CMSC/Math 456: Cryptography (Fall 2022) Lecture 10
 Daniel Gottesman

Administrative

Problem set \#4 should have been turned in. Solutions for problem set \#3 are on ELMS.

Problem set \#5 is available now, due next Thursday, Oct. 7 .

\mathbb{Z}_{N} and \mathbb{Z}_{N}^{*}

We have been working numbers modulo N. I will start using the notation \mathbb{Z}_{N} to refer to this.

But, as we have seen, nice things happen if we restrict attention to g that is relatively prime to $\mathrm{N}, \operatorname{gcd}(g, N)=1$:

- Division is well-defined for such g
- $\exists r$ (="there exists r ") such that $g^{r}=1 \bmod N$. That is, exponentiation cycles back to I.

Definition: Let $\mathbb{Z}_{N}^{*} \subseteq \mathbb{Z}_{N}$ be the set of $g \in\{0, \ldots, N-1\}$ such that $\operatorname{gcd}(g, N)=1$.

Closure of \mathbb{Z}_{N}^{*}

Proposition: If $\operatorname{gcd}(g, N)=1$ and $\operatorname{gcd}(h, N)=1$, then $\operatorname{gcd}(g h, N)=1$ as well. I.e., \mathbb{Z}_{N}^{*} is closed under multiplication.

Closure of \mathbb{Z}_{N}^{*}

Proposition: If $\operatorname{gcd}(g, N)=1$ and $\operatorname{gcd}(h, N)=1$, then $\operatorname{gcd}(g h, N)=1$ as well. I.e., \mathbb{Z}_{N}^{*} is closed under multiplication.

Proof:

Recall that x^{-1} is well-defined $\bmod \mathrm{N}$ iff $\operatorname{gcd}(x, N)=1$.

Closure of \mathbb{Z}_{N}^{*}

Proposition: If $\operatorname{gcd}(g, N)=1$ and $\operatorname{gcd}(h, N)=1$, then $\operatorname{gcd}(g h, N)=1$ as well. I.e., \mathbb{Z}_{N}^{*} is closed under multiplication.

Proof:

Recall that x^{-1} is well-defined $\bmod \mathrm{N}$ iff $\operatorname{gcd}(x, N)=1$.
But $(g h)^{-1}=h^{-1} g^{-1}$:

$$
\left(h^{-1} g^{-1}\right)(g h)=h^{-1} \cdot 1 \cdot h \bmod N=1 \bmod N
$$

Closure of \mathbb{Z}_{N}^{*}

Proposition: If $\operatorname{gcd}(g, N)=1$ and $\operatorname{gcd}(h, N)=1$, then $\operatorname{gcd}(g h, N)=1$ as well. I.e., \mathbb{Z}_{N}^{*} is closed under multiplication.

Proof:

Recall that x^{-1} is well-defined $\bmod \mathrm{N}$ iff $\operatorname{gcd}(x, N)=1$.
But $(g h)^{-1}=h^{-1} g^{-1}$:

$$
\left(h^{-1} g^{-1}\right)(g h)=h^{-1} \cdot 1 \cdot h \bmod N=1 \bmod N
$$

This means that gh has an inverse and therefore $\operatorname{gcd}(g h, N)=1$.

Groups

Definition:A group $(G, *)$ is a set G of elements along with a binary operation *: $G \times G \rightarrow G$ with the following properties:
I. Closure: $g * h \in G$ when $g, h \in G$.
2. Associativity: $\forall g, h, k \in G,\left(g^{*} h\right) * k=g^{*}(h * k)$.
3. Identity: $\exists e \in G$ such that $\forall g \in G, e^{*} g=g * e=g$.
4. Inverses: $\forall g \in G, \exists g^{-1} \in G$ such that

$$
g * g^{-1}=g^{-1} * g=e
$$

A group which also satisfies
5. Commutativity: $\forall g, h \in G, g * h=h * g$
is called an abelian group.
Usually we just refer to G as the group. If we need to specify the group operation, we say "G under [operation]." Usually instead of *, the group operation is just written + or - like addition or multiplication even if it is not those.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Bad question. Which group operation?

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote

Bad question.Which group operation?

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.
Integers \mathbb{Z} under addition? Vote

Bad question. Which group operation?
Yes.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote

Bad question.Which group operation?
Yes.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote

Bad question.Which group operation?

Yes.
No. No inverses.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote

Bad question.Which group operation?

Yes.
No. No inverses.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote

Bad question.Which group operation?

Yes.
No. No inverses.
No. 0 still has no inverse.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote

Bad question. Which group operation?

Yes.
No. No inverses.
No. 0 still has no inverse.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.
Bad question.Which group operation?

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
Yes.
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote Yes.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote Yes.
\mathbb{R}^{*} under exponentiation? Vote
Yes.

Bad question.Which group operation?

No. No inverses.
No. 0 still has no inverse.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.
Bad question.Which group operation?

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote Yes.
\mathbb{R}^{*} under exponentiation? Vote
Yes.
No. No inverses.
No. 0 still has no inverse.

No. Fails associativity (e.g., $\left.\left(3^{3}\right)^{3} \neq 3^{\left(3^{3}\right)}\right)$ and closure (e.g., $\left.(-1)^{0.5}\right)$

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.
Bad question. Which group operation?

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote Yes.
\mathbb{R}^{*} under exponentiation? Vote
Yes.
No. No inverses.
No. 0 still has no inverse.

No. Fails associativity (e.g., $\left.\left(3^{3}\right)^{3} \neq 3^{\left(3^{3}\right)}\right)$ and closure (e.g., $\left.(-1)^{0.5}\right)$
\mathbb{Z}_{N} under addition? Vote

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.
Bad question.Which group operation?

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote Yes.
\mathbb{R}^{*} under exponentiation? Vote
\mathbb{Z}_{N} under addition? Vote
No. Fails associativity (e.g., $\left.\left(3^{3}\right)^{3} \neq 3^{\left(3^{3}\right)}\right)$ and closure (e.g., $\left.(-1)^{0.5}\right)$
Yes.

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.
Bad question. Which group operation?

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote Yes.
\mathbb{R}^{*} under exponentiation? Vote
No. Fails associativity (e.g., $\left.\left(3^{3}\right)^{3} \neq 3^{\left(3^{3}\right)}\right)$ and closure (e.g., (-1$)^{0.5}$)
\mathbb{Z}_{N} under addition? Vote
\mathbb{Z}_{N}^{*} under multiplication? Vote
Yes.

This class is being recorded

Group Examples

For each of the following, vote on whether it is a group: yes/no/ bad question.

Integers \mathbb{Z} ? Vote.

Integers \mathbb{Z} under addition? Vote
Integers \mathbb{Z} under multiplication? Vote
Reals \mathbb{R} under multiplication? Vote
$\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ under multiplication? Vote Yes.
\mathbb{R}^{*} under exponentiation? Vote
\mathbb{Z}_{N} under addition? Vote
\mathbb{Z}_{N}^{*} under multiplication? Vote

Bad question.Which group operation?

Yes.
No. No inverses.
No. 0 still has no inverse.

No. Fails associativity (e.g., $\left.\left(3^{3}\right)^{3} \neq 3^{\left(3^{3}\right)}\right)$ and closure (e.g., $\left.(-1)^{0.5}\right)$

Yes.
Yes.

Group Theory Example

Permutations of 3 elements: Group $S_{3},\left|S_{3}\right|=6$

Swap left S_{L}
Swap right S_{R}
Swap bottom S_{B}
$S_{3}=\left\{e, R, R^{2}, S_{L}, S_{R}, S_{B}\right\}$ with group operation composition.

This class is being recorded

Group Properties: Closure

Closure: Product of two permutations is a permutation.
E.g.: $S_{L} S_{R}$ (acts from right)

Group Properties: Others

Associativity: Can be checked but is automatic for composition of operations.

Identity: e is the identity element of the group. $e \sigma=\sigma$
Inverses: R and R^{2} are inverses of each other. S_{L}, S_{R}, and S_{B} are inverses of themselves.

Non-abelian: $S_{R} S_{L}=R^{2} \neq R=S_{L} S_{R}$

Starting arrangement
Swap left S_{L} Swap right S_{R}

Subgroups

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Subgroups

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of \mathbb{Z} under addition.

Subgroups

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of \mathbb{Z} under addition.
\mathbb{Z}_{5} is not a subgroup of \mathbb{Z} under addition:The addition operation is different, since in $\mathbb{Z}_{5}, 3+3=1$, whereas in \mathbb{Z}, $3+3=6$.

Subgroups

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of \mathbb{Z} under addition.
\mathbb{Z}_{5} is not a subgroup of \mathbb{Z} under addition:The addition operation is different, since in $\mathbb{Z}_{5}, 3+3=1$, whereas in \mathbb{Z}, $3+3=6$.
$\{0,2,4\}$ is a subgroup of \mathbb{Z}_{6} under addition:Addition is closed, 0 is the identity, and $-2=4$.

Subgroups

Definition: H is a subgroup of G if $H \subseteq G$ and H is a group with the same group operation as G. We sometimes write $H \leq G$. The trivial subgroups of G are $\{e\}$ and G itself.

Examples:

The set of even integers forms a subgroup of \mathbb{Z} under addition.
\mathbb{Z}_{5} is not a subgroup of \mathbb{Z} under addition:The addition operation is different, since in $\mathbb{Z}_{5}, 3+3=1$, whereas in \mathbb{Z}, $3+3=6$.
$\{0,2,4\}$ is a subgroup of \mathbb{Z}_{6} under addition:Addition is closed, 0 is the identity, and $-2=4$.
\mathbb{Z}_{6}^{*} under multiplication is not a subgroup of \mathbb{Z}_{6} under addition because it uses a different group operation.

Order of Groups and Subgroups

Definition:The order of a finite group G is written $|G|$ and is equal to the number of elements in G .

Examples:

$$
\begin{aligned}
& \left|\mathbb{Z}_{5}\right|=5 \text { and }\left|\mathbb{Z}_{5}^{*}\right|=4 . \\
& \left|\mathbb{Z}_{6}\right|=6 \\
& |\{0,2,4\}|=3 \\
& \left|\mathbb{Z}_{6}^{*}\right|=2 \text { since } \mathbb{Z}_{6}^{*}=\{1,5\}
\end{aligned}
$$

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

Lagrange's Theorem Proof

> Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

Proof: For this proof, write the group operation as multiplication.

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

Proof: For this proof, write the group operation as multiplication.

$$
\text { Let } \begin{aligned}
g H= & \{g h \mid h \in H\} . \\
& (g H \text { is known as a coset. })
\end{aligned}
$$

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

Proof: For this proof, write the group operation as multiplication.
Let $g H=\{g h \mid h \in H\}$.
($g H$ is known as a coset.)
Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$
Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

Proof: For this proof, write the group operation as multiplication.

$$
\text { Let } \begin{aligned}
g H= & \{g h \mid h \in H\} . \\
& (g H \text { is known as a coset. })
\end{aligned}
$$

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$
Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$
This means that the cosets don't overlap and that every element is in a coset (shared with other cosets that differ by multiplication by an element of the subgroup): a "partition."

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

Proof: For this proof, write the group operation as multiplication.

$$
\text { Let } \begin{aligned}
g H= & \{g h \mid h \in H\} . \\
& (g H \text { is known as a coset. })
\end{aligned}
$$

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$
Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$
This means that the cosets don't overlap and that every element is in a coset (shared with other cosets that differ by multiplication by an element of the subgroup): a "partition."

Claim 3: $|g H|=|H|$

Lagrange's Theorem Proof

Lagrange's Theorem: If H and G are finite groups with $H \leq G$, then $|H|$ divides $|G|$.

Proof: For this proof, write the group operation as multiplication.

$$
\text { Let } \begin{aligned}
g H= & \{g h \mid h \in H\} . \\
& (g H \text { is known as a coset.) }
\end{aligned}
$$

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$
Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$
This means that the cosets don't overlap and that every element is in a coset (shared with other cosets that differ by multiplication by an element of the subgroup): a "partition."

Claim 3: $|g H|=|H|$
G is partitioned into cosets of size $|H|$, so $|H|$ divides $|G|$.

Proof of Claim I

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$:

Proof of claim I:

Proof of Claim I

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$:
Proof of claim I:

$$
g^{\prime} H=\{g k h \mid h \in H\} \text { but } k h \in H \text { (by closure of } \mathrm{H} \text {). }
$$

Proof of Claim

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$:
Proof of claim I:

$$
\begin{aligned}
& g^{\prime} H=\{g k h \mid h \in H\} \text { but } k h \in H \text { (by closure of } \mathrm{H} \text {). } \\
& \text { If } k \in H \text {, then } k^{-1} \in H \text { (by the inverses property of } \mathrm{H} \text {). }
\end{aligned}
$$

Proof of Claim

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$:
Proof of claim I:

$$
\begin{aligned}
& g^{\prime} H=\{g k h \mid h \in H\} \text { but } k h \in H \text { (by closure of } \mathrm{H} \text {). } \\
& \text { If } k \in H \text {, then } k^{-1} \in H \text { (by the inverses property of } \mathrm{H} \text {). }
\end{aligned}
$$

kh can take on any value $h^{\prime} \in H$, when $h=k^{-1} h^{\prime}$ (the product is in H by closure again). That is, as h runs over H for fixed k , kh runs over H as well.

Proof of Claim

Claim I: If $g^{\prime}=g k$ for $k \in H$, then $g H=g^{\prime} H$:
Proof of claim I:
$g^{\prime} H=\{g k h \mid h \in H\}$ but $k h \in H$ (by closure of H).
If $k \in H$, then $k^{-1} \in H$ (by the inverses property of H).
kh can take on any value $h^{\prime} \in H$, when $h=k^{-1} h^{\prime}$ (the product is in H by closure again). That is, as h runs over H for fixed k , kh runs over H as well.

But that means that

$$
g^{\prime} H=\{g k h \mid h \in H\}=\left\{g h^{\prime} \mid h^{\prime} \in H\right\}=g H
$$

Proof of Claim 2

Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$:
Proof of claim 2:

Proof of Claim 2

Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$:
Proof of claim 2:
Suppose $g^{\prime} \neq g k$ but $g H \cap g^{\prime} H \neq \varnothing$. Then $\exists x \in g H \cap g^{\prime} H$.

Proof of Claim 2

Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$:
Proof of claim 2:
Suppose $g^{\prime} \neq g k$ but $g H \cap g^{\prime} H \neq \varnothing$. Then $\exists x \in g H \cap g^{\prime} H$.

But $k \in g H \cap g^{\prime} H$ means $k=g h$ and $k=g^{\prime} h^{\prime}$ for some $h, h^{\prime} \in H$.

Proof of Claim 2

Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$:
Proof of claim 2:
Suppose $g^{\prime} \neq g k$ but $g H \cap g^{\prime} H \neq \varnothing$.
Then $\exists x \in g H \cap g^{\prime} H$.
But $k \in g H \cap g^{\prime} H$ means $k=g h$ and $k=g^{\prime} h^{\prime}$ for some $h, h^{\prime} \in H$.

Thus, $g^{\prime}=g h h^{\prime-1}$.

Proof of Claim 2

Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$:
Proof of claim 2:
Suppose $g^{\prime} \neq g k$ but $g H \cap g^{\prime} H \neq \varnothing$.
Then $\exists x \in g H \cap g^{\prime} H$.
But $k \in g H \cap g^{\prime} H$ means $k=g h$ and $k=g^{\prime} h^{\prime}$ for some $h, h^{\prime} \in H$.
Thus, $g^{\prime}=g h h^{\prime-1}$.
But $k=h h^{-1} \in H$ by the closure and inverses properties of H .

Proof of Claim 2

Claim 2: If $g^{\prime} \neq g k$ for all $k \in H$, then $g H \cap g^{\prime} H=\varnothing$:
Proof of claim 2:
Suppose $g^{\prime} \neq g k$ but $g H \cap g^{\prime} H \neq \varnothing$.
Then $\exists x \in g H \cap g^{\prime} H$.
But $k \in g H \cap g^{\prime} H$ means $k=g h$ and $k=g^{\prime} h^{\prime}$ for some $h, h^{\prime} \in H$.
Thus, $g^{\prime}=g h h^{\prime-1}$.
But $k=h h^{\prime-1} \in H$ by the closure and inverses properties of H .

This contradicts $g^{\prime} \neq g k$ for $k \in H$. It must therefore be that $g H \cap g^{\prime} H=\varnothing$.

Proof of Claim 3

Claim 3: $|g H|=|H|$
Proof of claim 3:
$g h=g h^{\prime}$ iff $h=h^{\prime}$ (multiply by g^{-1}).
Thus, $g H=\{g h \mid h \in H\}$ has exactly as many elements as H .

Subgroups of Permutation Group

Order 3: Generated by R or by R^{2}.

3 order 2 subgroups: For instance, generated by S_{L}.

Note: Order of subgroups a factor of 6 (Lagrange's thm.)

Generators and Cyclic Groups

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.
A group is cyclic if it has a generating set with just a single element.

Examples:

Generators and Cyclic Groups

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.
A group is cyclic if it has a generating set with just a single element.

Examples:

$\{1\}$ is a generating set for \mathbb{Z}, so \mathbb{Z} is cyclic. (Under addition, since otherwise \mathbb{Z} is not a group.)

Generators and Cyclic Groups

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.
A group is cyclic if it has a generating set with just a single element.

Examples:

$\{1\}$ is a generating set for \mathbb{Z}, so \mathbb{Z} is cyclic. (Under addition, since otherwise \mathbb{Z} is not a group.)
$\{2,3\}$ is also a generating set for \mathbb{Z}, as is any pair $\{a, b\}$ with $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{I}$. Proof: Euclid's algorithm.

Generators and Cyclic Groups

Definition: Let G be a group. A set $S \subseteq G$ is a generating set for G if any element of G can be written as a finite product (under the group operation) of elements of S or inverses of elements of S, with repeats allowed. Note: S is a subset of G. It need not be a subgroup of G.
A group is cyclic if it has a generating set with just a single element.

Examples:

$\{1\}$ is a generating set for \mathbb{Z}, so \mathbb{Z} is cyclic. (Under addition, since otherwise \mathbb{Z} is not a group.)
$\{2,3\}$ is also a generating set for \mathbb{Z}, as is any pair $\{a, b\}$ with $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{I}$. Proof: Euclid's algorithm.
$\{1\}$ is a generating set for \mathbb{Z}_{5} (under addition), as is $\{a\}$ for any $a \neq 0$.

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_{N}^{*}$ and define $\langle g\rangle=\left\{g^{a} \in \mathbb{Z}_{N}^{*}\right\} .\langle g\rangle$ is the cyclic subgroup of \mathbb{Z}_{N}^{*} generated by g.
Why is $\langle g\rangle$ a subgroup?

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_{N}^{*}$ and define $\langle g\rangle=\left\{g^{a} \in \mathbb{Z}_{N}^{*}\right\}$. $\langle g\rangle$ is the cyclic subgroup of \mathbb{Z}_{N}^{*} generated by g.
Why is $\langle g\rangle$ a subgroup?

- $g^{a} g^{b}=g^{a+b}$, so $\langle g\rangle$ is closed under the group operation.

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_{N}^{*}$ and define $\langle g\rangle=\left\{g^{a} \in \mathbb{Z}_{N}^{*}\right\} .\langle g\rangle$ is the cyclic subgroup of \mathbb{Z}_{N}^{*} generated by g.
Why is $\langle g\rangle$ a subgroup?

- $g^{a} g^{b}=g^{a+b}$, so $\langle g\rangle$ is closed under the group operation.
- $g \cdot g^{\operatorname{ord}(g)-1}=1$, so $g^{-1}=g^{\operatorname{ord}(g)-1} \in\langle g\rangle$

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_{N}^{*}$ and define $\langle g\rangle=\left\{g^{a} \in \mathbb{Z}_{N}^{*}\right\} .\langle g\rangle$ is the cyclic subgroup of \mathbb{Z}_{N}^{*} generated by g.
Why is $\langle g\rangle$ a subgroup?

- $g^{a} g^{b}=g^{a+b}$, so $\langle g\rangle$ is closed under the group operation.
- $g \cdot g^{\operatorname{ord}(g)-1}=1$, so $g^{-1}=g^{\operatorname{ord}(g)-1} \in\langle g\rangle$
- $\left(g^{a}\right)^{-1}=\left(g^{-1}\right)^{a}$, so $\langle g\rangle$ has inverses.

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_{N}^{*}$ and define $\langle g\rangle=\left\{g^{a} \in \mathbb{Z}_{N}^{*}\right\}$. $\langle g\rangle$ is the cyclic subgroup of \mathbb{Z}_{N}^{*} generated by g.
Why is $\langle g\rangle$ a subgroup?

- $g^{a} g^{b}=g^{a+b}$, so $\langle g\rangle$ is closed under the group operation.
- $g \cdot g^{\operatorname{ord}(g)-1}=1$, so $g^{-1}=g^{\operatorname{ord}(g)-1} \in\langle g\rangle$
- $\left(g^{a}\right)^{-1}=\left(g^{-1}\right)^{a}$, so $\langle g\rangle$ has inverses.

By Lagrange's Theorem, ord $(g)=|\langle g\rangle|$ divides $\left|\mathbb{Z}_{N}^{*}\right|$. This tells us the possible values of the order of g : the factors of $\left|\mathbb{Z}_{N}^{*}\right|$.

Cyclic Subgroups of \mathbb{Z}_{N}^{*}

Now let us consider the question: what are the possible orders of a number under modular exponentiation?

Let $g \in \mathbb{Z}_{N}^{*}$ and define $\langle g\rangle=\left\{g^{a} \in \mathbb{Z}_{N}^{*}\right\} .\langle g\rangle$ is the cyclic subgroup of \mathbb{Z}_{N}^{*} generated by g.
Why is $\langle g\rangle$ a subgroup?

- $g^{a} g^{b}=g^{a+b}$, so $\langle g\rangle$ is closed under the group operation.
- $g \cdot g^{\operatorname{ord}(g)-1}=1$, so $g^{-1}=g^{\operatorname{ord}(g)-1} \in\langle g\rangle$
- $\left(g^{a}\right)^{-1}=\left(g^{-1}\right)^{a}$, so $\langle g\rangle$ has inverses.

By Lagrange's Theorem, ord $(g)=|\langle g\rangle|$ divides $\left|\mathbb{Z}_{N}^{*}\right|$. This tells us the possible values of the order of g : the factors of $\left|\mathbb{Z}_{N}^{*}\right|$.

What is $\left|\mathbb{Z}_{N}^{*}\right|$?

