Particles

— No rotations

— Linear velocity v only
— 3N DoFs

e Rigid bodies
— 6 DoFs (translation + rotation)
— Linear velocity v
— Angular velocity w

CMSC 828X - M.Lin

Outline

e Rigid Body Representation

e Kinematics

e Dynamics

e Simulation Algorithm

e Collisions and Contact Response

CMSC 828X - M.Lin

Coordinate Systems

P

Body Space

e Body Space (Local Coordinate System)
— Rigid bodies are defined relative to this system

— Center of mass is the origin (for convenience)

o We will specify body-related physical properties (inertia, ...)
in this frame

Coordinate Systems

World Space

e World Space:
rigid body transformation to common frame

p(t) = x(t) + Rot(pg)
J \

translation rotation

Center of mass

e Definition

Xy) myX
X)) — —

) m; M
.Xl.,m1 .Xz., m,
MXO — Z mZXZ X,, M, <.m. |
e ® o)
. . | XM
e Motivation: forces e

(one mass particle:) fi — szz

(entire body:) F = Z f, = —— Z m;X;

Rotations

e Euler angles:
— 3 DoFs: roll, pitch, heading
— Dependent on order of application
— Not practical

Rotations

e Rotation matrix
— 3x3 matrix: 9 DoFs

— Columns: world-space coordinates of body-
space base vectors

— Rotate a vector: Rot(v) = Rv = (a; a; aj)v

¢
0] a -
2 70N
d 0N
| ’ N
0
| ’ \
) N
) ’ \
- ! ’ N o
1 \
VL7 \
’ N
s K \ !
- N !
\ 1
! \
| N
| ! \
| 1 \
| ! N

Rotations

e Problem with rotation matrices: numerical
drift

R(t) = A" R(tp)R(t_1)R(t;_2) ... R(to)

e Fix: use Gram-Schmidt orthogonalization
o Drift is easier to fix with quaternions

Unit Quaternion Definition

* q=1[s,v]:sis ascalar, vis vector
o A rotation of # about a unit axis u can be / u
represented by the unit quaternion:
[cos(6/2), sin(6 /2) u] 6
e Rotate a vector: Rot(v) = qaq”® /
o Fix drift:

— 4-tuple: vector representation of rotation
— Normalized quaternion always defines a rotation in %3

Unit Quaternion Operations

e Special multiplication:
[s1, v1][$2, v2] = [8182 — V1 « vy, §1V2 + SV + V1 X V]

dq(t) _
dt

Sw®)a(®) =350 w(®)|q(t)

e Back to rotation matrix
I — ZU% — 2v§ 20,0y — 25V, 20,0, + 250,

R p— (2vxv},,'—|— 2sv, 1 — 2'v,2\. - 2v§ 2v,v; — 2850y)

20,0, — 25V, 20,0, + 250, 1 — 2vf. - Zv%.

Outline

e Rigid Body Representation

e Kinematics

e Dynamics

e Simulation Algorithm

e Collisions and Contact Response

Kinematics: Velocities

p(t) = %x(t) + R(t)po

Linear velocity

/

\

Angular velocity

e How do x(t) and R(t) change over time?
e Linear velocity v(t) describes the velocity

of the center of mass x (m/s)

Kinematics: Velocities

o Angular velocity, represented by w(t)

— Direction: axis of rotation
— Magnitude |w|: angular
velocity about the axis
(rad/s) X=wXX
e Time derivative of rotation matrix:

— Velocities of the body-frame axes, i.e. the
columns of R

. Fxx Fyx Fzx
R=| w(t) x Vxy w(t) x | 1y w(t) X | 7z
Fxz Fyz Vzz

Angular Velocities

R(#) and a(?) are related by:

—(():(f)

—0,,(7)
080

Outline

e Rigid Body Representation

e Kinematics

e Dynamics

e Simulation Algorithm

e Collisions and Contact Response

Dynamics: Accelerations

e How do v(t) and w(t) change over time?

e First we need some more machinery
— Forces and Torques
— Linear and angular momentum
— Inertia Tensor

e Simplify equations by formulating
accelerations in terms of momentum
derivatives instead of velocity derivatives

Forces and Torques

o External forces £,(t) act on particles
— Total external force F=Y f.(t)

e Torques depend on distance from the center
of mass: Jo% xum
(D) = (1) — x(0) x £; (t) '

— Total external torque

W)= 3 (OXD)xFQ) o

. F(t) doesn't convey any information
about where the various forces act

o 1(t) does tell us about the distribution of
forces

Linear Momentum

e Linear momentum P(t) lets us express the effect of
total force F(t) on bo ¥ (due to conservation of
t

energy): F(t) = dP(t)
dt

e Linear momentum is the product of mass and linear
velocity
— P(t) =Y mdr(t)/dt
=Y my(t) + o(t) x Ym(r(t)-x(t))
=2 my(t)= M v(t)
— Just as if body were a particle with mass M and velocity v(t)
— Time derivative of v(t) to express acceleration:

dt
e Use P(t) instead of v(t) in state vectors

Angular momentum

e Same thing, angular momentum L(t)
allows us to express the effect of total
torque t(t) on the body:

L(t) = 7(t)

e Similarily, there is a linear relationship

between momentum and velocity:
L(t) = Iw(t)
— I(t) is inertia tensor, plays the role of mass

e Use L(t) instead of w(t) in state vectors

Inertia Tensor

e 3x3 matrix describing how the shape and
mass distribution of the body affects the
relationship between the angular velocity
and the angular momentum L(t)

e Analogous to mass — rotational mass

o We actually want the inverse I(t) to
compute w(t)=I"(t)L(t)

Inertia Tensor

I:U:I: _Ixy _[:Ez
[= | —Iyx lyy —Iyz
_[zx _Izy Izz
Bunch of volume integrals:
Ipy = /V o(z,y, 2) (y2 + 22) AV Ioy = Iyy = /V p(x,y,2) (xy) dV

Lyy = /V p(z,y,2) (x2 + 22)dV Ipz = Izg = /V p(z,y,2) (2x) dV

I, = / p(x,y, 2) <x2 -+ y2) dV Ly, = Iy = /V p(x,y,z) (yz)dV
V

N———

Inertia Tensor

e Avoid recomputing inverse of inertia tensor
o Compute I'in body space I, and then

transform to world space as required

— I(t) varies in world space, but I, is constant in body
space for the entire simulation

e Intuitively:

— Transform w(t) to body space, apply inertia tensor in
body space, and transform back to world space

— LO)=IMo(t)= R Ly, RTH) o(t)
— T(0)= R(Y) Typq, RT(H)

Computing I 4,

e There exists an orientation in body space which
causes I I, to all vanish

Xy’ IXZ’

— Diagonalize tensor matrix, define the eigenvectors to
be the local body axes

— Increases efficiency and trivial inverse
e Point sampling within the bounding box

e Projection and evaluation of Greene’s thm.

— Code implementing this method exists
— Refer to Mirtich’s paper at

http://www.acm.org/jgt/papers/Mirtich96

Approximation w/ Point

e Pros: Simple, fairly accurate, no B-rep
needed.

e Cons: Expensive, requires volume test.

Use of Green’s Theorem

e Pros: Simple, exact, no volumes needed.
e Cons: Requires boundary representation.

Outline

e Rigid Body Representation

e Kinematics

e Dynamics

e Simulation Algorithm

e Collisions and Contact Response

Position state vector

(1) =

q(t)
P(t)

(x(t) -

— Spatial information

\L(t)/ -

— Velocity information

v(t) replaced by linear momentum P(t)
w(t) replaced by angular momentum L(t)
Size of the vector: (3+4+3+3)N = 13N

Velocity state vector

x(t) \

dt | P(t)
\ L(t)

\

v(t)
sw(t)a(t)
F(t)
T(t)

)

(

\

P(1)
lI—lL]\gt)
5 q(t)
F(t)
7(t)

Conservation of momentum (P(t), L(t)) lets us express
the accelerations in terms of forces and torques.

)

/

Simulation Algorithm

l
Pre-compute: Ty 1 x £ Accumulate
M — Y m; F—>Y f forces
Ibody

(X,X) < step(X, X, F, 1)
Initialize . R — quat2mat(q)
x,v,R,w, X, X ™!« RIyoqyR"
It — RIpoqyRY
L — [w

Your favorite
ODE solver

Simulation Algorithm

Pre-compute: ; =2 ;z <4 Accumulate
M <3 my -2k forces
Tbody P — P+ AtF
Initialize Lo b A Explicit
v B w we—I71L XpliCi
o - P Euler step
L — [w q<—q—|—At%wq

R +— quat2mat(q)
It « RIyoqyR"

Outline

Rigid Body Representation
Kinematics

Dynamics

Simulation Algorithm

Collision Detection and Contact Determination

— Contact classification
— Intersection testing, bisection, and nearest features

What happens when bodies collide?

e Colliding
— Bodies bounce off each other
— Elasticity governs ‘bounciness’

— Motion of bodies changes discontinuously within
a discrete time step

— 'Before’ and ‘After’ states need to be computed
e In contact

— Resting

— Sliding

— Friction

Detecting collisions and response

e Several choices
— Collision detection: which algorithm?
— Response: Backtrack or allow penetration?

e Two primitives to find out if response is
necessary:

— Distance(A,B): cheap, no contact
information — fast intersection query

— Contact(A,B): expensive, with contact
information

Distance(A,B)

Returns a value which is the minimum distance
between two bodies

Approximate may be ok
Negative if the bodies intersect

Convex polyhedra
— Lin-Canny and GJK -- 2 classes of algorithms

Non-convex polyhedra
— Much more useful but hard to get distance fast
— PQP/RAPID/SWIFT++

Remark: most of these algorithms give inaccurate
information if bodies intersect, except for DEEP

Contacts(A,B)

e Returns the set of features that are nearest for
disjoint bodies or intersecting for penetrating
bodies

o Convex polyhedra
— LC & GIJK give the nearest features as a bi-product of
their computation — only a single pair. Others that
are equally distant may not be returned.
e Non-convex polyhedra

— Much more useful but much harder problem
especially contact determination for disjoint bodies

— Convex decomposition: SWIFT++

Prereq: Fast intersection test

e First, we want to make sure that bodies will
intersect at next discrete time instant

e If not:
— X, IS @ valid, non-penetrating state, proceed to
next time step
o If intersection:
— Classify contact

— Compute response
— Recompute new state

Bodies intersect — classify contacts

e Colliding contact (‘easy’)
— Vi < "€

— Instantaneous change in velocity ,_ T~

— Discontinuity: requires restart of the)L
equation solver —

e Resting contact (hard!)

— e<V_ <¢

rel

— Gradual contact forces avoid
interpenetration

'\n L /S n ~ /
— No discontinuities | { 1 UV~

e Bodies separating
— V., > €

rel
— No response required

Colliding contacts

o At time t, body A and B intersect and
Vigl < ~¢€

e Discontinuity in velocity: need to stop
numerical solver

e Find time of collision t_
o Compute new velocities v*(t.) = X*(t)

e Restart ODE solver at time t. with new
state X*(t)

Time of collision

e We wish to compute when two bodies are “close
enough” and then apply contact forces

e Let’s recall a particle colliding with a plane

ty + At

Time of collision

o We wish to compute t. to some tolerance

L + At

Time of collision

1. A common method is to use bisection
search until the distance is positive but
less than the tolerance

2. Use continuous collision detection

3. t. not always needed
— penalty-based methods

Bisection

findCollisionTime(X,t,At)
foreach pair of bodies (A,B) do
Compute_New_Body_States(S,,,, t, At);
hs(A,B) = At; // H is the target timestep
if Distance(A,B) < 0 then
try_ h=At/2; try_t=t+try_h;
while TRUE do

Compute_New_Body_States(S

if Distance(A,B) < 0 then

try h/=2; try_t-=try_h;
else if Distance(A,B) < ¢ then

break;

copyr & try_t - t);

else
try h/=2; try_t+=try_h;
hs(A,B)->append(try_t — t);
h = min(hs);

What happens upon collision

e Force driven
— Penalty based
— Easier, but slow objects react ‘slow’ to collision

e Impulse driven
— Impulses provide instantaneous changes to velocity, unlike

forces
A(P) =]
— We apply impulses to the colliding objects, at the point of
collision jith)

— For frictionless bodies,
the direction will be
the same as the
normal direction:
J=3n

Colliding Contact Response

e Assumptions:
— Convex bodies
— Non-penetrating

— Non-degenerate configuration
e edge-edge or vertex-face
e appropriate set of rules can handle the others

e Need a contact unit normal vector
— Face-vertex case: use the normal of the face

— Edge-edge case: use the cross-product of the
direction vectors of the two edges

Colliding Contact Response

e Point velocities at the nearest points:
Palty) = va(ty) + walty) X (pa(ty) — x4(20))

pp(to) = vp(tp)

wp(to) X (pp(to) — xp(to))

o Relative contact normal velocity:
Vrel = N(to) « (Palto) — pp(to))

Colliding Contact Response

o We will use the empirical law of
frictionless collisions: vh = —euy

rel

— Coefficient of restitution ¢ [0,1]
* ¢ =0 — bodies stick together
* ¢ =1 — loss-less rebound

o After some manipulation of equations...

—(14+e)v

rel

a a3 HA0) « (171 10) (ra x A1) x ra +1i(t0) « (1;1 (1) (s x A(t0))) X 1

Compute and apply impulses

e The impulse is an instantaneous
force — it changes the velocities of
the bodies instantaneously:

J = jn
AV:i
M

AL = (Ximpact — X) X J

Penalty Methods

o If we don't look for time of collision t. then

we have a simulation based on penalty
methods: the objects are allowed to
Intersect.

e Global or local response

— Global: The penetration depth is used to
compute a spring constant which forces them
apart (dynamic springs)

— Local: Impulse-based techniques

References

D. Baraff and A. Witkin, “Physically Based Modeling: Principles and
Practice,” Course Notes, SIGGRAPH 2001.

B. Mirtich, “Fast and Accurate Computation of Polyhedral Mass Properties,”
Journal of Graphics Tools, volume 1, number 2, 1996.

D. Baraff, “"Dynamic Simulation of Non-Penetrating Rigid Bodies”, Ph.D.
thesis, Cornell University, 1992.

B. Mirtich and J. Canny, “Impulse-based Simulation of Rigid Bodies,” in
Proceedings of 1995 Symposium on Interactive 3D Graphics, April 1995.

B. Mirtich, “Impulse-based Dynamic Simulation of Rigid Body Systems,”
Ph.D. thesis, University of California, Berkeley, December, 1996.

B. Mirtich, “Hybrid Simulation: Combining Constraints and Impulses,” in
Proceedings of First Workshop on Simulation and Interaction in Virtual
Environments, July 1995.

COMP259 Rigid Body Simulation Slides, Chris Vanderknyff 2004
Rigid Body Dynamics (course slides), M Muller-Fischer 2005, ETHZ Zurich

