
CMSC 828X - M.Lin

From Particles to Rigid Bodies

• Particles
– No rotations
– Linear velocity v only
– 3N DoFs

• Rigid bodies
– 6 DoFs (translation + rotation)
– Linear velocity v
– Angular velocity ω

CMSC 828X - M.Lin

Outline

• Rigid Body Representation
• Kinematics
• Dynamics
• Simulation Algorithm
• Collisions and Contact Response

Coordinate Systems

• Body Space (Local Coordinate System)
– Rigid bodies are defined relative to this system
– Center of mass is the origin (for convenience)

• We will specify body-related physical properties (inertia, …)
in this frame

Body Space

Coordinate Systems

• World Space:
rigid body transformation to common frame

World Space

rotationtranslation

Center of mass

• Definition

• Motivation: forces
(one mass particle:)

(entire body:)

Rotations

• Euler angles:
– 3 DoFs: roll, pitch, heading
– Dependent on order of application
– Not practical

Rotations

• Rotation matrix
– 3x3 matrix: 9 DoFs
– Columns: world-space coordinates of body-

space base vectors
– Rotate a vector:

Rotations

• Problem with rotation matrices: numerical
drift

• Fix: use Gram-Schmidt orthogonalization
• Drift is easier to fix with quaternions

Unit Quaternion Definition

• q = [s,v] : s is a scalar, v is vector
• A rotation of θ about a unit axis u can be

represented by the unit quaternion:
[cos(θ/2), sin(θ /2) u]

• Rotate a vector:
• Fix drift:

– 4-tuple: vector representation of rotation
– Normalized quaternion always defines a rotation in ℜ3

u

θ

Unit Quaternion Operations

• Special multiplication:

• Back to rotation matrix

Outline

• Rigid Body Representation
• Kinematics
• Dynamics
• Simulation Algorithm
• Collisions and Contact Response

• How do x(t) and R(t) change over time?
• Linear velocity v(t) describes the velocity

of the center of mass x (m/s)

Kinematics: Velocities

Angular velocityLinear velocity

Kinematics: Velocities

• Angular velocity, represented by ω(t)
– Direction: axis of rotation

– Magnitude |ω|: angular
velocity about the axis
(rad/s)

• Time derivative of rotation matrix:
– Velocities of the body-frame axes, i.e. the

columns of R

Image ETHZ 2005

Angular Velocities

Outline

• Rigid Body Representation
• Kinematics
• Dynamics
• Simulation Algorithm
• Collisions and Contact Response

Dynamics: Accelerations

• How do v(t) and ω(t) change over time?
• First we need some more machinery

– Forces and Torques
– Linear and angular momentum
– Inertia Tensor

• Simplify equations by formulating
accelerations in terms of momentum
derivatives instead of velocity derivatives

ri fi

• External forces fi(t) act on particles
– Total external force F=∑ fi(t)

• Torques depend on distance from the center
of mass:

τi(t) = (ri(t) – x(t)) × fi(t)

– Total external torque
τ(t) = ∑ ((ri(t)-x(t)) × fi(t)

• F(t) doesn’t convey any information
about where the various forces act

• τ(t) does tell us about the distribution of
forces

Forces and Torques

• Linear momentum P(t) lets us express the effect of
total force F(t) on body (due to conservation of
energy):

• Linear momentum is the product of mass and linear
velocity
– P(t) =∑ midri(t)/dt

=∑ miv(t) + ω(t) × ∑mi(ri(t)-x(t))
 =∑ miv(t)= M v(t)

– Just as if body were a particle with mass M and velocity v(t)
– Time derivative of v(t) to express acceleration:

• Use P(t) instead of v(t) in state vectors

Linear Momentum

• Same thing, angular momentum L(t)
allows us to express the effect of total
torque τ(t) on the body:

• Similarily, there is a linear relationship
between momentum and velocity:

– I(t) is inertia tensor, plays the role of mass

• Use L(t) instead of ω(t) in state vectors

Angular momentum

Inertia Tensor

• 3x3 matrix describing how the shape and
mass distribution of the body affects the
relationship between the angular velocity
and the angular momentum L(t)

• Analogous to mass – rotational mass
• We actually want the inverse I-1(t) to

compute ω(t)=I-1(t)L(t)

Inertia Tensor

Bunch of volume integrals:

Inertia Tensor

• Avoid recomputing inverse of inertia tensor

• Compute I in body space Ibody and then
transform to world space as required
– I(t) varies in world space, but Ibody is constant in body

space for the entire simulation

• Intuitively:
– Transform ω(t) to body space, apply inertia tensor in

body space, and transform back to world space
– L(t)=I(t)ω(t)= R(t) Ibody RT(t) ω(t)

– I-1(t)= R(t) Ibody
-1 RT(t)

Computing Ibody
-1

• There exists an orientation in body space which
causes Ixy, Ixz, Iyz to all vanish

– Diagonalize tensor matrix, define the eigenvectors to
be the local body axes

– Increases efficiency and trivial inverse

• Point sampling within the bounding box
• Projection and evaluation of Greene’s thm.

– Code implementing this method exists
– Refer to Mirtich’s paper at

http://www.acm.org/jgt/papers/Mirtich96

Approximation w/ Point

• Pros: Simple, fairly accurate, no B-rep
needed.

• Cons: Expensive, requires volume test.

Use of Green’s Theorem

• Pros: Simple, exact, no volumes needed.
• Cons: Requires boundary representation.

Outline

• Rigid Body Representation
• Kinematics
• Dynamics
• Simulation Algorithm
• Collisions and Contact Response

Position state vector

v(t) replaced by linear momentum P(t)
ω(t) replaced by angular momentum L(t)
Size of the vector: (3+4+3+3)N = 13N

Spatial information

Velocity information

Velocity state vector

Conservation of momentum (P(t), L(t)) lets us express
the accelerations in terms of forces and torques.

Simulation Algorithm

Pre-compute:

Initialize

Accumulate
forces

Your favorite
ODE solver

Simulation Algorithm

Pre-compute:

Initialize

Accumulate
forces

Explicit
Euler step

Outline

• Rigid Body Representation
• Kinematics
• Dynamics
• Simulation Algorithm
• Collision Detection and Contact Determination

– Contact classification
– Intersection testing, bisection, and nearest features

What happens when bodies collide?

• Colliding
– Bodies bounce off each other
– Elasticity governs ‘bounciness’
– Motion of bodies changes discontinuously within

a discrete time step
– ‘Before’ and ‘After’ states need to be computed

• In contact
– Resting
– Sliding
– Friction

Detecting collisions and response

• Several choices
– Collision detection: which algorithm?
– Response: Backtrack or allow penetration?

• Two primitives to find out if response is
necessary:
– Distance(A,B): cheap, no contact

information → fast intersection query
– Contact(A,B): expensive, with contact

information

Distance(A,B)

• Returns a value which is the minimum distance
between two bodies

• Approximate may be ok
• Negative if the bodies intersect
• Convex polyhedra

– Lin-Canny and GJK -- 2 classes of algorithms

• Non-convex polyhedra
– Much more useful but hard to get distance fast
– PQP/RAPID/SWIFT++

• Remark: most of these algorithms give inaccurate
information if bodies intersect, except for DEEP

Contacts(A,B)

• Returns the set of features that are nearest for
disjoint bodies or intersecting for penetrating
bodies

• Convex polyhedra
– LC & GJK give the nearest features as a bi-product of

their computation – only a single pair. Others that
are equally distant may not be returned.

• Non-convex polyhedra
– Much more useful but much harder problem

especially contact determination for disjoint bodies
– Convex decomposition: SWIFT++

Prereq: Fast intersection test

• First, we want to make sure that bodies will
intersect at next discrete time instant

• If not:
– Xnew is a valid, non-penetrating state, proceed to

next time step

• If intersection:
– Classify contact
– Compute response
– Recompute new state

Bodies intersect → classify contacts

• Colliding contact (‘easy’)
– vrel < -ε

– Instantaneous change in velocity
– Discontinuity: requires restart of the

equation solver

• Resting contact (hard!)
– -ε < vrel < ε

– Gradual contact forces avoid
interpenetration

– No discontinuities

• Bodies separating
– vrel > ε

– No response required

Colliding contacts

• At time ti, body A and B intersect and
vrel < -ε

• Discontinuity in velocity: need to stop
numerical solver

• Find time of collision tc
• Compute new velocities v+(tc)  X+(t)

• Restart ODE solver at time tc with new
state X+(t)

Time of collision

• We wish to compute when two bodies are “close
enough” and then apply contact forces

• Let’s recall a particle colliding with a plane

Time of collision

• We wish to compute tc to some tolerance

Time of collision

1. A common method is to use bisection
search until the distance is positive but
less than the tolerance

2. Use continuous collision detection

3. tc not always needed
→ penalty-based methods

Bisection
findCollisionTime(X,t,Δt)

foreach pair of bodies (A,B) do
Compute_New_Body_States(Scopy, t, Δt);
hs(A,B) = Δt; // H is the target timestep
if Distance(A,B) < 0 then

 try_h = Δt /2; try_t = t + try_h;
 while TRUE do

Compute_New_Body_States(Scopy, t, try_t - t);
if Distance(A,B) < 0 then

try_h /= 2; try_t -= try_h;
else if Distance(A,B) < ε then

break;
else

try_h /= 2; try_t += try_h;
 hs(A,B)->append(try_t – t);
 h = min(hs);

What happens upon collision
• Force driven

– Penalty based
– Easier, but slow objects react ‘slow’ to collision

• Impulse driven
– Impulses provide instantaneous changes to velocity, unlike

forces
Δ(P) = J

– We apply impulses to the colliding objects, at the point of
collision

– For frictionless bodies,
the direction will be
the same as the
normal direction:

J = j n

Colliding Contact Response

• Assumptions:
– Convex bodies
– Non-penetrating
– Non-degenerate configuration

• edge-edge or vertex-face
• appropriate set of rules can handle the others

• Need a contact unit normal vector
– Face-vertex case: use the normal of the face
– Edge-edge case: use the cross-product of the

direction vectors of the two edges

Colliding Contact Response

• Point velocities at the nearest points:

• Relative contact normal velocity:

Colliding Contact Response

• We will use the empirical law of
frictionless collisions:

– Coefficient of restitution є [0,1]
• є = 0 – bodies stick together
• є = 1 – loss-less rebound

• After some manipulation of equations...

Compute and apply impulses

• The impulse is an instantaneous
force – it changes the velocities of
the bodies instantaneously:

Penalty Methods

• If we don’t look for time of collision tc then
we have a simulation based on penalty
methods: the objects are allowed to
intersect.

• Global or local response
– Global: The penetration depth is used to

compute a spring constant which forces them
apart (dynamic springs)

– Local: Impulse-based techniques

References
• D. Baraff and A. Witkin, “Physically Based Modeling: Principles and

Practice,” Course Notes, SIGGRAPH 2001.

• B. Mirtich, “Fast and Accurate Computation of Polyhedral Mass Properties,”
Journal of Graphics Tools, volume 1, number 2, 1996.

• D. Baraff, “Dynamic Simulation of Non-Penetrating Rigid Bodies”, Ph.D.
thesis, Cornell University, 1992.

• B. Mirtich and J. Canny, “Impulse-based Simulation of Rigid Bodies,” in
Proceedings of 1995 Symposium on Interactive 3D Graphics, April 1995.

• B. Mirtich, “Impulse-based Dynamic Simulation of Rigid Body Systems,”
Ph.D. thesis, University of California, Berkeley, December, 1996.

• B. Mirtich, “Hybrid Simulation: Combining Constraints and Impulses,” in
Proceedings of First Workshop on Simulation and Interaction in Virtual
Environments, July 1995.

• COMP259 Rigid Body Simulation Slides, Chris Vanderknyff 2004

• Rigid Body Dynamics (course slides), M Müller-Fischer 2005, ETHZ Zurich

