
Free Response of a Spring Mass System
Consider a spring mass system with no forcing and arbitrary initial conditions,

mx”�t� � �Kx�t� � cx��t�, x�0� � x0, x��0� � v0.

This corresponds to an initial displacement of the mass by the amount x0, and an initial
velocity of v0 for the mass. There are four cases we will consider:

1) The undamped case- c � 0
In this case mx”�t� � Kx�t� � 0 has as its characteristic equation, mr2 � K � 0. The roots
are the imaginary pair r � � i�, where

� �
K
m � the natural frequency of the system.

The independant solutions in this case are, x1�t� � cos �t and x2�t� � sin �t, and the
general solution is then

x�t� � C1 cos �t � C2 sin �t.

Then x�0� � C1 � x0, and x��0� � �C2 � v0 hence

x�t� � x0 cos �t � v0
�
sin �t.

This is a solution whose amplitude does not decrease with time and whose frequency, �,
increases as the stiffness K of the spring increases and decreases as the mass m
increases.

2) The Damped Case c � 0
In this case mx”�t� � cx��t� � Kx�t� � 0 has as its characteristic equation, mr2 � cr � K � 0.
Then the roots are given by

r1,2 �
�c � c2 � 4Km

2m

and there are three distinct cases that can occur.

(a) the underdamped case 0 � c2 � 4Km
In this case the roots are a complex conjugate pair r1,2 � �� � i� where � �

c
2m

and � �
4Km � c2
2m �

K
m �

c
2m

2
� �

2
�

c
2m

2
� �
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Note that one effect of the damping is to reduce the frequency at which the system
oscillates from the natural frequency �, to a lower frequency, �. In this case two
independent solutions are

x1�t� � e��t cos �t and x2�t� � e��t sin �t,

and the general solution is x�t� � C1 e��t cos �t � C2 e��t sin �t.
Then

x�0� � C1 � x0 and x��0� � ��C1 � �C2 � v0
and

x�t� � x0 e��t cos �t � v0 � �x0
� e��t sin �t.

Since � � �

c
2m � 0, this is an oscillating solution whose amplitude decreases

exponentially as time increases. The following figure shows the undamped and
underdamped solutions plotted on the same axes.

(b) the critically damped case c2 � 4Km
As the damping is increased, the damped frequency, �, decreases until finally reaching
zero when c2 � 4Km. At this point, the system no longer oscillates at all and the character
of the solution changes. In this case, the roots of the characteristic equation are real and
equal with the value r1,2 � �� � �

c
2m . Then x1�t� � e��t and x2�t� � t e��t are two linearly

independant solutions and the general solution is

x�t� � C1e��t � C2 t e��t
The initial conditions are satisfied by the following solution

x�t� � x0 e��t � �v0 � �x0� t e��t

This solution decays to zero without oscillating.
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(c) the overdamped case c2 � 4Km
When the damping increases beyond the critical point c2 � 4Km, the characteristic equation
has distinct real roots

r1,2 �
�c � c2 � 4Km

2m � �

c
2m �

c
2m

2
�

K
m � �� � �, � �

c
2m

2
�

K
m � �

both of which are negative since
�� � � � �� � �� � � � 0.

This leads to the general solution

x�t� � C1e������t � C2 e������t
and

x�t� �
v0 � �� � ��x0

2� e������t � v0 � �� � ��x0
2� e������t

is the solution that satisfies the initial conditions. This solution, like the critically damped
solution, decays to zero without oscillating. Note that if x0 � 0 and v0 � 0, then the
overdamped solution decays to zero less rapidly than the critically damped solution. This is
shown in the figure below where both solutions are plotted on the same axes. This is
because when the damping is increased beyond the critical value, not only is the oscillation
supressed, the motion of the mass is further impeded so that a mass released from rest
takes longer to return to the equilibrium position. Heavy doors are often equipped with a
spring device that pulls the door shut but the motion is sufficiently damped that the door can
not slam. For this to work properly, the damping must equal or exceed the critical value.

If the initial conditions are changed to x0 � 0 and v0 � 0, then both solutions begin from the
equilibrium position, x � 0, and rise to a maximum displacement before decreasing back to
x � 0. This is illustrated in the figure below. The critically damped solution reaches a higher
maximum deflection than does the overdamped solution and therefore takes a longer time
to decay to zero. This set of initial conditions is a reasonable approximation of the situation
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that occurs when a shock absorber is actuated by a car hitting a bump. The shock absorber
is compressed by the bump but returns to the uncompressed state without oscillating as
long as the damping exceeds the critical value. If the damping is less than the critical value,
then the car will bob up and down after hitting a bump. It is time then to replace the shock
absorbers.

The unforced spring mass system is governed by the differential equation

mx”�t� � cx��t� � Kx�t� � 0

hence if we define the total energy in the system to be

E�t� �
1
2 mx

��t�2 � 1
2 Kx�t�

2
� kinetic energy � potential energy

then E ��t� �
1
2 m2x

��t�x”�t� � 1
2 K 2x�t�x

��t�

� x��t��mx”�t� � Kx�t�� � �cx��t�2.

If c � 0 (the undamped case) then E��t� � 0, so the the total energy is constant; the energy
only changes from kinetic to potential and back. At the instant when the mass reaches its
maximum deflection, the velocity is zero and the energy is all potential energy stored in the
spring. At the instant when the mass passes through the equilibrium position at x � 0, the
velocity is maximal and the energy is all kinetic since the potential energy is zero when the
spring is in its equilibrium state. If c � 0, then E��t� � �cx��t�2 � 0 so the energy is
decreasing, which is why the friction is referred to as an energy dissipating mechanism. The
rate at which energy is dissipated increases as the damping increases.
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