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Administrative

This class is being recorded

Problem set #4 should have been turned in.  Solutions for 
problem set #3 are on ELMS.

Problem set #5 is available now, due next Thursday, Oct. 7.



 and ℤN ℤ*N

Definition: Let  be the set of  such 
that .

ℤ*N ⊆ ℤN g ∈ {0,…, N − 1}
gcd(g, N) = 1

This class is being recorded

We have been working numbers modulo N.  I will start using the 
notation  to refer to this.ℤN

But, as we have seen, nice things happen if we restrict 
attention to g that is relatively prime to N, :gcd(g, N) = 1

• Division is well-defined for such g
•  (=“there exists r”) such that .  That is, 

exponentiation cycles back to 1.
∃r gr = 1 mod N



Closure of ℤ*N

Proposition: If  and , then 
 as well.  I.e.,  is closed under multiplication.

gcd(g, N) = 1 gcd(h, N) = 1
gcd(gh, N) = 1 ℤ*N
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Closure of ℤ*N

Proposition: If  and , then 
 as well.  I.e.,  is closed under multiplication.

gcd(g, N) = 1 gcd(h, N) = 1
gcd(gh, N) = 1 ℤ*N
Proof:

Recall that  is well-defined mod N iff . x−1 gcd(x, N) = 1

This means that gh has an inverse and therefore 
.gcd(gh, N) = 1

This class is being recorded

(h−1g−1)(gh) = h−1 ⋅ 1 ⋅ h mod N = 1 mod N

But :(gh)−1 = h−1g−1



Groups

Definition: A group (G, *) is a set G of elements along with a 
binary operation  with the following properties:* : G × G → G

1. Closure:  when .
2. Associativity: , .
3. Identity:  such that .
4. Inverses:  such that 

.

g * h ∈ G g, h ∈ G
∀g, h, k ∈ G (g * h) * k = g * (h * k)

∃e ∈ G ∀g ∈ G, e * g = g * e = g
∀g ∈ G, ∃g−1 ∈ G

g * g−1 = g−1 * g = e

This class is being recorded

A group which also satisfies

5. Commutativity: , ∀g, h ∈ G g * h = h * g
is called an abelian group.

Usually we just refer to G as the group.  If we need to 
specify the group operation, we say “G under [operation].”
Usually instead of *, the group operation is just written + or 
 like addition or multiplication even if it is not those.⋅



Group Examples
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Group Theory Example

This class is being recorded

Permutations of 3 elements: Group , S3 |S3 | = 6

.

Identity e Rotate 
clockwise R

Rotate ccw 
R−1 = R2

Swap left SL Swap right SR Swap bottom SB

 with group operation composition.S3 = {e, R, R2, SL, SR, SB}



Group Properties: Closure
Closure: Product of two permutations is a permutation.

This class is being recorded

E.g.:  (acts 
from right)

SLSR

Starting 
arrangement

SR SL

=

= R



Group Properties: Others

Associativity: Can be checked but is automatic for composition of 
operations.

This class is being recorded

Identity: e is the identity element of the group.  eσ = σ

Inverses: R and  are inverses of each other.  , , and  are 
inverses of themselves.

R2 SL SR SB

Non-abelian: SRSL = R2 ≠ R = SLSR

Starting 
arrangement

Swap left SL Swap right SR

=

R2



Subgroups

This class is being recorded

Definition: H is a subgroup of G if  and H is a group with 
the same group operation as G.  We sometimes write .  
The trivial subgroups of G are  and G itself.

H ⊆ G
H ≤ G

{e}
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Definition: H is a subgroup of G if  and H is a group with 
the same group operation as G.  We sometimes write .  
The trivial subgroups of G are  and G itself.

H ⊆ G
H ≤ G

{e}
Examples:

The set of even integers forms a subgroup of  under 
addition.

ℤ

 is not a subgroup of  under addition: The addition 
operation is different, since in , , whereas in , 

.

ℤ5 ℤ
ℤ5 3 + 3 = 1 ℤ

3 + 3 = 6

 is a subgroup of  under addition: Addition is closed, 
0 is the identity, and -2 = 4.
{0,2,4} ℤ6

 under multiplication is not a subgroup of  under 
addition because it uses a different group operation.
ℤ*6 ℤ6



Order of Groups and Subgroups

Definition: The order of a finite group G is written  and is 
equal to the number of elements in G.

|G |

 and .|ℤ5 | = 5 |ℤ*5 | = 4

Lagrange’s Theorem: If H and G are finite groups with , 
then  divides .

H ≤ G
|H | |G |

This class is being recorded

Examples:

|ℤ6 | = 6
|{0,2,4} | = 3

 since |ℤ*6 | = 2 ℤ*6 = {1,5}



Lagrange’s Theorem Proof
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Proof: For this proof, write the group operation as multiplication.

Lagrange’s Theorem: If H and G are finite groups with , 
then  divides .

H ≤ G
|H | |G |
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Proof: For this proof, write the group operation as multiplication.

Lagrange’s Theorem: If H and G are finite groups with , 
then  divides .

H ≤ G
|H | |G |

Claim 1: If  for , then g′￼= gk k ∈ H gH = g′￼H

Claim 2: If  for all , then g′￼≠ gk k ∈ H gH ∩ g′￼H = ∅

G is partitioned into cosets of size , so  divides .|H | |H | |G |

Let .  gH = {gh |h ∈ H}
(  is known as a coset.)gH

This means that the cosets don’t overlap and that every 
element is in a coset (shared with other cosets that differ by 
multiplication by an element of the subgroup): a “partition.”

Claim 3: |gH | = |H |



Proof of Claim 1

Claim 1: If  for , then : g′￼= gk k ∈ H gH = g′￼H

Proof of claim 1:
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 but  (by closure of H).g′￼H = {gkh |h ∈ H} kh ∈ H

If , then  (by the inverses property of H).k ∈ H k−1 ∈ H

But that means that

g′￼H = {gkh |h ∈ H} = {gh′￼|h′￼∈ H} = gH



Proof of Claim 2

Claim 2: If  for all , then :g′￼≠ gk k ∈ H gH ∩ g′￼H = ∅
Proof of claim 2:
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Proof of claim 2:

Suppose  but .  
Then .
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∃x ∈ gH ∩ g′￼H
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Proof of Claim 2

Claim 2: If  for all , then :g′￼≠ gk k ∈ H gH ∩ g′￼H = ∅

But  by the closure and inverses properties 
of H.

k = hh′￼−1 ∈ H

Proof of claim 2:

Suppose  but .  
Then .

g′￼≠ gk gH ∩ g′￼H ≠ ∅
∃x ∈ gH ∩ g′￼H

But  means  and  for some 
.

k ∈ gH ∩ g′￼H k = gh k = g′￼h′￼

h, h′￼∈ H
Thus, .g′￼= ghh′￼−1

This contradicts  for .  It must therefore be 
that .

g′￼≠ gk k ∈ H
gH ∩ g′￼H = ∅
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Proof of Claim 3

 iff  (multiply by ). gh = gh′￼ h = h′￼ g−1

Claim 3: |gH | = |H |

This class is being recorded

Proof of claim 3:

Thus,  has exactly as many elements 
as H.

gH = {gh |h ∈ H}



Subgroups of Permutation Group

.

Identity e Rotate 
clockwise R

Rotate ccw 
R−1 = R2

Order 3: Generated by R or by .R2

3 order 2 subgroups: For instance, generated by .SL

This class is being recorded

.

Identity e Swap left SL

Note: Order of 
subgroups a 
factor of 6 
(Lagrange’s thm.)



Generators and Cyclic Groups
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Definition: Let G be a group.  A set  is a generating set for 
G if any element of G can be written as a finite product (under 
the group operation) of elements of S or inverses of elements of 
S, with repeats allowed.  Note: S is a subset of G.  It need not be 
a subgroup of G.
A group is cyclic if it has a generating set with just a single 
element.

S ⊆ G

Examples:
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Definition: Let G be a group.  A set  is a generating set for 
G if any element of G can be written as a finite product (under 
the group operation) of elements of S or inverses of elements of 
S, with repeats allowed.  Note: S is a subset of G.  It need not be 
a subgroup of G.
A group is cyclic if it has a generating set with just a single 
element.

S ⊆ G

Examples:

 is a generating set for , so  is cyclic. (Under addition, 
since otherwise  is not a group.)
{1} ℤ ℤ

ℤ
 is also a generating set for , as is any pair  with 

gcd(a,b) = 1.  Proof: Euclid’s algorithm.
{2,3} ℤ {a, b}

 is a generating set for  (under addition), as is  for  
any .
{1} ℤ5 {a}

a ≠ 0
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Now let us consider the question: what are the possible orders 
of a number under modular exponentiation?

Let  and define .    is the cyclic 
subgroup of  generated by g.

g ∈ ℤ*N ⟨g⟩ = {ga ∈ ℤ*N} ⟨g⟩
ℤ*N

• , so  is closed under the group operation.gagb = ga+b ⟨g⟩
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