core of our

* |deally, detect such spooting near the source

Egress filtering

* [he point (router/switch) at which traffic enters your
network Is the ingress point

* [he point (router/switch) at which traffic leaves your
network Is the egress point

 You don’t know who owns all IP addresses in the
world, but you do know who in your own network
gets what |IP addresses
- |f you see a packet with a source |IP address that

doesn't belong to your network trying to cross your
egress point, then drop it

Egress filtering is not widely deployed

Eavesdropping / Tampering

4-bit 4-bit 8-bit 16-bit
Version |Header len| Type of service (TOS) Total length (bytes)
16-bit 3-bit 13-bit
Identification Flags Fragment offset
8-bit 8-bit 16-bit
Time-to-live (TTL) Protocol Header checksum
32-bit
Source IP address
32-bit
Destination IP address

 No security built into IP

» => Deploy secure IP over IP

Virtual Private Networks (VPNSs)

Untrusted network Trusted network

Goal: Allow the client to connect to the trusted network
from within an untrusted network

Example: Connect to your company’s network (for payroll,
file access, etc.) while visiting a competitor’s office

Virtual Private Networks (VPNSs)

Untrusted network Trusted network

ldea: A VPN “client” and “server” together create
end-to-end encryption/authentication

Predominate way of doing this: IPSec

PSec

 Operates in a few different modes

- [Transport mode: Simply encrypt the payload but not
the headers

- Tunnel mode: Encrypt the payload and the headers

* But how do you encrypt the headers? How does
routing work"

- Encrypt the entire IP packet and make that the
payload of another IP packet

Tunnel mode

The VPN server decrypts and then sends the
payload (itself a full IP packet) as if it had just
received It from the network

From the client/servers’ perspective:
Looks like the client is physically connected to the network!

nND w A~ N

| ayer 4: lransport layer

Physical

e End-to-end communication
between processes

e Different types of services
provided:

 UDP: unreliable datagrams

 TCP: reliable byte stream

 “Reliable” = keeps track of what

data were received properly
and retransmits as necessary

TCP: reliability

* (Given best-effort deliver, the goal is to ensure
reliability
- All packets are delivered to applications
... In order
... unmodified (with reasonably high probability)

 Must robustly detect and retransmit lost data

TCP’s bytestream service

e Process A on host 1;
- Send byte O, byte 1, byte 2, byte 3, ...

 Process B on host 2:
- Recelve byte O, byte 1, byte 2, byte 3, ...

 [he applications do not see:
- packet boundaries (looks like a stream of bytes)
* |ost or corrupted packets (they're all correct)
- retransmissions (they all only appear once)

TCP bytestream service

Abstraction: Each byte reliably delivered in order

Process A on host

byte byte 2 | byte 3 byte 5 | byte6 | byte 7 | byte 8

\ \

Process B on host H2

TCP bytestream service

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

byte byte?2 | byte3 | byte4 | byte5 | byte6 | byte 7 | byte 8

Packet 1 Packet 2 Packet 3

\

Needs to be
retransmitted

Needs to be
buffered

TCP bytestream service

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

byte byte?2 | byte3 | byte4 | byte5 | byte6 | byte 7 | byte 8

Packet 1 Packet 2 Packet 3
Needs to be
retransmitted Needs 1o be
buffered

TCP’s first job: achieve the abstraction while
hiding the reality from the application

How does TCP achieve reliability”?

A B

Watertall
diagram

|

ime

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

|

me

How does TCP achieve reliability”?

Watertall
diagram

|

ime

A

Bytes 1

000-15¢,

B

Expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

|

ime

A

Bytes 1

000-15¢,

B

Expecting byte 1000

Expecting byte 1501

How does TCP achieve reliability”?

A B
Bytes 100¢. 500 Expecting byte 1000
Watertall \01> Expecting byte 1501
diagram ACK 120 eee

ime

|

How does TCP achieve reliability”?

Watertall
diagram

me

Expecting byte 1000

Expecting byte 1501

Reliability through acknowledgments

to determine whether something was received.

How does TCP achieve reliability”?

A B

Watertall
diagram

|

ime

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

|

me

How does TCP achieve reliability”?

Watertall
diagram

|

ime

A

Bytes 1

000-15¢,

Expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

|

ime

Expecting byte 1000

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

|

ime

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000

How does TCP achieve reliability”?

Watertall
diagram

ime

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

ime

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

ime

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

How does TCP achieve reliability”?

A B

Expecting byte 1000

Watertall
diagram

ime

Still expecting byte 1000
Still expecting byte 1000

Buffer these until

v

Expecting packet 3001

TCP congestion control

TCP’s second job: don’t break the network!

* Try to use as much of the network as is safe (does
not adversely affect others’ performance) and
efficient (makes use of network capacity)

 Dynamically adapt how quickly you send based on
the network path’s capacity

 When an ACK doesn’t come back, the network may
be beyond capacity: slow down.

TCP header

16-bit 16-bit
Source port Destination port
32-bit
Sequence number
32-bit
Acknowledgment
4-bit : -
Header | Reserved 6-bit _16'b|t _
Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer

Options (variable)

Padding

Data

TCP header

IP Header
Source port Destination port
32-bit
Sequence number
32-bit
Acknowledgment
4-bi : -
Heac:ter Reserved 6-bit _16'b|t _
Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer
Options (variable) Padding

TCP ports

Ports are associated with OS processes

Sandwiched between IP header and the
application data

{src IP/port, dst IP/port} : this 4-tuple uniquely
identifies a TCP connection

Some port numbers are well-known
. 80 = HTTP
« 53 = DNS

TCP header

IP Header
| Source port Destination port !

32-bit

Sequence number

32-bit
Acknowledgment

4-bit 6-bit 16-bit

Header Reserved

Length Flags Advertised window
16-bit 16-bit
Checksum Urgent pointer
Options (variable) Padding

TCP segno

Each byte in the byte stream has a unigue
‘sequence number”

- Unique for both directions

“Sequence number” in the header = sequence
number of the first byte in the packet's data

Next sequence number = previous segno +
previous packet's data size

"Acknowledgment” in the header = the next segno
you expect from the other end-host

TCP header

IP Header

16-bit
Destination port

16-bit
Source port
32-bit
Sequence number
32-bit
alall ment

4-bit

16-bit

Header Reserved] _
Length Advertised window
16-bi 16-bit
Checksum Urgent pointer

Options (variable)

Padding

TCP flags

SYN
- Used for setting up a connection

ACK
- Acknowledgments, for data and “control” packets

FIN

RST

Setting up a connection

Three-way handshake
A B

Watertall
diagram

l

Setting up a connection

Three-way handshake
A B

S*}
Watertall

diagram

l

Setting up a connection

Three-way handshake

Watertall
diagram

|

ime

A

S&»

B

Let's SYNchronize
seguence numbers

Setting up a connection

Three-way handshake

Watertall
diagram

|

ime

A

S&»
SYN + ACK

B

Let's SYNchronize
seguence numbers

Setting up a connection

Three-way handshake

Watertall
diagram

|

ime

A

S*}
SYN + ACK

B

Let's SYNchronize
seguence numbers

Got yours; here’s mine

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ sequence numbers
Waterfall N+ ACK - | o
diagram / ot yours; here’s mine
O ACK
.gl \

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ seqguence numbers
Watertall \ + ACK | o
diagram SY Got yours; here’s mine
O ACK

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ seqguence numbers
Watertall \ + ACK | o
diagram SY Got yours; here’s mine
O ACK

Dax}

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize
\ seqguence numbers
Watertall \ + ACK | o
diagram SY Got yours; here’s mine
O ACK
Datg
%

Setting up a connection

Three-way handshake
A B

SYN Let's SYNchronize

\ seqguence numbers

Watertall \ + ACK | o
diagram SY Got yours; here’s mine

O ACK
Datg

%
%

Setting up a connection

Three-way handshake
A B

| et’s SYNchronize

seguence numbers
Watertall

diagram Got yours; here’s mine

Got yours, too

TCP flags

SYN
ACK

FIN: Let’'s shut this down (two-way)
* FIN
- FIN+ACK

RST: I'm shutting you down

- Says “delete all your local state, because | don’t know
what you're talking about

Attacks

 SYN flooding
* |njection attacks

 Opt-ack attack

SYN flooding

SYN flooding

Recall the three-way handshake:
A B

Watertall
diagram

|

ime

Watertall
diagram

|

ime

SYN flooding

Recall the three-way handshake:
A B

S*}

SYN flooding

Recall the three-way handshake:
A B

S*}
Watertall

At this point, B

diagram allocates state
- for this new
= connection
(incl. IP, port,
maximum

segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
Wateriall P At this point, B
diagram VSSIE allocates state
o for this new
& connection
(incl. IP, port,
maximum

segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
\C/j\(aterfall P At this point, B
lagram UEEE allocates state
Q ‘W for this new
& connection
(incl. IP, port,
maximum
segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
Wateriall P At this point, B
diagram VSSIE allocates state

gyN + ACK for this new
connection
% (incl. IP, port,
%

maximum
segment size)

ime

SYN flooding

Recall the three-way handshake:

A B
S*}
\C/j\(aterfall P At this point, B
lagram " SR o [|ocates state
D y for this new
- connection
% (incl. IP, port,
X maximum

cK .
sYN+A segment size)

SYN flooding

Recall the three-way handshake:

A B
S*}
Wateriall [At this point, B
diagram VSSIE allocates state
© ‘W for this new
- connection
% (inC' |P’ pOrt’
X maximum

K .
SYN + AC segment size)

B will hold onto this local state and retransmit SYN+ACK'’s
until it hears back or times out (up to 63 sec).

SYN flooding

The attack
B

SYN flooding

The attack
A B

S*}

SYN flooding

The attack
A B

S&»

IP/port,
MoaS

SYN flooding

The attack
A B

S*}
IP/port,
S&» MSS,...

SYN flooding

The attack
A B

S*}
S*}

IP/port,
MoaS

IP/port,
isleia s

SYN flooding

The attack
A B

S*}
IP/port,
S*} MSS,...
IP/port,
S*’ VDS -

SYN flooding

The attack
A B

S*}
S*}
S*’

IP/port,
MoaS

IP/port,
isleia s
IP/port,
MSS

SYN flooding

The attack
A B

IP/port,
MoaS
IP/port,
isleia s
|P/port,
letea

SYN flooding

The attack
A B

IP/port,
MoaS
IP/port,
isleia s

SYN flooding

The attack
A B

IP/port,
MoaS
IP/port,
isleia s

Exhaust memory
at the victim B.

SYN flooding

The attack
A B C

IP/port,
MoaS

Exhaust memory
at the victim B.

SYN flooding

The attack
A B C

IP/port,

MSS, ...

IP/port,

MSS, .
New connections

will fail (insufficient
memory)

Exhaust memory
at the victim B.

SYN flooding details

Easy to detect many incomplete handshakes from a
single |IP address

Spoofthe source |IP address
- It's just a field in a header: set it to whatever you like

Problem: the host who really owns that spoofed IP
address may respond to the SYN+ACK with a RST,
deleting the local state at the victim

|[deally, spoof an IP address of a host you know won't
respond

SYN cookies

The defense
B

SYN cookies

The defense
A B

S*}

SYN cookies

The defense
A B

S*}

IP/port,
MoaS

SYN cookies

The defense
A B

S*}

Rather than store this data,
send It to the host who

'S Initiating the

connection and have

him return it to you

IP/port,
Mas

SYN cookies

The defense
A B

Rather than store this data,
send It to the host who

IS Initiating the
B connection and have

him return it to you

Store the necessary
state in your segno

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send it to the host who
S Initiati g the
connection and have
him return it to you

Store the necessary
state in your segno

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send it to the host who
S Initiati g the
connection and have
him return it to you

Store the necessary
state in your segno

%’

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send It to the host who
S Initiati g the
connection and have

him return it to you

Store the necessary
state In your segno

ACK Check that f(data) is valid
W’ for this connection. Only
at that point do you

allocate state.

SYN cookies

The defense
A B

SYN Rather than store this data,
\ send It to the host who
S Initiati g the
connection and have

him return it to you

Store the necessary

state in your segno
Check that f(data) is valid

AC . .
K f(datayy 1 for this connection. Only
at that point do you
IP/port,

allocate state.

SYN cookie format

32-bit segno

fimestamp

Prevents The info we Includes:
replay need for this |IPs/ports, MSS,
attacks connection timestamp

CK f
W} The secure hash makes

it difficult for the attacker

to guess what () will be,
and therefore the attacker
cannot guess a correct ACK
if he spoofs.

INnjection attacks

* SUPPOSEe you are on the path between src and dst;
what can you do”?

- Trivial to inject packets with the correct sequence
number

 \What if you are not on the path?

* Need to guess the sequence number
* |s this difficult to do”

INnitlal sequence numbers

e |nitlal sequence numbers used to be deterministic

 \What havoc can we wreak”
« Send RSTs

- |nject data packets into an existing connection (TCP
veto attacks)

« |nitiate and use an entire connection without ever
hearing the other end

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

Attacker

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker

Mitnick attack

X-terminal Server that X-

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

Mitnick attack

X-terminal Server that X-

server

term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

3. Trusted server too busy to RST

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

3. Trusted server too busy to RST
4. ACK with the guessed seqgno

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

3. Trusted server too busy to RST
4. ACK with the guessed seqgno

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

Mitnick attack

SYN+ACK

Server that X-

X-terminal

server term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources

Mitnick attack

SYN+ACK

X-terminal seqgno
server

Server that X-

term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources

Mitnick attack

SYN+ACK

X-terminal seqgno
server

Server that X-

term trusts

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

Attacker 2. Spoof trusted server’s IP addr
iNn SYN to X-terminal

“echo ++ >> ./rhosts” 3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources
6. RSTs to trusted server (cleanup)

X-terminal
server

“echo ++ >>

Mitnick attack

SYN+ACK

seqno

Server that X-

term trusts

./rhosts”

Any connection initiatea
from this IP address is
allowed access to the
X-terminal server

1. SYN flood the trusted server

2. Spoof trusted server’s [P addr
in SYN to X-terminal

3. Trusted server too busy to RST
4. ACK with the guessed seqgno

5. Grant access to all sources

6. RSTs to trusted server (cleanup)

Defenses

* |nitial sequence number must be difficult to predict!

Opt-ack attack

B

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

B

Expecting byte 1000

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B

Bytes 1000-150, Expecting byte 1000

\>

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B

Bytes 1000-150, Expecting byte 1000

\>

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B

Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B
Bytes 1000-150, Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

A B
Bytes 1000-150, Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for
congestion control:
the more ACKs come back, the faster | can send

Opt-ack attack

B
A
m’
ACK.12
4 -------
B tes 2002_2 502

Opt-ack attack

B
Sytes 2002-250, f | could convince you to send

REALLY quickly, then you would
eftectively DoS your own network!

Opt-ack attack

A B

But to get you to send faster, | need

1 to get data in order to ACK, so |

need to receive quickly

It | could convince you to send
REALLY quickly, then you would
eftectively DoS your own network!

Opt-ack attack

A B

But to get you to send faster, | need

1 to get data in order to ACK, so |

need to recelve quickl
QUICEY ordoI1?

It | could convince you to send
REALLY quickly, then you would
eftectively DoS your own network!

Opt-ack attack

B

Opt-ack attack

B
A
Bytes 1

000-15¢,

Opt-ack attack

A B

Bytes 100¢.

900
\b It | can predict what the last segno will be

and when A will send it

Opt-ack attack

ceue ~1500
I—l\b If | can predict what the last segno will be

and when A will send it

Opt-ack attack

ACK_.‘.E’-QL Then | could ACK early! (“optimistically”)

T -1500
I—l\b If | can predict what the last segno will be

and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to

\ get dropped.
X

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

Opt-ack attack

ACK_j."E’m-‘ Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

But so long as | keep ACKIng correctly, it
doesn’'t matter.

Opt-ack attack

Then | could ACK early! (“optimistically”)

It | can predict what the last segno will be
and when A will send it

A will think “what a fast, legit connection!”

Eventually, A's outgoing packets will start to
get dropped.

But so long as | keep ACKIng correctly, it
doesn’'t matter.

Amplification

* The big deal with this attack is its Amplification
Factor

- Attacker sends x bytes of data, causing the victim to
send many more bytes of data in response

- Recent examples: NTP, DNSSEC

 Amplified in TCP due to cumulative ACKs

+ "ACK x" says “I've seen all bytes up to but not
including x”

Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

« Max ACKs attacker can send per second:

Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

Packets sent per ACK Bytes per packet
I\/la)(W”’]dOW SIZG ® L messsEsssssEEEEEEEEEEs
X (14 + 40 + I\/ISS)
MSS '\é
------------------------- e (\@ \\Q \Q@

« Max ACKs attacker can send per second:

Opt-ack’'s amplification factor

 Max bytes sent by victim per ACK:

Packets sent per ACK Bytes per packet
|\/|a)(WINdOW Size @ = ,=ssssssssssssssssssnss
X (14 + 40 + I\/ISS)
I\/lSS '.I’I\‘Illllllllllllllélllll
lllllllllllllllllllllllll © (\@ \\Q \O®

Opt-ack’'s amplification factor

e Boils down to max window size and MSS

« Default max window size: 65,536
« Default MSS: 536

e Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x
* Window scaling lets you increase this by a factor of 2214
« Window scaling amp factor: ~1336 * 2/ 14 ~ 22M

e Using minimum MSS of 88: ~ 32M

Opt-ack defenses

e |s there a way we could defend against opt-ack in
a way that Is still compatible with existing
implementations of TCP?

 An important goal in networking is incremental
deployment. ideally, we should be able to benefit
from a system/modification when even a subset of
hosts deploy It.

NAMING

 |P addresses allow global connectivity

« But they're pretty useless for humans!

+ Can't be expected to pick their own IP address

« Can't be expected to remember another’s IP address

« DHCP : Setting IP addresses

* DNS : Mapping a memorable name to a routable IP
address

DYNAMIC HOST CONFIGURATION PROTOCOL

New host DHCP server

DYNAMIC HOST CONFIGURATION PROTOCOL

New host DHCP server

Doesn’t have an
IP address yet
(can’t set src addr)

00

DYNAMIC HOST CONFIGURATION PROTOCOL

New host DHCP server

Doesn’t have an
IP address yet
(can’t set src addr)

Doesn’t know who
to ask for one

00

DYNAMIC HOST CONFIGURATION PROTOCOL

New host DHCP server

Doesn’t have an
IP address yet
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover
one on the local
subnet

00

DYNAMIC HOST CONFIGURATION PROTOCOL

New host DHCP server
Doesn’t have an
P addressyet ~ [""rres (lg%'-b.?’."??.‘i‘.’er
(can’t set src addr) roagCagty s IQ

Doesn’t know who
to ask for one

Solution: Discover
one on the local
subnet

00

DYNAMIC HOST CONFIGURATION PROTOCOL

New host DHCP server
Doesn’t have an
P addressyet ~ [""rres (lg%'-b.?’."??.‘i‘.’er
(can’t set src addr) roagCagty s IQ

r
Doesn’t know who DHCP offe

to ask for one

Solution: Discover
one on the local
subnet

00

DYNAMIC HOST CONFIGURATION PROTOCOL

New host

Doesn’t have an
IP address yet
(can’t set src addr)

er
Doesn't know who DHCP oft

to ask for one

Solution: Discover
one on the local
subnet

........ D H CP ?IiscO ver
SR SRR

DHCP server

offer includes: IP
address, DNS server,
gateway router, and
duration of this offer
("lease” time)

00

DYNAMIC HOST CONFIGURATION PROTOCOL

New host

Doesn’t have an
IP address yet
(can’t set src addr)

er
Doesn't know who DHCP oft

ol DHCP re

to ask for one

Solution: Discover
one on the local
subnet

DHcp

(L2Bres

DHCP server

discoye,

(L2°6 roa deae fpreee

Quest

P>

offer includes: IP
address, DNS server,
gateway router, and
duration of this offer
("lease” time)

00

DYNAMIC HOST CONFIGURATION PROTOCOL

New host

Doesn’t have an
IP address yet
(can’t set src addr)

er
Doesn't know who DHCP oft

ol DHCP re

to ask for one

Solution: Discover
one on the local
subnet

DHcp

(L2Bres

DHCP server

discoye,

(L25 ros dcas', fpreee

Quest

P>

offer includes: IP
address, DNS server,
gateway router, and
duration of this offer
("lease” time)

request asks for the
offered IP address

DYNAMIC HOST CONFIGURATION PROTOCOL

New host

Doesn’t have an
IP address yet
(can’t set src addr)

r
Doesn’t know who DHCP offe

to ask for one

Solution: Discover
one on the local
subnet

Tan, diSCQver.
(L2 brO.a.a.c.a.s.i-) ------- }

ol DHCP re

------ Que
(L2 brOa. ?F >

DHCP ACK

DHCP server

offer includes: IP
address, DNS server,
gateway router, and
duration of this offer
("lease” time)

request asks for the
offered IP address

DHCP ATTACKS

* Requests are broadcast: attackers on the same subnet
can hear new host's request

* Race the actual DHCP server to replace:
+ DNS server

Redirect any of a host's lookups (“what IP address should | use

when trying to connect to google.com?”) to a machine of the
attacker’s choice

- Gateway
The gateway is where the host sends all of its outgoing traffic (so
that the host doesn’t have to figure out routes himself)
Modity the gateway to intercept all of a user’s traftic
Then relay it to the gateway (MITM)
How could the user detect this?

http://google.com

HOSTNAMES AND |IP ADDRESSES

gold:~ dml$ ping google.com
PING google.com (74.125.228.65): 56 data bytes
64 bytes from 74.125.228.65: 1cmp seqg=0 ttl=52 time=22.330 ms

64 bytes from 74.125.228.65: 1cmp seg=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: 1cmp seg=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: 1cmp seqg=3 ttl=52Z2 time=12.805 ms

HOSTNAMES AND |IP ADDRESSES

gold:~ dml$ ping (GEo3le-con)

PING google.com (74.125.228.65): 56 data bytes
64 bytes from 74.125.228.65: 1cmp seqg=0 ttl=52 time=22.330 ms

64 bytes from 74.125.228.65: 1cmp seg=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: 1cmp seg=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: 1cmp seqg=3 ttl=52Z2 time=12.805 ms

HOSTNAMES AND |IP ADDRESSES

gold:~ dml$ ping(google.com)
PING google.com ((74.125.228.65)): 56 data bytes

64 bytes from 74.125.228.65: 1cmp seqg=0 ttl=52 time=22.330 ms

64 bytes from 74.125.228.65: 1cmp seg=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: 1cmp seg=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: 1cmp seqg=3 ttl=52Z2 time=12.805 ms

HOSTNAMES AND |IP ADDRESSES

gold:~ dml$ ping(google.com)
PING google.com ((74.125.228.65)): 56 data bytes

64 bytes from 74.125.228.65: 1cmp seqg=0 ttl=52 time=22.330 ms

64 bytes from 74.125.228.65: 1cmp seg=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: 1cmp seg=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: 1cmp seqg=3 ttl=52Z2 time=12.805 ms

google.com is easy to remember, but not routable

/4.125.228.65 is routable

Name resolution:
The process of mapping from one to the other

TERMINOLOGY

e www.cs.umd.edu = “domain name”

« www.cs.umd.edu is a “subdomain” of cs.umd.edu

* Domain names can map to a set of IP addresses

gold:~ dml$ dig google.com

; <<>> DiG 9.8.3-P1 <<>> google.com

;; global options: +cmd

;; Got answer:

;; —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 35815

;; flags: gr rd ra; QUERY: 1, ANSWER: 11, AUTHORITY: O, ADDITIONAL: O

;; QUESTION SECTION:
;google.com. IN A g .
We'll understand this
; ; ANSWER SECTION:

google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105

more in a bit; for now,

note that google.com
is mapped to many

B i A == i -

IP addresses

http://www.cs.umd.edu
http://www.cs.umd.edu
http://google.com

TERMINOLOGY

e www.cs.umd.edu = “domain name”

« www.cs.umd.edu is a “subdomain” of cs.umd.edu

* Domain names can map to a set of IP addresses

; <<>> DiG 9.8.3-P1 <<>> google.com

;; global options: +cmd

;; Got answer:

;; —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 35815

;; flags: gr rd ra; QUERY: 1, ANSWER: 11, AUTHORITY: O, ADDITIONAL: O

;; QUESTION SECTION:
;google.com. IN A g .
We'll understand this
; ; ANSWER SECTION:

google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105
google.com. 105

more in a bit; for now,

note that google.com
is mapped to many

B i A == i -

IP addresses

http://www.cs.umd.edu
http://www.cs.umd.edu
http://google.com

TERMINOLOGY

* "zone" = a portion of the DNS namespace, dividea
up for administrative reasons

- Think of it like a collection of hostname/IP address
pairs that happen to be lumped together

www.google.com, mail.google.com, dev.google.com, ...

e Subdomains do not need to be in the same zone

» Allows the owner of one zone (umd.edu) to delegate

responsibility to another (cs.umd.edu)

http://www.google.com
http://mail.google.com
http://dev.google.com
http://cs.umd.edu

NAMESPACE HIERARCHY

TERMINOLOGY

* "Nameserver” = A piece of code that answers
queries of the form “What is the IP address for
foo.bar.com?”

Every zone must run =2 nameservers

» Several very common nameserver implementations:
BIND, PowerDNS (more popular in Europe)

e "Authoritative nameserver”:

Every zone has to maintain a file that maps IP
addresses and hostnames (“www.cs.umd.edu is
128.8.127.3")

» One of the name servers in the zone has the master
copy of this file. It is the authority on the mapping.

http://www.cs.umd.edu

TERMINOLOGY

» “Resolver” - while name servers answer queries,
resolvers ask queries.

» Every OS has a resolver. Typically small and pretty dumb.
All it typically does it forward the query to a local...

« “"Recursive nameserver” - a nameserver which will do

the heavy lifting, issuing queries on behalf of the client
resolver until an authoritative answer returns.

e Prevalence

* There is almost always a local (private) recursive name server

» But very rare for name servers to support recursive queries
otherwise

TERMINOLOGY

* “Record” (or “resource record”) = usually think of it

as a mapping between hostname and IP address

* But more generally, it can map virtually anything to
virtually anything

» Many record types:
» (A)ddress records (IP <-> hostname)
» Mail server (MX, mail exchanger)
»+ SOA (start of authority, to delineate different zones)
» Others tor DNSSEC to be able to share keys

e Records are the unit of information

TERMINOLOGY

00

* Authoritative answers (A) for hostnames in that zone

+ The umd.edu zone's nameservers must be able to tell us

what the IP address for umd.edu is

:l-l---”- --------- . --------------_- ------------------ : 548424199 |Sava||d
Arecordumdedu—548424199 IP address for umd.edu

http://umd.edu
http://umd.edu
http://umd.edu
http://cs.umd.edu
http://umd.edu
http://umd.edu
http://ipa01.cs.umd.edu
http://ipa01.cs.umd.edu
http://cs.umd.edu

TERMINOLOGY

* Authoritative answers (A) for hostnames in that zone

+ The umd.edu zone's nameservers must be able to tell us

what the IP address for umd.edu is

lll 54.84.241 .99 is a Valid
.. IP address for umd.edu

* Pointers to name servers (NS) who host zones in its
subdomains

- The umd.edu zone's nameservers must be able to tell us

what the name and IP address of the cs.umd.edu zone's

lll L ASk ||;ao1 Csumdedu fOr a”
... cs.umd.edu subdomains

http://umd.edu
http://umd.edu
http://umd.edu
http://cs.umd.edu
http://umd.edu
http://umd.edu
http://ipa01.cs.umd.edu
http://ipa01.cs.umd.edu
http://cs.umd.edu

Domain Name Service at a very high level

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

| ocal
nameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

| ocal
nameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

Root DNS

H n

server .

| ocal
nameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

Root DNS

H n

server .

| ocal
nameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Root DNS

H n

server .

| ocal
nameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Root DNS

H n

server .

TLD DNS

server
Nnameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Root DNS

H n

server .

TLD DNS
server

Nnameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Root DNS

H n

server .

TLD DNS
server

Nnameserver

Requesting
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Root DNS

H n

server .

TLD DNS
server

Nnameserver

Authoritative DNS

Requesting server
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Root DNS

H n

server .

TLD DNS
server

Nnameserver

Authoritative DNS

Requesting server
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

Root DNS

H n

server .

TLD DNS
server

Nnameserver

Authoritative DNS

Requesting server
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

Root DNS

H n

server .

TLD DNS
server

Nnameserver

Authoritative DNS

Requesting server
host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

Root DNS

H n

server .

TLD DNS
server

Nnameserver

1118

Authoritative DNS

Requesting server

host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

Root DNS

H n

server .

TLD DNS
server

Nnameserver

1118

Authoritative DNS

Requesting server

host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

Domain Name Service at a very high level

s Caching responses is
server "." critical to DNS's success
Every response (3,5,7,8)
has a time-to-live (TTL).
TLD DNS
e Ls should be reasonably
long (days), but some
are minutes.

Nnameserver

1118

Authoritative DNS

Requesting server

host

What is an IP address
for cs.umd.edu?

http://cs.umd.edu

HOW DO THEY KNOW THESE IP ADDRESSES?

00

* Local DNS server: host learned this via DHCP
* A parent knows its children: part of the registration process

 Root nameserver: hardcoded into the local DNS server
(and every DNS server)
+ 13 root servers (logically): A-root, B-root, ..., M-root

» These IP addresses change very infrequently

* UMD runs D-root.
IP address changed beginning of 2013!!

For the most part, the change-over went alright, but Lots of weird
things happened — ask me some time.

CACHING

e Central to DNS’s success
e Also central to attacks

« "Cache poisoning”: filling a victim's cache with
false information

QUERIES

Every query (2,4,6) has
the same request in it

Root DNS
server “." .
("what is the IP address for

cs.umd.edu?”)

TLD DNS

server

gt S But different:

e Authoritative DNS - dst [P (port = 53)

server - cuery |D
(“umd.edu”)

Requesting

host

VWhat is an IP address
for cs.umd.edu?

http://cs.umd.edu

WHAT'S IN A RESPONSE?

e Many things, but for the attacks we're concerned with...

A record: gives "the authoritative response for the IP
address of this hostname”

e NS record: describes “this is the name of the
nameserver who should know more about how to
answer this query than | do”

Often also contains “glue” records (IP addresses of those
name servers to avoid chicken and egg problems)

Resolver will generally cache all of this information

QUERY 1DS

00

e The local resolver has a lot of

incoming/outgoing queries at any
point in time.

* To determine which response maps
Local to which queries, it uses a query ID

nameserver

* Query ID: 16-bit field in the DNS
header

- Requester sets it to whatever it
wants

 Responder must provide the same
value in its response

QUERY 1DS

00

e The local resolver has a lot of
incoming/outgoing queries at any
point in time.

* To determine which response maps
Local to which queries, it uses a query ID

nameserver

* Query ID: 16-bit field in the DNS
header

Requester sets it to whatever it
wants

Responder must provide the same
value in its response

How would you implement query IDs at a resolver?

QUERY 1DS USED TO INCREMENT

00

» Global query ID value

» Map outstanding query ID
to local state of who to
respond to (the client)

nameserver

e Basically:
new Packet(queryID++)

QUERY 1DS USED TO INCREMENT

» Global query ID value

» Map outstanding query ID
to local state of who to
respond to (the client)

nameserver

e Basically:
new Packet(queryID++)

How would you attack this?

CACHE POISONING

6.6.6.6

CACHE POISONING

Local
nameserver
X/ . 2 o

www.bank.com

CACHE POISONING

Authoritative DNS

server

| ocal

nameserver

6.6.6.6

www.bank.com

CACHE POISONING

Authoritative DNS

server

\bq’qj/

| ocal

nameserver

6.6.6.6

www.bank.com

CACHE POISONING

Authoritative DNS

server

\bq’qj/

| ocal

nameserver

—_

6322 6.6.6.6

www.bank.com

CACHE POISONING

Authoritative DNS
server

nameserver

—_

6322:

6.6.6.6

www.bank.com

CACHE POISONING

Authoritative DNS
server

nameserver

6.6.6.6

Will cache
www.bank.com = 6.6.6.6
and ignore authority’s answer

www.bank.com

http://www.bank.com

CACHE POISONING

Authoritative DNS
server

nameserver

6.6.6.6
Will cache

www.bank.com = 6.6.6.6
and ignore authority’s answer

www.bank.com

http://www.bank.com

CACHE POISONING

Authoritative DNS
server

www.bad.com

nameserver

6.6.6.6
Will cache

www.bank.com = 6.6.6.6
and ignore authority’s answer

www.bank.com

http://www.bank.com

CACHE POISONING

Authoritative DNS
server

www.bad.com

nameserver

Will cache
www.bank.com = 6.6.6.6
and ignore authority’s answer

www.bank.com

http://www.bank.com

CACHE POISONING

Authoritative DNS
server

www.bad.com

nameserver

Bad 6.6.6.6
Will cache ad guy

www.bank.com = 6.6.6.6
and ignore authority’s answer

Next is likely

www.bank.com 16322

http://www.bank.com

DETAILS OF GETTING THE ATTACK TO WORK

00

» Must guess query ID: ask for it, and go from there

- Partial fix: randomize query IDs

» Problem: small space

» Attack: issue a Lot of query IDs

» Must guess source port number

» Typically constant for a given server (often always 53)

* The answer must not already be in the cache

- It will avoid issuing a query in the first place

CACHE POISONING

Can we do more harm than a single record?

com. TLD

| ocal

nameserver

6.6.6.6

CACHE POISONING

Can we do more harm than a single record?

com. TLD

www.bad.com

| ocal
nameserver

6.6.6.6

CACHE POISONING

Can we do more harm than a single record?

com. TLD

www.bad.com

| ocal
nameserver

6.6.6.6

CACHE POISONING

Can we do more harm than a single record?

www.bad.com
Welerz]
Nnameserver %’
6.6.6.6

Next is likely
16322

CACHE POISONING

Can we do more harm than a single record?

www.bad.com
| ocal
Nnameserver %*
6.6.6.6
Next is likely

somethingnotcached.bank.com 16322

CACHE POISONING

Can we do more harm than a single record?

\b,,;ﬁ/

www.bad.com
| ocal
Nnameserver %*
6.6.6.6
Next is likely

somethingnotcached.bank.com 16322

CACHE POISONING

00

Can we do more harm than a single record?

com. TLD

www.bad.com

nameserver

SEleRe S\ 6.6.6.6

Next is likely
somethingnotcached.bank.com 16322

CACHE POISONING

00

Can we do more harm than a single record?

com. TLD

www.bad.com

nameserver

SEleRe S\ 6.6.6.6

Next is likely
somethingnotcached.bank.com 16322

CACHE POISONING

00

Can we do more harm than a single record?

com. TLD

www.bad.com

nameserver

Will cache “the SETeRe A 6.6.6.6
person to ask for ALL
bank.com queries

666 6" Next is likely

somethingnotcached.bank.com 16322

http://bank.com

SOLUTIONS?

« Randomizing query ID?

Not sufficient alone: only 16 bits of entropy

» Randomize source port, as well

here’s no reason for it stay constant

» Gets us another 16 bits of entropy

 DNSSEC?

DNSSEC www.cs.umd.edu?

Root DNS

server "."”

DNSSEC www.cs.umd.edu?
Root DNS

Ask “.edu” et

.edu’s public key = PKeq,

(Plus “."’'s sig of this zone-key binding)

DNSSEC www.cs.umd.edu?
Root DNS

Ask “.edu” et
.edu’s public key = PKeqy

(Plus “."’'s sig of this zone-key binding)

www.cs.umd.edu?

—
TLD DNS

server

DNSSEC www.cs.umd.edu?
Root DNS

Ask “.edu” et
.edu’s public key = PKeqy

(Plus “."’'s sig of this zone-key binding)

www.cs.umd.edu?
—
—

Ask “umd.edu”

TLD DNS
server

umd.edu’s public key = PKmd

(Plus “edu’s sig of this zone-key binding)

DNSSEC www.cs.umd.edu?
Root DNS

Ask “.edu” et
.edu’s public key = PKeqy

(Plus “."’'s sig of this zone-key binding)

www.cs.umd.edu?
—
—

Ask “umd.edu”

TLD DNS
server

umd.edu’s public key = PKmd

(Plus “edu’s sig of this zone-key binding)

www.cs.umd.edu?
- e

Authoritative DNS

server

DNSSEC www.cs.umd.edu?
Root DNS

Ask “.edu” et
.edu’s public key = PKeqy

(Plus “."’'s sig of this zone-key binding)

www.cs.umd.edu?
—
—

Ask “umd.edu”

TLD DNS
server

umd.edu’s public key = PKmd

(Plus “edu’s sig of this zone-key binding)

www.cs.umd.edu?
_—

Authoritative DNS

IN A www.cs.umd.edu 128.8.127.3 server
(Plus “umd.edu’s signature of
the answer

DNSSEC www.cs.umd.edu?
Root DNS

Ask “.edu” et
.edu’s public key = PKeqy

(Plus “."’'s sig of this zone-key binding)

www.cs.umd.edu?
—
—

Ask “umd.edu”

TLD DNS
server

umd.edu’s public key = PKmd

(Plus “edu’s sig of this zone-key binding)

www.cs.umd.edu?
_—

Only the Authoritative DNS
authoritative IN A www.cs.umd.edu 128.8.127.3 server
answer iIs (Plus “umd.edu’s signature of

the answer

sighed

PROPERTIES OF DNSSEC

* |f everyone has deployed it, and if you know the root’s keys,
then prevents spoofed responses

» Very similar to PKls in this sense

 But unlike PKls, we still want authenticity despite the fact
that not everyone has deployed DNSSEC

+ What if someone replies back without DNSSEC?

* Ignore = secure but you can’t connect to a lot of hosts

» Accept = can connect but insecure

* Back to our notion of incremental deployment
» DNSSEC is not all that useful incrementally

