CMSC/Math 456: Cryptography (Fall 2022) Lecture 10 Daniel Gottesman

Administrative

Problem set #4 should have been turned in. Solutions for problem set #3 are on ELMS.

Problem set #5 is available now, due next Thursday, Oct. 7.

We have been working numbers modulo N. I will start using the notation \mathbb{Z}_N to refer to this.

But, as we have seen, nice things happen if we restrict attention to g that is relatively prime to N, gcd(g, N) = 1:

- Division is well-defined for such g
- $\exists r \ (="there exists r") \ such that <math>g^r = 1 \mod N$. That is, exponentiation cycles back to I.

Definition: Let $\mathbb{Z}_N^* \subseteq \mathbb{Z}_N$ be the set of $g \in \{0, ..., N-1\}$ such that gcd(g, N) = 1.

 \mathbb{Z}_N and \mathbb{Z}_N^*

Closure of \mathbb{Z}_{N}^{*}

Proposition: If gcd(g, N) = 1 and gcd(h, N) = 1, then gcd(gh, N) = 1 as well. I.e., \mathbb{Z}_N^* is closed under multiplication.

Closure of \mathbb{Z}_{N}^{*}

Proposition: If gcd(g, N) = 1 and gcd(h, N) = 1, then gcd(gh, N) = 1 as well. I.e., \mathbb{Z}_N^* is closed under multiplication.

Proof:

Recall that x^{-1} is well-defined mod N iff gcd(x, N) = 1.

Closure of \mathbb{Z}_N^*

Proposition: If gcd(g, N) = 1 and gcd(h, N) = 1, then gcd(gh, N) = 1 as well. I.e., \mathbb{Z}_N^* is closed under multiplication.

Proof:

Recall that x^{-1} is well-defined mod N iff gcd(x, N) = 1.

But
$$(gh)^{-1} = h^{-1}g^{-1}$$
:
 $(h^{-1}g^{-1})(gh) = h^{-1} \cdot 1 \cdot h \mod N = 1 \mod N$

Closure of \mathbb{Z}_N^*

Proposition: If gcd(g, N) = 1 and gcd(h, N) = 1, then gcd(gh, N) = 1 as well. I.e., \mathbb{Z}_N^* is closed under multiplication.

Proof:

Recall that x^{-1} is well-defined mod N iff gcd(x, N) = 1.

But
$$(gh)^{-1} = h^{-1}g^{-1}$$
:
 $(h^{-1}g^{-1})(gh) = h^{-1} \cdot 1 \cdot h \mod N = 1 \mod N$

This means that gh has an inverse and therefore gcd(gh, N) = 1.

Groups

Definition: A group (G, *) is a set G of elements along with a binary operation $*: G \times G \to G$ with the following properties:

1. Closure: $g * h \in G$ when $g, h \in G$. 2. Associativity: $\forall g, h, k \in G, (g * h) * k = g * (h * k)$. 3. Identity: $\exists e \in G$ such that $\forall g \in G, e * g = g * e = g$. 4. Inverses: $\forall g \in G, \exists g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.

A group which also satisfies

5. Commutativity: $\forall g, h \in G, g * h = h * g$

is called an abelian group.

Usually we just refer to G as the group. If we need to specify the group operation, we say "G under [operation]." Usually instead of *, the group operation is just written + or \cdot like addition or multiplication even if it is not those.

This class is being recorded

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Bad question. Which group operation?

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Bad question. Which group operation?

Integers \mathbb{Z} under addition? Vote

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote

Bad question. Which group operation?

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Bad question. Which group operation?

Integers \mathbb{Z} under addition? Vote

Integers \mathbb{Z} under multiplication? Vote

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote Integers \mathbb{Z} under multiplication? Vote Bad question. Which group operation?Yes.No. No inverses.

This class is being recorded

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote Integers \mathbb{Z} under multiplication? Vote Reals \mathbb{R} under multiplication? Vote Bad question. Which group operation?Yes.No. No inverses.

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote Integers \mathbb{Z} under multiplication? Vote Reals \mathbb{R} under multiplication? Vote

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote Integers \mathbb{Z} under multiplication? Vote Reals \mathbb{R} under multiplication? Vote $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? Vote

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? VoteYes.Integers \mathbb{Z} under multiplication? VoteNo.Reals \mathbb{R} under multiplication? VoteNo. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? VoteYes.

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? VoteYes.Integers \mathbb{Z} under multiplication? VoteNo.Reals \mathbb{R} under multiplication? VoteNo. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? VoteYes. \mathbb{R}^* under exponentiation? VoteYes.

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? VoteYes.Integers \mathbb{Z} under multiplication? VoteNo.Reals \mathbb{R} under multiplication? VoteNo. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? VoteYes. \mathbb{R}^* under exponentiation? VoteNo.

Bad question. Which group operation?
Yes.
No. No inverses.
No. 0 still has no inverse.

No. Fails associativity (e.g., $(3^3)^3 \neq 3^{(3^3)}$) and closure (e.g., $(-1)^{0.5}$)

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? VoteYes.Integers \mathbb{Z} under multiplication? VoteNo.Reals \mathbb{R} under multiplication? VoteNo. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? VoteYes. \mathbb{R}^* under exponentiation? VoteNo.

 \mathbb{Z}_N under addition? Vote

Bad question. Which group operation?
Yes.
No. No inverses.
No. 0 still has no inverse.

No. Fails associativity (e.g., $(3^3)^3 \neq 3^{(3^3)}$) and closure (e.g., $(-1)^{0.5}$)

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? VoteYes.Integers \mathbb{Z} under multiplication? VoteNo.Reals \mathbb{R} under multiplication? VoteNo. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? VoteYes. \mathbb{R}^* under exponentiation? VoteNo.

 \mathbb{Z}_N under addition? Vote

Bad question. Which group operation?
Yes.
No. No inverses.
No. 0 still has no inverse.

No. Fails associativity (e.g., $(3^3)^3 \neq 3^{(3^3)}$) and closure (e.g., $(-1)^{0.5}$)

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? VoteYes.Integers \mathbb{Z} under multiplication? VoteNo.Reals \mathbb{R} under multiplication? VoteNo. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? VoteYes. \mathbb{R}^* under exponentiation? VoteNo.

 \mathbb{Z}_N under addition? Vote \mathbb{Z}_N^* under multiplication? Vote

This class is being recorded

Bad question. Which group operation?Yes.No. No inverses.No. 0 still has no inverse.

No. Fails associativity (e.g., $(3^3)^3 \neq 3^{(3^3)}$) and closure (e.g., $(-1)^{0.5}$)

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? VoteYes.Integers \mathbb{Z} under multiplication? VoteNo.Reals \mathbb{R} under multiplication? VoteNo. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ under multiplication? VoteYes. \mathbb{R}^* under exponentiation? VoteNo.

 \mathbb{Z}_N under addition? Vote \mathbb{Z}_N^* under multiplication? Vote

This class is being recorded

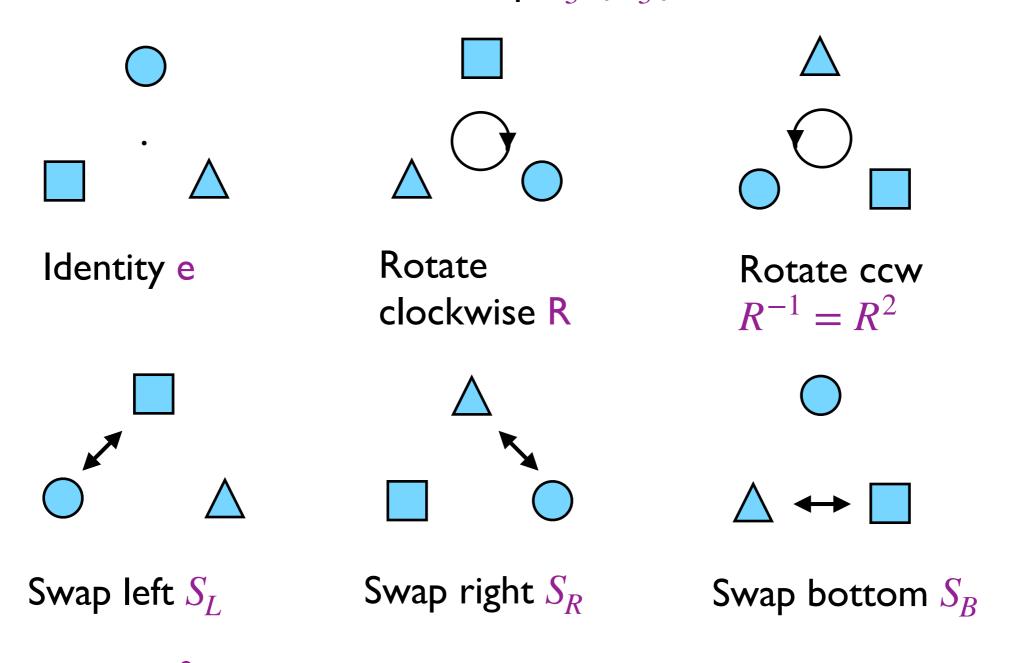
Bad question. Which group operation?Yes.No. No inverses.No. 0 still has no inverse.

No. Fails associativity (e.g., $(3^3)^3 \neq 3^{(3^3)}$) and closure (e.g., $(-1)^{0.5}$)

Yes.

Group Theory Example

Permutations of 3 elements: Group S_3 , $|S_3| = 6$

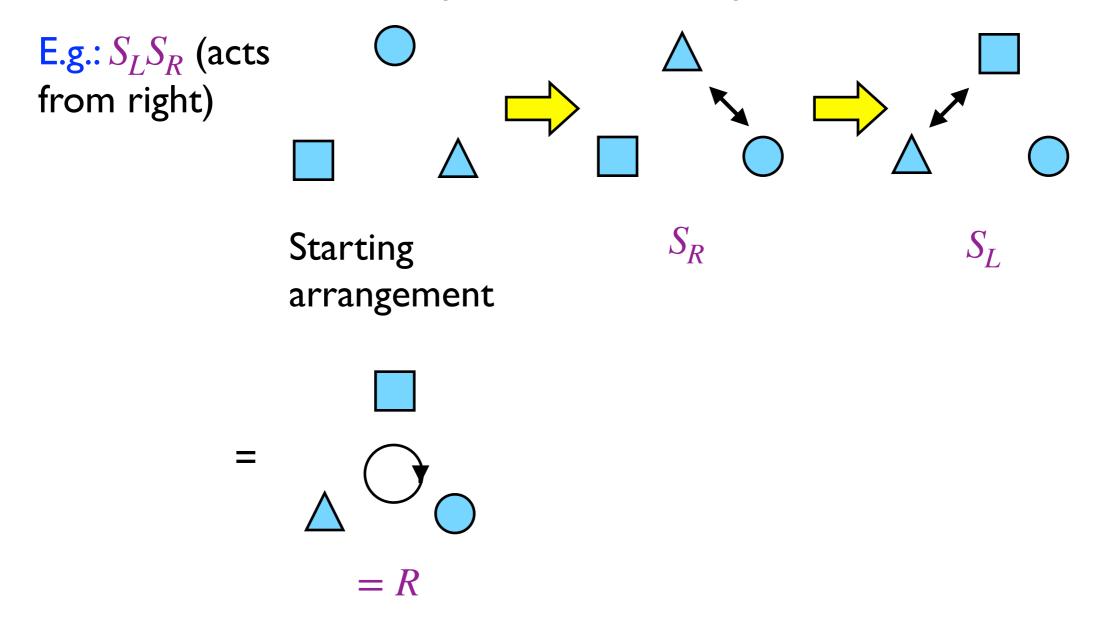


 $S_3 = \{e, R, R^2, S_L, S_R, S_B\}$ with group operation composition.

This class is being recorded

Group Properties: Closure

Closure: Product of two permutations is a permutation.



This class is being recorded

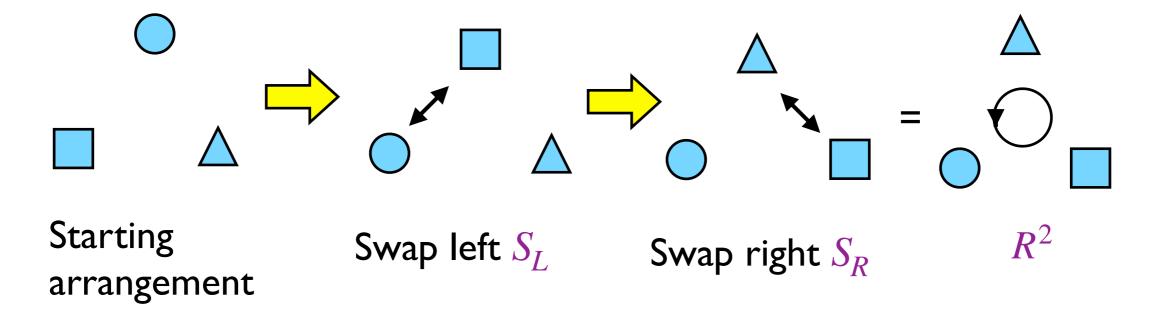
Group Properties: Others

Associativity: Can be checked but is automatic for composition of operations.

Identity: e is the identity element of the group. $e\sigma = \sigma$

Inverses: R and R^2 are inverses of each other. S_L , S_R , and S_B are inverses of themselves.

Non-abelian:
$$S_R S_L = R^2 \neq R = S_L S_R$$



Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of $\mathbb Z$ under addition.

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of $\mathbb Z$ under addition.

 \mathbb{Z}_5 is not a subgroup of \mathbb{Z} under addition: The addition operation is different, since in \mathbb{Z}_5 , 3 + 3 = 1, whereas in \mathbb{Z} , 3 + 3 = 6.

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of \mathbb{Z} under addition.

 \mathbb{Z}_5 is not a subgroup of \mathbb{Z} under addition: The addition operation is different, since in \mathbb{Z}_5 , 3 + 3 = 1, whereas in \mathbb{Z} , 3 + 3 = 6.

{0,2,4} is a subgroup of \mathbb{Z}_6 under addition: Addition is closed, 0 is the identity, and -2 = 4.

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of $\mathbb Z$ under addition.

 \mathbb{Z}_5 is not a subgroup of \mathbb{Z} under addition: The addition operation is different, since in \mathbb{Z}_5 , 3 + 3 = 1, whereas in \mathbb{Z} , 3 + 3 = 6.

{0,2,4} is a subgroup of \mathbb{Z}_6 under addition: Addition is closed, 0 is the identity, and -2 = 4.

 \mathbb{Z}_6^* under multiplication is not a subgroup of \mathbb{Z}_6 under addition because it uses a different group operation.

Order of Groups and Subgroups

Definition: The order of a finite group G is written |G| and is equal to the number of elements in G.

Examples:

$$|\mathbb{Z}_{5}| = 5 \text{ and } |\mathbb{Z}_{5}^{*}| = 4.$$

 $|\mathbb{Z}_{6}| = 6$
 $|\{0,2,4\}| = 3$
 $|\mathbb{Z}_{6}^{*}| = 2 \text{ since } \mathbb{Z}_{6}^{*} = \{1,5\}$

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

This class is being recorded

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

Proof: For this proof, write the group operation as multiplication.

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

Proof: For this proof, write the group operation as multiplication.

Let $gH = \{gh \mid h \in H\}$.

(gH is known as a coset.)

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

Proof: For this proof, write the group operation as multiplication.

Let $gH = \{gh \mid h \in H\}.$

(gH is known as a coset.)

Claim I: If g' = gk for $k \in H$, then gH = g'H

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

Proof: For this proof, write the group operation as multiplication.

Let $gH = \{gh \mid h \in H\}.$

(gH is known as a coset.)

Claim I: If g' = gk for $k \in H$, then gH = g'H

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$

This means that the cosets don't overlap and that every element is in a coset (shared with other cosets that differ by multiplication by an element of the subgroup): a "partition."

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

Proof: For this proof, write the group operation as multiplication.

Let $gH = \{gh \mid h \in H\}.$

(gH is known as a coset.)

Claim I: If g' = gk for $k \in H$, then gH = g'H

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$

This means that the cosets don't overlap and that every element is in a coset (shared with other cosets that differ by multiplication by an element of the subgroup): a "partition."

Claim 3: |gH| = |H|

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then |H| divides |G|.

Proof: For this proof, write the group operation as multiplication.

Let $gH = \{gh \mid h \in H\}.$

(gH is known as a coset.)

Claim I: If g' = gk for $k \in H$, then gH = g'H

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$

This means that the cosets don't overlap and that every element is in a coset (shared with other cosets that differ by multiplication by an element of the subgroup): a "partition."

Claim 3: |gH| = |H|

G is partitioned into cosets of size |H|, so |H| divides |G|.

This class is being recorded

Claim I: If g' = gk for $k \in H$, then gH = g'H:

Proof of claim 1:

Claim I: If g' = gk for $k \in H$, then gH = g'H:

Proof of claim 1:

 $g'H = \{gkh | h \in H\}$ but $kh \in H$ (by closure of H).

Claim I: If g' = gk for $k \in H$, then gH = g'H:

Proof of claim 1:

 $g'H = \{gkh | h \in H\}$ but $kh \in H$ (by closure of H).

If $k \in H$, then $k^{-1} \in H$ (by the inverses property of H).

Claim I: If g' = gk for $k \in H$, then gH = g'H:

Proof of claim 1:

 $g'H = \{gkh | h \in H\}$ but $kh \in H$ (by closure of H).

If $k \in H$, then $k^{-1} \in H$ (by the inverses property of H).

kh can take on *any* value $h' \in H$, when $h = k^{-1}h'$ (the product is in H by closure again). That is, as h runs over H for fixed k, kh runs over H as well.

Claim I: If g' = gk for $k \in H$, then gH = g'H:

Proof of claim 1:

 $g'H = \{gkh | h \in H\}$ but $kh \in H$ (by closure of H).

If $k \in H$, then $k^{-1} \in H$ (by the inverses property of H).

kh can take on *any* value $h' \in H$, when $h = k^{-1}h'$ (the product is in H by closure again). That is, as h runs over H for fixed k, kh runs over H as well.

But that means that

 $g'H = \{gkh \mid h \in H\} = \{gh' \mid h' \in H\} = gH$

This class is being recorded

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$:

Proof of claim 2:

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$:

Proof of claim 2:

Suppose $g' \neq gk$ but $gH \cap g'H \neq \emptyset$. Then $\exists x \in gH \cap g'H$.

This class is being recorded

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$: Proof of claim 2:

Suppose $g' \neq gk$ but $gH \cap g'H \neq \emptyset$. Then $\exists x \in gH \cap g'H$.

But $k \in gH \cap g'H$ means k = gh and k = g'h' for some $h, h' \in H$.

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$: Proof of claim 2:

Suppose $g' \neq gk$ but $gH \cap g'H \neq \emptyset$. Then $\exists x \in gH \cap g'H$.

But $k \in gH \cap g'H$ means k = gh and k = g'h' for some $h, h' \in H$.

Thus, $g' = ghh'^{-1}$.

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$: Proof of claim 2:

Suppose $g' \neq gk$ but $gH \cap g'H \neq \emptyset$. Then $\exists x \in gH \cap g'H$.

But $k \in gH \cap g'H$ means k = gh and k = g'h' for some $h, h' \in H$.

Thus,
$$g' = ghh'^{-1}$$
.

But $k = hh^{'-1} \in H$ by the closure and inverses properties of H.

Claim 2: If $g' \neq gk$ for all $k \in H$, then $gH \cap g'H = \emptyset$: Proof of claim 2:

Suppose $g' \neq gk$ but $gH \cap g'H \neq \emptyset$. Then $\exists x \in gH \cap g'H$.

But $k \in gH \cap g'H$ means k = gh and k = g'h' for some $h, h' \in H$.

Thus,
$$g' = ghh'^{-1}$$
.

But $k = hh^{'-1} \in H$ by the closure and inverses properties of H.

This contradicts $g' \neq gk$ for $k \in H$. It must therefore be that $gH \cap g'H = \emptyset$.

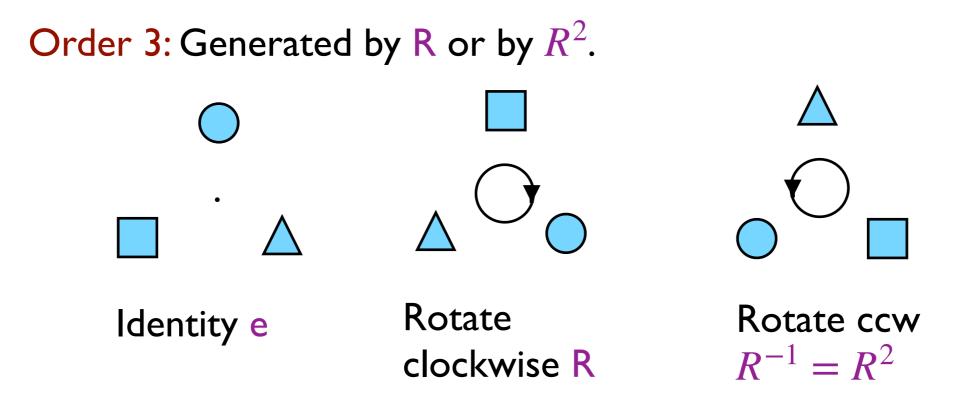
Claim 3: |gH| = |H|

Proof of claim 3:

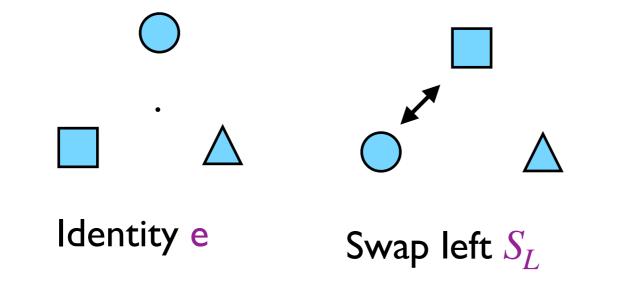
gh = gh' iff h = h' (multiply by g^{-1}).

Thus, $gH = \{gh | h \in H\}$ has exactly as many elements as H.

Subgroups of Permutation Group



3 order 2 subgroups: For instance, generated by S_L .



Note: Order of subgroups a factor of 6 (Lagrange's thm.)

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.

A group is cyclic if it has a generating set with just a single element.

Examples:

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.

A group is cyclic if it has a generating set with just a single element.

Examples:

{1} is a generating set for \mathbb{Z} , so \mathbb{Z} is cyclic. (Under addition, since otherwise \mathbb{Z} is not a group.)

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.

A group is cyclic if it has a generating set with just a single element.

Examples:

{1} is a generating set for \mathbb{Z} , so \mathbb{Z} is cyclic. (Under addition, since otherwise \mathbb{Z} is not a group.)

{2,3} is also a generating set for \mathbb{Z} , as is any pair $\{a, b\}$ with gcd(a,b) = 1. Proof: Euclid's algorithm.

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.

A group is cyclic if it has a generating set with just a single element.

Examples:

{1} is a generating set for \mathbb{Z} , so \mathbb{Z} is cyclic. (Under addition, since otherwise \mathbb{Z} is not a group.)

{2,3} is also a generating set for \mathbb{Z} , as is any pair $\{a, b\}$ with gcd(a,b) = I. Proof: Euclid's algorithm.

{1} is a generating set for \mathbb{Z}_5 (under addition), as is {a} for any $a \neq 0$.

This class is being recorded

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_N^*$ and define $\langle g \rangle = \{g^a \in \mathbb{Z}_N^*\}$. $\langle g \rangle$ is the cyclic subgroup of \mathbb{Z}_N^* generated by g.

Why is $\langle g \rangle$ a subgroup?

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_N^*$ and define $\langle g \rangle = \{g^a \in \mathbb{Z}_N^*\}$. $\langle g \rangle$ is the cyclic subgroup of \mathbb{Z}_N^* generated by g.

Why is $\langle g \rangle$ a subgroup?

• $g^a g^b = g^{a+b}$, so $\langle g \rangle$ is closed under the group operation.

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_N^*$ and define $\langle g \rangle = \{g^a \in \mathbb{Z}_N^*\}$. $\langle g \rangle$ is the cyclic subgroup of \mathbb{Z}_N^* generated by g.

Why is $\langle g \rangle$ a subgroup?

• $g^a g^b = g^{a+b}$, so $\langle g \rangle$ is closed under the group operation. • $g \cdot g^{\operatorname{ord}(g)-1} = 1$, so $g^{-1} = g^{\operatorname{ord}(g)-1} \in \langle g \rangle$

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_N^*$ and define $\langle g \rangle = \{g^a \in \mathbb{Z}_N^*\}$. $\langle g \rangle$ is the cyclic subgroup of \mathbb{Z}_N^* generated by g.

Why is $\langle g \rangle$ a subgroup?

- $g^a g^b = g^{a+b}$, so $\langle g \rangle$ is closed under the group operation.
- $g \cdot g^{\operatorname{ord}(g)-1} = 1$, so $g^{-1} = g^{\operatorname{ord}(g)-1} \in \langle g \rangle$
- $(g^a)^{-1} = (g^{-1})^a$, so $\langle g \rangle$ has inverses.

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_N^*$ and define $\langle g \rangle = \{g^a \in \mathbb{Z}_N^*\}$. $\langle g \rangle$ is the cyclic subgroup of \mathbb{Z}_N^* generated by g.

Why is $\langle g \rangle$ a subgroup?

- $g^a g^b = g^{a+b}$, so $\langle g \rangle$ is closed under the group operation. • $g \cdot g^{\operatorname{ord}(g)-1} = 1$, so $g^{-1} = g^{\operatorname{ord}(g)-1} \in \langle g \rangle$
- $(g^a)^{-1} = (g^{-1})^a$, so $\langle g \rangle$ has inverses.

By Lagrange's Theorem, $\operatorname{ord}(g) = |\langle g \rangle|$ divides $|\mathbb{Z}_N^*|$. This tells us the possible values of the order of g: the factors of $|\mathbb{Z}_N^*|$.

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_N^*$ and define $\langle g \rangle = \{g^a \in \mathbb{Z}_N^*\}$. $\langle g \rangle$ is the cyclic subgroup of \mathbb{Z}_N^* generated by g.

Why is $\langle g \rangle$ a subgroup?

• $g^a g^b = g^{a+b}$, so $\langle g \rangle$ is closed under the group operation. • $g \cdot g^{\operatorname{ord}(g)-1} = 1$, so $g^{-1} = g^{\operatorname{ord}(g)-1} \in \langle g \rangle$

•
$$(g^a)^{-1} = (g^{-1})^a$$
, so $\langle g \rangle$ has inverses.

By Lagrange's Theorem, $\operatorname{ord}(g) = |\langle g \rangle|$ divides $|\mathbb{Z}_N^*|$. This tells us the possible values of the order of g: the factors of $|\mathbb{Z}_N^*|$.

What is $|\mathbb{Z}_N^*|$?