CMSC/Math 456:
 Cryptography (Fall 2023)
 Lecture I
 Daniel Gottesman

What is This Class About?

Cryptography is about how to protect information against an untrusted "adversary."

We will learn how to make unbreakable codes

What is This Class About?

Cryptography is about how to protect information against an untrusted "adversary."

We will learn how to make unbreakable codes
... and then we will learn how to break them.

What is This Class About?

Cryptography is about how to protect information against an untrusted "adversary."

We will learn how to make unbreakable codes
... and then we will learn how to break them.
We will learn about what it means for a cryptographic protocol to be secure or insecure and about the advantages and limitations of security proofs.

What is This Class About?

Cryptography is about how to protect information against an untrusted "adversary."

We will learn how to make unbreakable codes
... and then we will learn how to break them.
We will learn about what it means for a cryptographic protocol to be secure or insecure and about the advantages and limitations of security proofs.

Cryptography is not just about encryption. We will also learn about other ways to protect information, such as authentication.

What is This Class About?

Cryptography is about how to protect information against an untrusted "adversary."

We will learn how to make unbreakable codes
... and then we will learn how to break them.
We will learn about what it means for a cryptographic protocol to be secure or insecure and about the advantages and limitations of security proofs.

Cryptography is not just about encryption. We will also learn about other ways to protect information, such as authentication.

We will learn about real-world protocols like AES and RSA

What is This Class About?

Cryptography is about how to protect information against an untrusted "adversary."

We will learn how to make unbreakable codes
... and then we will learn how to break them.
We will learn about what it means for a cryptographic protocol to be secure or insecure and about the advantages and limitations of security proofs.

Cryptography is not just about encryption. We will also learn about other ways to protect information, such as authentication.

We will learn about real-world protocols like AES and RSA
... and why you shouldn't try to make your own cryptographic protocols without a lot more training than this class.

Gryptography is Hard

In cryptography, there is an intelligent opponent who is actively looking for ways to circumvent your cryptographic protocol. This means that even seemingly small mistakes can lead to a complete loss of security.

Governments spend billions of dollars per year on cryptography, both to make secure codes and to break them.

You will need:

- Programming experience (Python preferred)
- Analysis of algorithms (e.g., big-O notation)
- Probability and discrete math, particularly modular arithmetic
- A little bit of linear algebra
- Some experience with rigorous proofs

Professional cryptographers need much more number theory and other math (e.g., elliptic curves).

Cryptography vs. Computer Security

Cryptography is the study of concrete protocols to protect information in a specific way against adversaries.

Cryptography is about making secure locks and doors.

Cybersecurity is the study of security of the computer system as a whole.

Security is about making sure there is not another way into the house.

Course Outline

I. Classical cryptography

Before the 1970s, cryptography was mostly ad hoc, without too much math or rigorous definitions.
2. Modern private key cryptography

Central tools and main protocols of modern private-key encryption. Also rigorous definitions and proofs of security.
3. Public key cryptography

Secure encryption where anyone can send to you.
4.Authentication (message authentication and digital signatures)

Cryptography is not just about encryption. The next most important class of protocols ensures messages are authentic.
5.Advanced topics, as time allows

Possibilities include: post-quantum cryptography, quantum key distribution

Important Websites

Course web page: https://www.cs.umd.edu/class/fall2023/ cmsc456-0201/

Slides and homeworks will be posted here. Also all this basic information.

Piazza: http://piazza.com/umd/fall2023/cmsc456

Out-of-class discussions and questions should be posted here. This makes it possible for any of us (me,TAs) to answer and lets all students see the answer (but you can ask questions privately or anonymously also).
Gradescope: https://www.gradescope.com/courses/591812
Homework will be turned in and graded here.
Course ELMS page: CMSC456-020I/MATH456-020I:
Cryptography-Fall 2023 dgottesm
Recorded lectures will be available here.
UMD course policies:
https://www.ugst.umd.edu/courserelatedpolicies.html

Instructor, TA, Textbook

Instructor: Daniel Gottesman
E-mail: dgottesm@umd.edu
Office hours:Tuesday 10:00-11:30 AM, Atlantic 325I
TA: Mahathi Vempati
E-mail: mahathi@umd.edu
Office hours:Wednesday 12:30-2:30 PM, AVW 4I60
Textbook: Katz \& Lindell, Introduction to Modern Cryptography, 3rd ed.
I have structured the course so that the textbook is not absolutely required. However, it is still highly recommended:

- Can use for open book exams
- More detail for most topics covered
- Source of additional practice problems

Grading

Problem Sets: 30\%

- A mix of theory problems and programming assignments.
- If you collaborate or use external sources (not lectures or textbook), cite your sources.
- Extensions require prior approval from instructor, plus a good reason. Leave 24 hours to ensure time for a response. Maximum extension I week.

Midterm: 30\%
Thursday, October 19 (in class, open book)
Final exam: 40\%
Monday, December 18, I:30-3:30 PM (in person, open book)
For each of these three components, total available points I20, but maximum score is 100.

Goal: 25% of points for basic skills and concepts; 50% for the primary class content; 25% for deeper understanding

How to Succeed I: Attend Lecture

Slides will be posted on the course web page following each class. I will also record the lectures.

However, I strongly encourage you to make a habit of attending class whenever you can.

- Material written on the board may not legible in the recordings.
- You will be more engaged with the class if you attend in person.
- You will have the opportunity to ask questions and followups in real time instead of with some delay.
- You will not be tempted to procrastinate watching the recordings.

How to Succeed II: Ask Questions

If you don't understand something, please ask! There are many opportunities to ask:

- In class
- On Piazza
- In office hours
- Before or after class
- If the lecture is going too fast:Ask me to go back.
- If you are too lost to ask a question:Ask about the point where you got lost.
- Asking questions is one of the best ways you have to shape the course to help you best.
- I can't help you if I don't know where you are having trouble.

How to Succeed III: Do Homework

The main point of the problem sets is to give you experience working with and thinking about the material.

You may collaborate on problem sets. However:

- Write up your answer in your own words (or code programs yourself).
- Cite any collaborations or outside resources, including Al tools.

If your friends (or some source on the internet) are telling you how to do the problems, you are not learning the material. This may help you get a better homework grade, but is going to be a problem on the exams.

A ciphertext

WNYTH	NGZCZ	HNPMN	WQZHW	NYTHN	GZ	HNPMN	WQZHW	NYTHN
GZTIZ	PM	BP	YTHNG	ZT	M	WHGRZ	HHWNY	THNGZ
ZDPKG	PMCZO	WZMW	YTHNG	ZZDPK	GP	KEZBL	OWNAW	
GZHZT	HPRPM	OWIGN	WNY	NGZHZ	THPRP	BT	RZ	
GZHDE	WRIPM	GPDZW	NYTHN	GZYWR	NZEPM	BZ	WE	
E	RICZM	PEZI	YZGT	RPNG	RICZ	Ez	YZ	
PWRIB	WEZK	PGZ	XZ	YZEZ	OOIPW		ZKNNG	
EYtAW	RH'	NNG	ZEV	YтHHP	MT	VZNGZ	DEZHZ	
WPBNG	TN	PMW	HRP	WZHNT	LNGPE	WNWZH		
WNHCZ	WRIEZ	KZWX	BM	PPBPE	MP	WOWRN	GZHLD	
WXZBZ	IEZZP	MKPQD	TEWHP	PRO	NGZEZ	ZEZ'		
ZS	TYTRB	TFLZZ	RYWNG	TDOTW	RMTKZ	GZ	NGEPR	
I	NGZEZ	YZEZT	VWRI	WNGTO	TEIZS	TYT	TFLZZ	
TMT	MTKZP	RNGZN	GE	PMMET	RK	CP	PLRNE	
YTHKO	ZTEZE	NG	EAHNT	ONPNG	ZOPEB	HPMNG	ZHNTN	
ZEXZH	PMOPT	XZHTR	BMWHG	HN	NN	IHWRI	ZRZ	OYZEZ
ZN	ZBMP	ZXZE						

Ciphertext divided into blocks of 5 symbols to obscure the word breaks.

A ciphertext

YYTH	NGZCZ	HNPMN		NYTHN	PE	HNPMN		NYTHN
GZTIZ	PMYWH	BPQWN	Ythng	ZTIZP	MMPPO	WHGRZ	Hhwny	THNGZ
ZDPKG	PMCZO	WZMWN	YTHNG	ZZDPK	GPMWR	KEZBL	O	NYTHN
GZHZT	HPRPM	OWIGN	WNYTH	NGZHZ	THPRP	MBTEV	RZ	NYTHN
GZHDE	WRIPM	GPD	NYTHN	GZYWR	NZEPM	BZHDT	WEYZG	TBZXZ
EANGW	RICZM	PEZLH	YZGTB	RPNGW	RICZM	PEZLH	YZYZE	ZTOOI
PWRIB	WEZKN	NPGZT	XZRYZ	YZEZT	OOIPW	RIBWE	ZKNNG	ZPNGZ
EYTAW	RHGPE	NNGZD	ZEWPB	YTHHP	MTEOW	VZNGZ	DEZHZ	RNDZE
WPBNG	TNHPQ	ZPMWN	HRPWH	WZHNT	LNGPE	WNWZH	WRHWH	NZBPR
WNHCZ	WRIEZ	KZWXZ	BMPEI	PPBPE	MPEZX	WOWRN	GZHLD	ZEOTN
WXZBZ	IEZZP	MKPQD	TEWHP	RPROA	NGZEZ	YZEZT	VWRIY	WNGT
TEIZS	TYTRB	TFLZZ	RYWNG	TDOTW	RMTKZ	PRNGZ	NGEPR	ZPMZR
IOTRB	NGZEZ	YZEZT	VWRIY	WNGTO	TEIZS	TYTRB	TFLZZ	RYWNG
TMTWE	MTKZP	RNGZN	GEPRZ	PMMET	RKZWR	CPNGK	PLRNE	WZHWN
чтнко	zTEZE	NGTRK	EAHNT	ONPNG	ZOPEB	HPMNG	ZHNTN	ZDEZH
ZEXZH	PMOPT	XZHTR	BMWHG	ZHNGT	NNGWR	IHWRI	ZRZET	OYZEZ
HZNNO	ZBMPE	ZXZE						

Ciphertext divided into blocks of 5 symbols to obscure the word breaks.

A ciphertext

-NYTH	NGECZ	HNPMN	WQZ	NYTH	E	HNPMN	WQZH	NYTHN
GZTIZ	PMYWH	BPQLIN	YTHNA	ZTIZP	MMPPO	WHGRZ	HHVNY	THNJZ
ZDPKG	PMCZO	WZMVN	YTHNE	ZZDPK	GPMWR	KEZBL	OWNAW	IN
GZHZT	HPRPM	OWIGN	VINYTH	NfZ Hz	THPRP	MBTEV	R	(18)
GZHDE	WRIPM		NYTHN	GZYWR	NZEPM	BZHDT	WEYZG	TBZXZ
EANGW	RICZM	PEZLH	YZGTB	RPNGW	RICZM	PEZL	YZYZE	ZTOOI
PWRIB	WEZKN	NPGZT	XZRYZ	YZEZT	OOIPW	RIBWE	ZKNNG	ZPNGZ
EYTAW	RHGPE	NNGZD	ZEWPB	YTHHP	MTEOW	VZNGZ	DEZHZ	RNDZE
WPBNG	TNHPQ	zPMWN	HRPWH	WZHNT	LNGPE	WNWZH	WRHWH	NZBPR
WNHCZ	WRIEZ	KZWXZ	BMPEI	PPBPE	MPEZX	WOWRN	GZHLD	ZEOT
WXZBZ	IEZZP	MKPQD	TEWHP	RPROA	NGZEZ	YZEZT	VWRIY	WNGTO
TEIZS	TYTRB	TFLZZ	RYWNG	TDOTW	RMTKZ	PRNGZ	NGEPR	ZPMZR
IOTRB	NGZEZ	YZEZT	VWRIY	WNGTO	TEIZS	TYTRB	TFLZZ	RYWN
TMTWE	MTKZP	RNGZN	GEPRZ	PMMET	RKZWR	CPNGK	PLRNE	WZHWN
YTHKO	ZTEZE	NGTRK	EAHNT	ONPNG	ZOPEB	HPMNG	ZHNTN	ZDEZH
ZEXZH	PMOPT	XZHTR	BMWHG	ZHNGT	NNGWR	IHWRI	ZRZET	OYZEZ
HZNNO	ZBMPE	XZE						

Ciphertext divided into blocks of 5 symbols to obscure the word breaks.

A ciphertext

WNYTH	NfazCz	HNPMN	WQZHW	NYTH	GZYPE	HNPMN	WQZHW	NYTHN
GZTIZ	PMYWH	BPQVIN	YTHNG	ZTIZP	MMPPO	WHGRZ	HHVNY	THNGZ
ZDPKG	PMCZO	WZMbN	YTHNG	ZZDPK	GPMWR	KEZBL	OWNAW	NYTH
GZHZ	HPRPM	OWIGN	VINYTH	NGZHZ	THPRP	MBTEV	RZHH	NYTHM
GZHDE	WRIPM	GPDZ	NYTHN	GZYWR	NZEPM	BZHDT	WEYZG	tBZXz
EANG	RICZM	PEZLH	YZGTB	RPNGW	RICZM	PEZLH	YZYZE	ZTOOI
PWRIB	WEZKN	NPGZT	XZRYZ	YZEZT	OOIPW	RIBWE	ZKNNG	ZPNGZ
EYTAW	RHGPE	NNGZD	ZEWPB	YTHHP	MTEOW	VZNGZ	DEZHZ	RNDZE
WPBNG	TNHPQ	ZPMWN	HRPWH	WZHNT	LNGPE	WNWZH	WRHWH	NZBPR
WNHC	WRIEZ	KZWXZ	BMPEI	PPBPE	MPEZX	WOWRN	GZHLD	ZEOTN
wXZBZ	IEZZP	MKPQD	TEWHP	RPROA	NGZEZ	YZEZT	VWRIY	WNGTO
TEIZS	TYTRB	TFLZZ	RYWNG	TDOTW	RMTKZ	PRNGZ	NGEPR	ZPMZR
IOTRB	NGZEZ	YZEZT	VWRIY	WNGTO	TEIZS	TYTRB	TFLZZ	RYWNG
TMTWE	MTKZP	RNGZN	GEPRZ	PMMET	RKZWR	CPNGK	PLRNE	WZHWN
YTHKO	ZTEZE	NGTRK	EAHNT	ONPNG	ZOPEB	HPMNG	ZHNTN	ZDEZH
ZEXZH	PMOPT	XZHTR	BMWHG	ZHNGT	NNGWR	IHWRI	zRZET	OYZEZ
HZN	ZBMPE	XZE						

Ciphertext divided into blocks of 5 symbols to obscure the word breaks.

A ciphertext

WNYT	NgZCZ	HNPMN	WQZHW	NYTHN	GZYPE	HNPMN	WQZHW	NYTHN
GZTIZ	PMYWH	BPQN	YTHNG	ZTIZP	MMPPO	WHGRZ	HHVNY	THNGZ
ZDPKG	PMCZO	WZMW/N	YTHNG	ZZDPK	GPMWR	KEZBL	OWNAW	NYTH
GZHZ'	HPRPM	OWIGN	V/NYTH	NGZHZ	THPRP	MBTEV	RZHH	NYTHN
GZHD	WRIPM	GPD	NYTHN	GZYWR	NZEPM	BZHDT	WEYZG	TBZXZ
EANG	RICZM	PEZLH	YZGTB	RPNGW	RICZM	PEZLH	YZYZE	OI
PWRIB	WEZKN	NPGZT	XZRYZ	YZEZT	OOIPW	RIBWE	ZKNNG	ZPNGZ
EYTA	RHGPE	NNGZD	ZEWPB	YTHHP	MTEOW	VZNGZ	DEZHZ	RNDZE
WPBNG	TNHPQ	ZPMWN	HRPWH	WZHNT	LNGPE	WNWZH	WRHWH	NZBP
WNHC	WRIEZ	KZWXZ	BMPEI	PPBPE	MPEZX	WOWRN	GZHLD	ZEOT
WXZBZ	IEZZP	MKPQD	TEWHP	RPROA	NGZEZ	YZEZT	VWRIY	WNGTO
TEIZS	TYTRB	TFLZZ	RYWNG	TDOTW	RMTKZ	PRNGZ	NGEPR	ZPMZR
IOTR	NGZEZ	YZEZT	VWRIY	WNGTO	TEIZS	TYTRB	TFLZZ	RYWNG
TMTWE	MTKZP	RNGZN	GEPRZ	PMMET	RKZWR	CPNGK	PLRNE	WZHWN
YTHKO	ZTEZE	NGTRK	EAHNT	ONPNG	ZOPEB	HPMNG	ZHNTN	ZDEZH
ZEXZ	PMOPT	XZHTR	BMWHG	ZHNGT	NNGWR	IHWRI	ZRZET	OYZEZ
HZN	ZBMPE	zXZE						

Ciphertext divided into blocks of 5 symbols to obscure the word breaks.

Patterns in the ciphertext create an insecurity in the code

Letter Frequencies

Ciphertext

Letter	\# times	\%
Z	110	15.0\%
N	74	10.0\%
W	59	8.0\%
P	58	7.9\%
T	57	7.8\%
H	55	7.5\%
E	48	6.5\%
G	44	6.0\%
R	43	5.9\%
Y	31	4.2\%
M	28	3.8\%
0	22	3.0\%
B	20	2.7\%
I	20	2.7\%
K	13	1.8\%
D	12	1.6\%
L	8	1.1\%
X	8	1.1\%
C	6	0.8\%
A	5	0.7\%
Q	5	0.7\%
V	4	0.5\%
F	2	0.3\%
S	2	0.3\%
J	0	0\%
U	0	0\%

Letter Frequencies

Ciphertext

Letter	\# times	\%
Z	110	15.0\%
N	74	10.0\%
W	59	8.0\%
P	58	7.9\%
T	57	7.8\%
H	55	7.5\%
E	48	6.5\%
G	44	6.0\%
R	43	5.9\%
Y	31	4.2\%
M	28	3.8\%
O	22	3.0\%
B	20	2.7\%
I	20	2.7\%
K	13	1.8\%
D	12	1.6\%
L	8	1.1\%
X	8	1.1\%
C	6	0.8\%
A	5	0.7\%
Q	5	0.7\%
V	4	0.5\%
F	2	0.3\%
S	2	0.3\%
J	0	0\%
U	0	0\%

English

Letter	\%
e	12.7\%
t	9.1\%
a	8.2\%
0	7.5\%
i	7.0\%
n	6.7\%
s	6.3\%
h	6.1\%
r	6.0\%
d	4.3\%
1	4.0\%
C	2.8\%
u	2.8\%
m	2.4\%
w	2.4\%
f	2.2\%
g	2.0\%
y	2.0\%
p	1.9\%
b	1.5\%
v	1.0\%
k	0.8\%
J	0.2\%
X	0.2\%
q	0.1\%
z	0.1\%

Distribution of letters in the ciphertext not too far from English with some statistical variation.

Letter Frequencies

Ciphertext

Letter	\# times	\%
Z	110	15.0\%
N	74	10.0\%
W	59	8.0\%
P	58	7.9\%
T	57	7.8\%
H	55	7.5\%
E	48	6.5\%
G	44	6.0\%
R	43	5.9\%
Y	31	4.2\%
M	28	3.8\%
O	22	3.0\%
B	20	2.7\%
I	20	2.7\%
K	13	1.8\%
D	12	1.6\%
L	8	1.1\%
X	8	1.1\%
C	6	0.8\%
A	5	0.7\%
Q	5	0.7\%
V	4	0.5\%
F	2	0.3\%
S	2	0.3\%
J	0	0\%
U	0	0\%

English

Letter	\%
e	12.7\%
t	9.1\%
a	8.2\%
0	7.5\%
i	7.0\%
n	6.7\%
s	6.3\%
h	6.1\%
r	6.0\%
d	4.3\%
1	4.0\%
c	2.8\%
u	2.8\%
m	2.4\%
W	2.4\%
f	2.2\%
g	2.0\%
y	2.0\%
p	1.9\%
b	1.5\%
v	1.0\%
k	0.8\%
j	0.2\%
x	0.2\%
q	0.1\%
z	0.1\%

Distribution of letters in the ciphertext not too far from English with some statistical variation.

Maybe this is a substitution cipher? That is, each English letter is replaced by a corresponding letter, always the same throughout the ciphertext.

Letter Frequencies

Ciphertext			English		Distribution of letters in the
Letter	\# times	\%	Letter	\%	
z	110	15.0\%	e	12.7\%	
N	74	10.0\%	\cdots	9.1\%	English with some statistical
W	59	8.0\%	a	8.2\%	variation.
T	57	7.8\%	i	7.0\%	
H	55	7.5\%	n	6.7\%	Maybe this is a substitution
E	48	6.5\%	s	6.3\%	cipher? That is, each English
G	44	6.0\%	n	6.1\%	cipher? That is, each English
R	43	5.9\%	r	6.0\%	letter is replaced by a
Y	31	4.2\%	d	4.3\%	corresponding letter, always the
M	28	3.8\%	1	4.0\%	corresponding letter, always the
0	22	3.0\%	c	2.8\%	same throughout the ciphertext.
B	20	2.7\%	4	2.8\%	
1	20	2.7\%	m	2.4\%	
K	13	1.8\%	w	2.4\%	Why English and not, say,
D	12	1.6\%	f	2.2\%	French? This class is in English,
L	8	1.1\%	g	2.0\%	
x	8	1.1\%	y	2.0\%	so seems a reasonable guess.
c	6	0.8\%	p	1.9\%	
A	5	0.7%	b	1.5\%	
Q	5	0.7\%	v	1.0\%	
v	4	0.5\%	k	0.8\%	
F	2	0.3\%	i	0.2\%	
S	2	0.3\%	\times	0.2\%	
J	0	0\%	9	0.1\%	
U	0	0\%	z	0.1\%	

Letter Frequencies

Ciphertext			English		Distribution of letters in the ciphertext not too far from
Letter	\# times	\%	Letter	\%	
z	110	15.0\%	e	12.7\%	
N	74	10.0\%	t	9.1\%	English with some statistical
W	59	8.0\%	a	8.2\%	variation.
T	57	7.8\%	i	7.0\%	
H	55	7.5\%	n	6.7%	Maybe this is a substitution
E	48	6.5\%	s	6.3\%	cipher? That is, each English
G	44	6.0\%	n	6.1\%	cipher? That is, each English
R	43	5.9\%	r	6.0\%	letter is replaced by a
Y	31	4.2\%	d	4.3\%	corresponding letter, always
M	28	3.8\%	1	4.0\%	
0	22	3.0\%	\bigcirc	2.8\%	same throughout the ciphertext.
B	20	2.7\%	\cdots	2.8\%	
1	20	2.7\%	m	2.4\%	
K	13	1.8\%	w	2.4\%	Why English and not, say,
D	12	1.6\%	f	2.2\%	French? This class is in English,
$\stackrel{L}{\square}$	8	1.1\%	-... 9	2.0\%	
c	6	0.8\%	p	1.9\%	so seems a reasonable guess.
A	5	0.7\%	b	1.5\%	
Q	5	0.7\%	v	1.0\%	We can use external
v	4	0.5\%	k	0.8\%	information to help
F	2	0.3\%	j	0.2\%	break the code.
S	2	. 0.3%	\times	0.2\%	break the code.
	0	0\%	.	0.1\%	
u	0	0\%	z	0.1\%	

Substitute e for \mathbf{Z}

WNYTH	NGeCe	HNPMN	WQeHW	NYTHN	GeYPE	HNPMN	WQeHW	NYTHN
GeTIe	PMYWH	BPQWN	YTHNG	TIeP	MM	GR	Y	
DPKG	PMCeO	WeMWN	YTHNG	eeDPK	GPM	KEeBL	OW	
Geнeт	HPRPM	OWIGN	WN	NG	TH	MBTEV	ReHHW	
Ge	WRI	GPDeW	NY	GeY	NeE	BeHDT	WE	
EANGW	RICeM	PEeLH	YeGT	RPNG	RIC	PEeLH	Ye	
PWRIB	WEeKN	NPGeT	Xe	YeEet	00	RIBWE	eK	NG
EYtAW	RHGPE	NNGeD	eEWP	YTH	MTE	eng	E	RNDeE
WPBNG	TNHPQ	ePMWN	HRPW	eHNT	LNGPE	WNWeH	WR	
Ce	WRIEe	KeWXe	BMPE	PPBPE	MPEeX	WOWRN		
Be	IEeeP	MKPQD	TE	RPROA	NG	T	VWRIY	
S	TYTRB	TFLee	RYWNG	TDOT	RM	RNGe	NGEPR	PM
IO	NGeEe	YeEeT	VWRIY	NGTO	TE	TYTRB	TF	RYWNG
TMT	MTKeP	RNGeN	GEP	PMMET	RKe	NNGK	LRNE	
YTHKO	eTEeE	NGTRK	EAHNT	ONPNG	eOPEB	HPMNG	ehntw	DEeH
eH	MO	eHTR	BMW	eHNGT	NN	IHWRI	ReET	
enNO	eBMP							

Lower case will signify plaintext. Also, I have colored the next 5 most common letters, NWPTH, as brown.

Digraphs and Trigraphs

WNYTH	NGeCe	HNPMN	WQeHW	NYTHN	GeYPE	HNPMN	WQeHW	NYTH
GeTIe	PMYWH	BP	YTHNG	eTIeP	MM	WHGRe	HHWNY	
eDPKG	PMC	We	YT	eeDPK	GPMWR	KEeBL	OWNAW	
Geнeт	HPR	OWIGN	WN	NGeH	TH	MBTEV	Re	
GehDE	WR	GPDeW	NY	GeYwR	NeEPM	BehDT	WE	
EANGW	RICe	PEeL	YeGTB	JG	RIC	PE		
PWRIB	WEeK	NPG	Xe	YeE	00	RIBWE	eKNNG	
EYTAW	RHG	NNGeD	eE	Y	MT	VeNGe	DEeH	
NG	TNHP	PM	R	eHN	LNG	WNWeH	WRHWH	
WNHCe	WR	Ke	BMPEI	PPBPE	MP	wo	GehLD	
WX	IEee	MKPQ	TEW	RPRO	NG	YeEe	VWRIY	
TEIES	TYTRB	TFLee	RYWNG	TDOTW	RMTK	PRNGe	GE	
IOTRB	NGeEe	YeEeT	VWRIY	WNGTO	TEIeS	TYTRB	TFLee	
TMTWE	MTKeP	RNGe	GEPRe	PMMET	RKeWR	CPNGK	PLRNE	
YTHKO	eTEeE	NGTRK	EAHNT	ONPNG	eOPEB	HPMNG	eHNTN	
eEXeH	PMOPT	eHTR	BMWHG	eHNGT	NNG	IHWRI	ReET	
HeNno	ebMPE	exeE						

A digraph is a pair of letters; a trigraph is a set of three letters. The most common trigraph in English is "the". In our ciphertext, the most common trigraph ending in "e" is "NGe". Maybe that is it?

$\mathbf{N}=\mathrm{t}, \mathrm{G}=\mathrm{h}$

WtYTH theCe HtPMt WQeHW tYTHt heYpe HtPMt WQeHW tYTHt
heTIe PMYWH BPQWt YTHth eTIeP MMPPO WHhRe HHWtY THthe
eDPKh PMCeO WeMWt YTHth eeDPK hPMWR KEeBL OWtAW tYTHt
heHeT HPRPM OWIht WtYTH theHe THPRP MBTEV ReHHW tYTHt
heHDE WRIPM hPDeW tYTHt heYWR teEPM BeHDT WEYeh TBeXe
EAthW RICeM PEeLH YehTB RPthW RICeM PEeLH YeYeE eTOOI
PWRIB WEeKt tPheT XeRYe YeEeT OOIPW RIBWE eKtth ePthe
EYTAW RHhPE tthed eEWPB YTHHP MTEOW Vethe DEeHe RtDeE
WPBth TtHPQ ePMWt HRPWH WeHtT LthPE WtWeH WRHWH teBPR
WtHCe WRIEe KeWXe BMPEI PPBPE MPEeX WOWRt heHLD eEOTt
WXeBe IEeeP MKPQD TEWHP RPROA theEe YeEeT VWRIY WthTO
TEIeS TYTRB TFLee RYWth TDOTW RMTKe PRthe thEPR ePMeR
IOTRB theEe YeEeT VWRIY WthTO TEIeS TYTRB TFLee RYWth
TMTWE MTKeP Rthet hEPRe PMMET RKeWR CPthK PLRtE WeHWt
YTHKO eTEeE thTRK EAHtT OtPth eOPEB HPMth eHtTt eDEeH
eEXeH PMOPT XeHTR BMWHh eHthT tthWR IHWRI eReET OYeEe
Hetto eBMPE eXeE
"er" and "re" are both common digraphs as well. "E" is the most common undecoded letter that appears before and after "e" in the ciphertext. But a longer ciphertext would help ...
WtYTH theCe HtPMt WQeHW tYTHt heYPr HtPMt WQeHW tYTHt
heTIe PMYWH BPQWt YTHth eTIeP MMPPO WHhRe HHWtY THthe
eDPKh PMCeO WeMWt YTHth eeDPK hPMWR KreBL OWtAW tYTHt
heHeT HPRPM OWIht WtYTH theHe THPRP MBTrV ReHHW tYTHt
heHDr WRIPM hPDeW tYTHt heYWR terPM BeHDT WrYeh TBeXe
rAthW RICeM PreLH YehTB RPthW RICeM PreLH YeYer eTOOI
PWRIB WreKt tPheT XeRYe YereT OOIPW RIBWr eKtth ePthe
rYTAW RHhPr ttheD erWPB YTHHP MTrOW Vethe DreHe RtDer
WPBth TtHPQ ePMWt HRPWH WeHtT LthPr WtWeH WRHWH teBPR
WtHCe WRIre KeWXe BMPrI PPBPr MPreX WOWRt heHLD erOTt
WXeBe IreeP MKPQD TrWHP RPROA there YereT VWRIY WthTO
TrIeS TYTRB TFLee RYWth TDOTW RMTKe PRthe thrPR ePMeR
IOTRB there YereT VWRIY WthTO TrIeS TYTRB TFLee RYWth
TMTWr MTKeP Rthet hrPRe PMMrT RKeWR CPthK PLRtr WeHWt
YTHKO eTrer thTRK rAHtT OtPth eOPrB HPMth eHtTt eDreH
erXeH PMOPT XeHTR BMWHh eHthT tthWR IHWRI eRerT OYere
Hetto eBMPr eXer
"an","in", and "on" are also very common digraphs and we haven't decoded any of "a","i","o", or "n". So let us try to see what "n" could be - maybe "H"? "TH" and "WH" both are common. (No "PH")

Try H = n

Doesn't seem to work ... Maybe " n " is a slightly less frequent letter like "R"? "WR," "PR," and "TR" all appear multiple times. Note: trying different things is a useful code-breaking strategy.
WtYTH theCe HtPMt WQeHW tYTHt heYPr HtPMt WQeHW tYTHt
heTIe PMYWH BPQWt YTHth eTIeP MMPPO WHhne HHWtY THthe
eDPKh PMCeO WeMWt YTHth eeDPK hPMWn KreBL OWtAW tYTHt
heHeT HPnPM OWIht WtYTH theHe THPnP MBTrV neHHW tYTHt
heHDr WnIPM hPDeW tYTHt heYWn terPM BeHDT WrYeh TBeXe
rAthW nICeM PreLH YehTB nPthW nICeM PreLH YeYer eTOOI
PWnIB WreKt tPheT XenYe YereT OOIPW nIBWr eKtth ePthe
rYTAW nHhPr ttheD erWPB YTHHP MTrOW Vethe DreHe ntDer
WPBth TtHPQ ePMWt HnPWH WeHtT LthPr WtWeH WnHWH teBPn
WtHCe WnIre KewXe BMPrI PPBPr MPreX WOWnt heHLD erOTt
WXeBe IreeP MKPQD TrWHP nPnOA there YereT VWnIY WthTO
TrIeS TYTnB TFLee nYWth TDOTW nMTKe Pnthe thrPn ePMen
IOTnB there YereT VWnIY WthTO TrIeS TYTnB TFLee nYWth
TMTWr MTKeP nthet hrPne PMMrT nKeWn CPthK PLntr WeHWt
YTHKO eTrer thTnK rAHtT OtPth eOPrB HPMth eHtTt eDreH
erXeH PMOPT XeHTR BMWHh eHthT tthWn IHWRI enerT OYere
Hetto eBMPr eXer

If "W", "P", and "T" are "a","i", and "o", which is which? This circled part doesn't seem to work except for "P" = "o", so let's try that too. And then maybe our other common letter " H " is " s ".

We need more text to continue with frequency analysis, but at this point we can start to look for sensible words and phrases to complete. E.g.,"thereYere" = "there were"? "thTtthWn" = "that thin..."? Then probably "Y" = "w","W" = "i" and "T" = "a".
itwas theCe stoMt iQesi twast hewor stoMt iQesi twast
heaIe oMwis BoQit wasth eaIeo MMooO ishne ssitw asthe
eDoKh oMCeO ieMit wasth eeDoK hoMin KreBL OitAi twast
hesea sonoM OiIht itwas these asono MBarV nessi twast
hesDr inIoM hoDei twast hewin teroM BesDa irweh aBeXe
rAthi nICeM oreLs wehaB nothi nICeM oreLs wewer eaOOI
oinIB ireKt tohea Xenwe werea OOIoi nIBir eKtth eothe
rwaAi nshor theD erioB wasso MarOi Vethe Drese ntDer
ioBth atsoQ eoMit snois iesta Lthor ities insis teBon
itsCe inIre KeiXe BMorI ooBor MoreX iOint hesLD erOat
iXeBe Ireeo MKoQD ariso nonOA there werea VinIw ithaO
arIeS awanB aFLee nwith aDOai nMaKe onthe thron eoMen
IOanB there werea VinIw ithaO arIeS awanB aFLee nwith
aMair MaKeo nthet hrone oMMra nKein CothK oLntr iesit
wasKo earer thanK rAsta Ototh eOorB soMth estat eDres
erXes omOoa Xesan BMish estha thin IsinI enera Owere
setto eBMor eXer

At this point, we can almost read it off:"It was the ?esto?ti?es it was the worst o?ti?es ..." "C" = "b","M" = "f","Q" = "m"

$c=b, M=f, Q=m$

itwas thebe stoft imesi twast hewor stoft imesi twast
heale ofwis Bomit wasth eaIeo ffooO ishne ssitw asthe
eDoKh ofbeO iefit wasth eeDoK hofin KreBL OitAi twast
hesea sonof OiIht itwas these asono fBarV nessi twast
hesDr inIof hoDei twast hewin terof BesDa irweh aBeXe
rAthi nIbef oreLs wehaB nothi nIbef oreLs wewer eaOOI
oinIB ireKt tohea Xenwe werea ooIoi nIBir eKtth eothe
rwaAi nshor ttheD erioB wasso farOi Vethe Drese ntDer
ioBth atsom eofit snois iesta Lthor ities insis teBon
itsbe inIre KeiXe BforI oobor foreX iOint hesLD erOat
iXeBe Ireeo fKomD ariso nonOA there werea VinIw ithaO
arIeS awanB aFLee nwith adOai nfaKe onthe thron eofen
IOanB there werea VinIw ithaO arIeS awanB aFLee nwith
afair faKeo nthet hrone offra nKein bothK oLntr iesit
wasKo earer thanK rAsta Ototh eOorB softh estat eDres
erXes ofOoa Xesan Bfish estha thin IsinI enera Owere
setto eBfor eXer

Filling in the rest, we get " l " = " g "," "B" = "d","O" = " $l ", " D "=" p "$, "K" = "c","'L" = "u","A" = "y","'V" = "k","X" = "v","'S" = "j","F"

Remaining substitutions and spaces

it was the best of times it was the worst of times it was the age of wisdom it was the age of foolishness it was the epoch of belief it was the epoch of incredulity it was the season of light it was the season of darkness it was the spring of hope it was the winter of despair we had everything before us we had nothing before us we were all going direct to heaven we were all going direct the other way in short the period was so far like the present period that some of its noisiest authorities insisted on its being received for good or for evil in the superlative degree of comparison only there were a king with a large jaw and a queen with a plain face on the throne of england there were a king with a large jaw and a queen with a fair face on the throne of france in both countries it was clearer than crystal to the lords of the state preserves of loaves and fishes that things in general were settled for ever

Protocol vs. Key

Protocol:
Encryption algorithm: substitute each plaintext letter of the message for the corresponding ciphertext letter given by the key.

Decryption algorithm: substitute each ciphertext letter for the corresponding plaintext letter given by the key.

Notice how we were able to guess the protocol fairly easily but had to work to find the key.

Key:

Plaintext	Ciphertext
a	T
b	C
c	K
d	B
e	Z
f	M
g	1
h	G
i	W
j	S
k	V
1	0
m	Q
n	R
\bigcirc	P
p	D
a	F
r	E
s	H
t	N
u	L
v	X
w	Y
x	J or U
y	A
z	J or U

Alice and Bob vs. Eve

Eve

Alice and Bob vs. Eve

Alice and Bob vs. Eve

Kerckhoffs' Principle

Assume the protocol is known by the adversary. Only the key is secret.

Why?

- There is less freedom to choose the protocol. The key can be complete random.
- We can separate the part that needs to be secure.
- Easier to change the key than the protocol.
- Many people can use the same protocol with different keys.
- Many people can try to break the protocol.

Kerckhoffs' Principle

Assume the protocol is known by the adversary. Only the key is secret.

Why?

- There is less freedom to choose the protocol. The key can be complete random.
- We can separate the part that needs to be secure.
- Easier to change the key than the protocol.
- Many people can use the same protocol with different keys.
- Many people can try to break the protocol.

But why would you want that? Because if many people try and fail, you are more confident that this code is hard to break.

Substitution Cipher Plus and Minus

Plus:

- Conceptually simple
- Encryption and decryption can be done by hand
- Not clear to a novice how to break it

Minus:

- Key inconveniently long for humans; hard to memorize
- Can be broken by hand: too many patterns

The substitution cipher was in fact used historically for a long time even after it was known how to break it. People tried modifying it in many different ways to make it harder to break, but skilled cryptoanalysts were generally able to defeat these modifications as well.

Substitution Cipher Plus and Minus

Plus:

- Conceptually simple
- Encryption and decryption can be done by hand
- Not clear to a novice how to break it

Minus:

- Key inconveniently long for humans; hard to memorize
- Can be broken by hand: too many patterns

The substitution cipher was in fact used historically for a long time even after it was known how to break it. People tried modifying it in many different ways to make it harder to break, but skilled cryptoanalysts were generally able to defeat these modifications as well.

- Cryptosystems have a long lifetime
- Ad hoc security patches generally fail

