
This class is being recorded
Please turn off your video and/or video if you do 
not wish to be recorded







Threading overview
Android’s UI Thread
The Handler class



Conceptual view
Parallel computation running in a process

Implementation view
A program counter and a stack

Heap and static areas shared with other threads



CPU 1 CPU 2

p3p1 p2 p4

t1

t2

t3

t4

t5

t6

t7

Threads
t8

Processes

Computing Device



Threads implement the Runnable interface
public void run()

See: 
https://docs.oracle.com/javase/tutorial/essential
/concurrency/threads.html



void start() 
Starts the Thread

void sleep(long time)
Sleeps for the given period



Instantiate a Thread object
Invoke the Thread’s start() method

Thread’s run() method get called 

Thread terminates when run() returns



Thread 1 Thread 2

start()

run()

new



Application displays two buttons
LoadIcon: Load and show bitmap from a resource 
file & display
Other Button: Display a Toast message
Problem: The Other Button doesn’t respond right 
after LoadIcon button is pressed



✕

Threading
NoThreading



Seemingly obvious, but incorrect, solution:
Button listener spawns a separate Thread to load 
bitmap & display it



Threading
Simple



Applications have a main thread (the UI thread)
Application components in the same process use 
the same UI thread
User interaction, system callbacks, and lifecycle 
methods handled on the UI thread
In addition, UI toolkit is not thread-safe



Blocking the UI thread hurts application 
responsiveness

Long-running ops should run in background threads

Don’t access the UI toolkit from a non-UI thread



Do work on a background thread, but update the UI on 
the UI Thread 
Android provides several methods that are guaranteed 
to run in the UI Thread, e.g., 

open fun View.post (action: Runnable!): Boolean
fun Activity.runOnUiThread(action: Runnable!): Unit

Can also use other approaches to ensure updates 
happen on UI thread



A concurrent, suspendable computation
Can be thought of as a light-weight thread, but is not 
bound to a specific OS thread

See: https://developer.android.com/kotlin/coroutines/



ThreadingCoroutine
MainThread



ThreadingCoroutine
BackgroundThread



ThreadingCoroutine
LiveData



See also: 
ThreadingViewPost
ThreadingRunOnUiThread



Handler lets you enqueue and process Messages and 
Runnables to/on a Thread’s Message queue
Each Handler is bound to the Thread in which it was 
created
Main uses 

Schedule Messages and Runnables to be executed at some 
point in the future
Enqueue an action to be performed on a different thread



Runnable
Contains an instance of the Runnable interface

Enqueuer implements response

Message
Can contain a message code, an object & integer 
arguments

Handler implements response



Each Android Thread is 
associated with a 
messageQueue and a 
Looper
A MessageQueue holds 
Messages and 
Runnables to be 
dispatched by the Looper

Lo
op

er Message

Runnable

Runnable

Message

Message

Message 
Queue



Add Runnables to 
MessageQueue by 
calling Handler’s post() 
method

Runnable

Handler

Background 
Thread A

handler.post(
new Runnable(…))

Lo
op

er Message

Runnable

Runnable

Message

Message

Message 
Queue



Add Messages to 
MessageQueue by 
calling Handler’s 
sendMessage() 
method

Message

Background 
Thread B

Handler

handler.
sendMessage(msg)

Lo
op

er Message

Runnable

Runnable

Message

Message

Message 
Queue



Looper dispatches 
Messages by calling 
the Handler’s 
handleMessage() 
method on the 
Handler’s Thread

handleMessage(
Message)

Lo
op

er

Runnable

Runnable

Message

Message

Message 
Queue

Message

Handler
Thread



Looper dispatches 
Runnables by calling 
their run() method in 
the Handler’s Thread

run()

Lo
op

er

Runnable

Runnable

Message

Message

Message 
Queue

Handler
Thread



fun post(r: Runnable): Boolean 
Add Runnable to the MessageQueue

fun postAtTime(r: Runnable, uptimeMillis: Long): Boolean 
Add Runnable to the MessageQueue. Run at a specific time (based 
on SystemClock.upTimeMillis())

fun postDelayed(r: Runnable, delayMillis: Long): Boolean 
Add Runnable to the message queue. Run after the specified amount 
of time elapses



Create Message & set Message content
Handler.obtainMessage()
Message.obtain()

Message parameters include
int arg1, arg2, what
Object obj 
Bundle data

Many variants. See documentation



sendMessage()
Queue Message now

sendMessageAtFrontOfQueue()
Insert Message at front of queue

sendMessageAtTime()
Queue Message at the stated time

sendMessageDelayed()
Queue Message after delay



Threading
HandlerMessages



Networking



ThreadingNoThreading
ThreadingSimple
ThreadingCoroutineMainThread
ThreadingCoroutineBackgroundThread
ThreadingCoroutineLiveData
ThreadingViewPost
ThreadingRunOnUiThread
ThreadingHandlerMessages


