Particles

— No rotations

— Linear velocity v only
— 3N DoFs

e Rigid bodies
— 6 DoFs (translation + rotation)
— Linear velocity v
— Angular velocity w
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Coordinate Systems

P

Body Space

e Body Space (Local Coordinate System)
— Rigid bodies are defined relative to this system

— Center of mass is the origin (for convenience)

o We will specify body-related physical properties (inertia, ...)
in this frame



Coordinate Systems

World Space

e World Space:
rigid body transformation to common frame

p(t) = x(t) + Rot(pg)
J \

translation rotation




Center of mass

e Definition
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Rotations

e Euler angles:
— 3 DoFs: roll, pitch, heading
— Dependent on order of application
— Not practical




Rotations

e Rotation matrix
— 3x3 matrix: 9 DoFs

— Columns: world-space coordinates of body-
space base vectors

— Rotate a vector: Rot(v) = Rv = (a; a; aj)v
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Rotations

e Problem with rotation matrices: numerical
drift

R(t) = A" R(tp)R(t_1)R(t;_2) ... R(to)

e Fix: use Gram-Schmidt orthogonalization
o Drift is easier to fix with quaternions



Unit Quaternion Definition

* q=1[s,v]:sis ascalar, vis vector
o A rotation of # about a unit axis u can be / u
represented by the unit quaternion:
[cos(6/2), sin(6 /2) u] 6
e Rotate a vector: Rot(v) = qaq”® /
o Fix drift:

— 4-tuple: vector representation of rotation
— Normalized quaternion always defines a rotation in %3



Unit Quaternion Operations

e Special multiplication:
[s1, v1][$2, v2] = [8182 — V1 « vy, §1V2 + SV + V1 X V]

dq(t) _
dt

Sw®)a(®) =350 w(®)|q(t)

e Back to rotation matrix
I — ZU% — 2v§ 20,0y — 25V, 20,0, + 250,

R p— ( 2vxv},,'—|— 2sv, 1 — 2'v,2\. - 2v§ 2v,v; — 2850y )

20,0, — 25V, 20,0, + 250, 1 — 2vf. - Zv%.
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Kinematics: Velocities

p(t) = %x(t) + R(t)po

Linear velocity

/

\

Angular velocity

e How do x(t) and R(t) change over time?
e Linear velocity v(t) describes the velocity

of the center of mass x (m/s)




Kinematics: Velocities

o Angular velocity, represented by w(t)

— Direction: axis of rotation
— Magnitude |w|: angular
velocity about the axis
(rad/s) X=wXX
e Time derivative of rotation matrix:

— Velocities of the body-frame axes, i.e. the
columns of R

. Fxx Fyx Fzx
R=| w(t) x Vxy w(t) x | 1y w(t) X | 7z
Fxz Fyz Vzz




Angular Velocities

R(#) and a(?) are related by:

—(():(f)

—0,,(7)
080
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Dynamics: Accelerations

e How do v(t) and w(t) change over time?

e First we need some more machinery
— Forces and Torques
— Linear and angular momentum
— Inertia Tensor

e Simplify equations by formulating
accelerations in terms of momentum
derivatives instead of velocity derivatives



Forces and Torques

o External forces £,(t) act on particles
— Total external force F=Y f.(t)

e Torques depend on distance from the center
of mass: Jo% xum
(D) = (1) — x(0) x £; (t) '

— Total external torque

W)= 3 (OXD)xFQ) o

. F(t) doesn't convey any information
about where the various forces act

o 1(t) does tell us about the distribution of
forces




Linear Momentum

e Linear momentum P(t) lets us express the effect of
total force F(t) on bo ¥ (due to conservation of
t

energy): F(t) = dP(t)
dt

e Linear momentum is the product of mass and linear
velocity
— P(t) =Y mdr(t)/dt
=Y my(t) + o(t) x Ym(r(t)-x(t))
=2 my(t)= M v(t)
— Just as if body were a particle with mass M and velocity v(t)
— Time derivative of v(t) to express acceleration:

dt
e Use P(t) instead of v(t) in state vectors



Angular momentum

e Same thing, angular momentum L(t)
allows us to express the effect of total
torque t(t) on the body:

L(t) = 7(t)

e Similarily, there is a linear relationship

between momentum and velocity:
L(t) = Iw(t)
— I(t) is inertia tensor, plays the role of mass

e Use L(t) instead of w(t) in state vectors



Inertia Tensor

e 3x3 matrix describing how the shape and
mass distribution of the body affects the
relationship between the angular velocity
and the angular momentum L(t)

e Analogous to mass — rotational mass

o We actually want the inverse I(t) to
compute w(t)=I"(t)L(t)



Inertia Tensor

I:U:I: _Ixy _[:Ez
[ = | —Iyx lyy —Iyz
_[zx _Izy Izz
Bunch of volume integrals:
Ipy = /V o(z,y, 2) (y2 + 22) AV Ioy = Iyy = /V p(x,y,2) (xy) dV

Lyy = /V p(z,y,2) (x2 + 22)dV Ipz = Izg = /V p(z,y,2) (2x) dV

I, = / p(x,y, 2) <x2 -+ y2) dV Ly, = Iy = /V p(x,y,z) (yz)dV
V

N———



Inertia Tensor

e Avoid recomputing inverse of inertia tensor
o Compute I'in body space I, and then

transform to world space as required

— I(t) varies in world space, but I, is constant in body
space for the entire simulation

e Intuitively:

— Transform w(t) to body space, apply inertia tensor in
body space, and transform back to world space

— LO)=IMo(t)= R Ly, RTH) o(t)
— T(0)= R(Y) Typq, RT(H)




Computing I 4,

e There exists an orientation in body space which
causes I I, to all vanish

Xy’ IXZ’

— Diagonalize tensor matrix, define the eigenvectors to
be the local body axes

— Increases efficiency and trivial inverse
e Point sampling within the bounding box

e Projection and evaluation of Greene’s thm.

— Code implementing this method exists
— Refer to Mirtich’s paper at

http://www.acm.org/jgt/papers/Mirtich96



Approximation w/ Point

e Pros: Simple, fairly accurate, no B-rep
needed.

e Cons: Expensive, requires volume test.




Use of Green’s Theorem

e Pros: Simple, exact, no volumes needed.
e Cons: Requires boundary representation.
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Position state vector

(1) =

q(t)
P(t)

(x(t) -

— Spatial information

\L(t)/ -

— Velocity information

v(t) replaced by linear momentum P(t)
w(t) replaced by angular momentum L(t)
Size of the vector: (3+4+3+3)N = 13N



Velocity state vector

x(t) \

dt | P(t)
\ L(t)

\

v(t)
sw(t)a(t)
F(t)
T(t)

)

(

\

P(1)
lI—lL]\gt)
5 q(t)
F(t)
7(t)

Conservation of momentum (P(t), L(t)) lets us express
the accelerations in terms of forces and torques.

)

/



Simulation Algorithm

l
Pre-compute: Ty 1 x £ Accumulate
M — Y m; F—>Y f forces
Ibody

(X,X) < step(X, X, F, 1)
Initialize . R — quat2mat(q)
x,v,R,w, X, X ™!« RIyoqyR"
It — RIpoqyRY
L — [w

Your favorite
ODE solver




Simulation Algorithm

Pre-compute: ; =2 ;z <4 Accumulate
M <3 my -2k forces
Tbody P — P+ AtF
Initialize Lo b A Explicit
v B w we—I71L XpliCi
o - P Euler step
L — [w q<—q—|—At%wq

R +— quat2mat(q)
It « RIyoqyR"




Outline

Rigid Body Representation
Kinematics

Dynamics

Simulation Algorithm

Collision Detection and Contact Determination

— Contact classification
— Intersection testing, bisection, and nearest features



What happens when bodies collide?

e Colliding
— Bodies bounce off each other
— Elasticity governs ‘bounciness’

— Motion of bodies changes discontinuously within
a discrete time step

— 'Before’ and ‘After’ states need to be computed
e In contact

— Resting

— Sliding

— Friction



Detecting collisions and response

e Several choices
— Collision detection: which algorithm?
— Response: Backtrack or allow penetration?

e Two primitives to find out if response is
necessary:

— Distance(A,B): cheap, no contact
information — fast intersection query

— Contact(A,B): expensive, with contact
information



Distance(A,B)

Returns a value which is the minimum distance
between two bodies

Approximate may be ok
Negative if the bodies intersect

Convex polyhedra
— Lin-Canny and GJK -- 2 classes of algorithms

Non-convex polyhedra
— Much more useful but hard to get distance fast
— PQP/RAPID/SWIFT++

Remark: most of these algorithms give inaccurate
information if bodies intersect, except for DEEP



Contacts(A,B)

e Returns the set of features that are nearest for
disjoint bodies or intersecting for penetrating
bodies

o Convex polyhedra
— LC & GIJK give the nearest features as a bi-product of
their computation — only a single pair. Others that
are equally distant may not be returned.
e Non-convex polyhedra

— Much more useful but much harder problem
especially contact determination for disjoint bodies

— Convex decomposition: SWIFT++



Prereq: Fast intersection test

e First, we want to make sure that bodies will
intersect at next discrete time instant

e If not:
— X, IS @ valid, non-penetrating state, proceed to
next time step
o If intersection:
— Classify contact

— Compute response
— Recompute new state



Bodies intersect — classify contacts

e Colliding contact (‘easy’)
— Vi < "€

— Instantaneous change in velocity ,_ T~

— Discontinuity: requires restart of the )L
equation solver —

e Resting contact (hard!)

— e<V_ <¢

rel

— Gradual contact forces avoid
interpenetration

'\n L /S n ~ /
— No discontinuities | { 1 UV~

e Bodies separating
— V., > €

rel
— No response required



Colliding contacts

o At time t, body A and B intersect and
Vigl < ~¢€

e Discontinuity in velocity: need to stop
numerical solver

e Find time of collision t_
o Compute new velocities v*(t.) = X*(t)

e Restart ODE solver at time t. with new
state X*(t)



Time of collision

e We wish to compute when two bodies are “close
enough” and then apply contact forces

e Let’s recall a particle colliding with a plane

ty + At



Time of collision

o We wish to compute t. to some tolerance

L + At



Time of collision

1. A common method is to use bisection
search until the distance is positive but
less than the tolerance

2. Use continuous collision detection

3. t. not always needed
— penalty-based methods



Bisection

findCollisionTime(X,t,At)
foreach pair of bodies (A,B) do
Compute_New_Body_States(S,,,, t, At);
hs(A,B) = At; // H is the target timestep
if Distance(A,B) < 0 then
try_ h=At/2; try_t=t+try_h;
while TRUE do

Compute_New_Body_States(S

if Distance(A,B) < 0 then

try h/=2; try_t-=try_h;
else if Distance(A,B) < ¢ then

break;

copyr & try_t - t);

else
try h/=2; try_t+=try_h;
hs(A,B)->append(try_t — t);
h = min( hs );



What happens upon collision

e Force driven
— Penalty based
— Easier, but slow objects react ‘slow’ to collision

e Impulse driven
— Impulses provide instantaneous changes to velocity, unlike

forces
A(P) =]
— We apply impulses to the colliding objects, at the point of
collision jith)

— For frictionless bodies,
the direction will be
the same as the
normal direction:
J=3n




Colliding Contact Response

e Assumptions:
— Convex bodies
— Non-penetrating

— Non-degenerate configuration
e edge-edge or vertex-face
e appropriate set of rules can handle the others

e Need a contact unit normal vector
— Face-vertex case: use the normal of the face

— Edge-edge case: use the cross-product of the
direction vectors of the two edges



Colliding Contact Response

e Point velocities at the nearest points:
Palty) = va(ty) + walty) X (pa(ty) — x4(20))

pp(to) = vp(tp)

wp(to) X (pp(to) — xp(to))

o Relative contact normal velocity:
Vrel = N(to) « (Palto) — pp(to))



Colliding Contact Response

o We will use the empirical law of
frictionless collisions: vh = —euy

rel

— Coefficient of restitution ¢ [0,1]
* ¢ =0 — bodies stick together
* ¢ =1 — loss-less rebound

o After some manipulation of equations...

—(14+e)v

rel

a a3 HA0) « (171 10) (ra x A1) x ra +1i(t0) « (1;1 (1) (s x A(t0))) X 1



Compute and apply impulses

e The impulse is an instantaneous
force — it changes the velocities of
the bodies instantaneously:

J = jn
AV:i
M

AL = (Ximpact — X) X J



Penalty Methods

o If we don't look for time of collision t. then

we have a simulation based on penalty
methods: the objects are allowed to
Intersect.

e Global or local response

— Global: The penetration depth is used to
compute a spring constant which forces them
apart (dynamic springs)

— Local: Impulse-based techniques
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