CMSC/Math 456:
raphy (Fall 2022)




Administrative

Problem set #4 should have been turned in. Solutions for
problem set #3 are on ELMS.

Problem set #5 is available now, due next Thursday, Oct. /.

This class is being recorded



We have been working numbers modulo N. | will start using the
notation Z, to refer to this.

But, as we have seen, nice things happen if we restrict
attention to g that is relatively prime to N, gcd(g, N) = 1:

* Division is well-defined for such g
o dr (="“there exists r”’) such that g" = 1 mod N. That is,
exponentiation cycles back to |.

Definition: Let Z7 C Z), be the set of g € {0,...,N — 1} such
that gcd(g,N) = 1.
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Closure of Z;’\j
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Closure of Z;’\j

Proof:
Recall that x ! is well-defined mod N iff gcd(x, N) = 1.
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Closure of Z;’\j

Proof:
Recall that x ! is well-defined mod N iff gcd(x, N) = 1.

But (¢h)~' = h~lg~ !
(h~l'¢™DHgh)=h"'-1-hmod N=1mod N

This means that gh has an inverse and therefore
gcd(gh,N) = 1.

This class is being recorded



Definition: A group (G, *) is a set G of elements along with a
binary operation * : G X G — G with the following properties:

|. Closure: g *h € G when g,h € G.
2. Associativity: Vg, h,k € G,(g*h) *k = g*(h* k).
3. Identity: de € G suchthat Vg € G,e*g=g*e = g.
4. Inverses: Vg € G,3g™ ! € G such that
g*g =g *g=e.
A group which also satisfies
5. Commutativity: Vg, h e G,g*h=h*g

is called an abelian group.

Usually we just refer to G as the group. If we need to
specify the group operation, we say “G under [operation].”
Usually instead of *, the group operation is just written + or
- like addition or multiplication even if it is not those.
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Group Examples

For each of the following, vote on whether it is a group: yes/no/
bad question.

Integers Z? Vote.
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Group Theory Example

Permutations of 3 elements: Group S5, | S;| = 6
O A

A A QC) QO

|dentity e Rotate Rotate ccw
clockwise R R-1 = R?
A O
e "
O A O A >
Swap left §; Swap right S, Swap bottom 5

S, = {e,R,R%,S;, Sk, S;} with group operation composition.
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Group Properties: Closure

Closure: Product of two permutations is a permutation.

E.g.: 5,5k (acts O A

from right) oW Vo
A - O :>A O

Starting Ay S,
arrangement
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Group Properties: Others

Associativity: Can be checked but is automatic for composition of
operations.

|dentity: e is the identity element of the group. ec = ¢

Inverses: R and R” are inverses of each other. S, S, and S are
inverses of themselves.

Non-abelian: S,S; = R* # R = S, S,

O N R A
/" = X =
A O A O QO

Swap left S; Swap right S R’

Starting
arrangement
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Subgroups

Definition: H is a subgroup of G if H C G and H is a group with
the same group operation as G. We sometimes write [/ < G.

The trivial subgroups of G are {¢} and G itself.
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The set of even integers forms a subgroup of Z under
addition.

Z s is not a subgroup of Z under addition: The addition
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Subgroups

Definition: H is a subgroup of G if H C G and H is a group with
the same group operation as G. We sometimes write [/ < G.

The trivial subgroups of G are {¢} and G itself.
Examples:

The set of even integers forms a subgroup of Z under
addition.

/s is not a subgroup of Z under addition: The addition
operation is different, since in Z5,3 + 3 = 1, whereas in Z,

3+3=06.

10,2,4} is a subgroup of Z, under addition: Addition is closed,
0 is the identity, and -2 = 4.

/¢ under multiplication is not a subgroup of Z under
addition because it uses a different group operation.

This class is being recorded



Order of Groups and Subgroug

Definition: The order of a finite group G is written |G| and is
equal to the number of elements in G.

Examples:
Zs| =5 and |Z;‘<| =4,
{0,2,4}| =3

|Z;’<| = 2since Z7 = {1,5}
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Lagrange’s Theorem Proof

Proof: For this proof, write the group operation as multiplication.
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Lagrange’s Theorem Proof

Proof: For this proof, write the group operation as multiplication.
Let ¢H = {gh|h € H}.
(¢H is known as a coset.)

Claim 1:If g’ = gk for k € H,then gH = ¢g'H
Claim 2:If ¢" # gk forall k € H,then gH N g'H = &

This means that the cosets don’t overlap and that every
element is in a coset (shared with other cosets that differ by
multiplication by an element of the subgroup): a “partition.”

Claim 3: |gH| = |H

G is partitioned into cosets of size |H|,so |H | divides |G|.

This class is being recorded



Proof of Claim |

Claim I:If g’ = gk for k € H,then gH = g'H.:

Proof of claim |I:
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Proof of Claim |

Claim I:If g’ = gk for k € H,then gH = g'H.:
Proof of claim I:

g'H={gkh|h € H} but kh € H (by closure of H).

If k € H,then k' € H (by the inverses property of H).
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Proof of Claim |

Claim I:If g’ = gk for k € H,then gH = g'H.:
Proof of claim I:

g'H={gkh|h € H} but kh € H (by closure of H).
If k € H,then k' € H (by the inverses property of H).

kh can take on any value i’ € H,when h = k™ '}’ (the

product is in H by closure again). That is,as h runs over H
for fixed k, kh runs over H as well.
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Proof of Claim |

Claim I:If g’ = gk for k € H,then gH = g'H.:
Proof of claim I:

g'H={gkh|h € H} but kh € H (by closure of H).
If k € H,then k' € H (by the inverses property of H).

kh can take on any value i’ € H,when h = k™ '}’ (the
product is in H by closure again). That is,as h runs over H
for fixed k, kh runs over H as well.

But that means that
g'H={gkh|he H} ={gh'|he H} = gH

This class is being recorded



Proof of Claim 2

Claim 2:If ¢" # gk forall k € H,then gH N g'H = &:

Proof of claim 2:
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Proof of Claim 2

Claim 2:If ¢" # gk forall k € H,then gH N g'H = &:

Proof of claim 2:

Suppose g’ # gk but gH N g'H # &.
Then dx € gH N g'H.
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Claim 2:If ¢" # gk forall k € H,then gH N g'H = &:

Proof of claim 2:

Suppose g’ # gk but gH N g'H # &.
Then dx € gH N g'H.

But k € gHH N g’H means k = gh and k = g'h’ for some
h,h' € H.
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Proof of claim 2:

Suppose g’ # gk but gH N g'H # &.
Then dx € gH N g'H.
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Proof of Claim 2

Claim 2:If ¢" # gk forall k € H,then gH N g'H = &:

Proof of claim 2:

Suppose g’ # gk but gH N g'H # &.
Then dx € gH N g'H.

But k € gHH N g’H means k = gh and k = g'h’ for some
h,h' € H.

Thus, g’ = ghh .

But k = hh ~' € H by the closure and inverses properties
of H.
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Proof of Claim 2

Claim 2:If ¢" # gk forall k € H,then gH N g'H = &:
Proof of claim 2:

Suppose g’ # gk but gH N g'H # &.
Then dx € gH N g'H.

But k € gHH N g’H means k = gh and k = g'h’ for some
h,h' € H.
Thus, g’ = ghh .

But k = hh ~' € H by the closure and inverses properties
of H.

This contradicts ¢’ # gk for k € H. It must therefore be
that gH N g'H = &.

This class is being recorded



Proof of Claim 3

Claim 3: |gH| = |H|
Proof of claim 3:
gh = gh'iff h = b’ (multiply by g~ ').

Thus, gH = {gh|h € H} has exactly as many elements
as H.
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Subgroups of Permutation Grot

Order 3: Generated by R or by R”.
O A

A A QO OO

ldentity e Rotate Rotate ccw
clockwise R R~ ! =R’

3 order 2 subgroups: For instance, generated by ;.

O Note: Order of
/ subgroups a
A ® A factor of 6
(Lagrange’s thm.)
|dentity e Swap left S,
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Generators and Cyclic Groug

Definition: Let G be a group. A set § C G is a generating set for
G if any element of G can be written as a finite product (under

the group operation) of elements of S or inverses of elements of
S, with repeats allowed. Note:S is a subset of G. It need not be

a subgroup of G.
A group is cyclic if it has a generating set with just a single

element.

Examples:

This class is being recorded



Generators and Cyclic Groug

Definition: Let G be a group. A set S C G is a generating set for
G if any element of G can be written as a finite product (under

the group operation) of elements of S or inverses of elements of
S, with repeats allowed. Note:S is a subset of G. It need not be

a subgroup of G.
A group is cyclic if it has a generating set with just a single

element.

Examples:

{1} is a generating set for Z,so Z is cyclic. (Under addition,
since otherwise Z is not a group.)

This class is being recorded



Generators and Cyclic Grou

Definition: Let G be a group. A set S C G is a generating set for
G if any element of G can be written as a finite product (under

the group operation) of elements of S or inverses of elements of
S, with repeats allowed. Note:S is a subset of G. It need not be

a subgroup of G.
A group is cyclic if it has a generating set with just a single
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Examples:

{1} is a generating set for Z,so Z is cyclic. (Under addition,
since otherwise Z is not a group.)

{2,3} is also a generating set for Z, as is any pair {a, b} with
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Definition: Let G be a group. A set S C G is a generating set for
G if any element of G can be written as a finite product (under

the group operation) of elements of S or inverses of elements of
S, with repeats allowed. Note:S is a subset of G. It need not be

a subgroup of G.
A group is cyclic if it has a generating set with just a single

element.

Examples:

{1} is a generating set for Z,so Z is cyclic. (Under addition,
since otherwise Z is not a group.)

{2,3} is also a generating set for Z, as is any pair {a, b} with
gcd(a,b) = |. Proof: Euclid’s algorithm.

{1} is a generating set for Zs (under addition),as is {a} for
any a # 0.

This class is being recorded




Cyclic Subgroups of Z>

Now let us consider the question: what are the possible orders
of a number under modular exponentiation?

Let ¢ € Z3 and define (g) = {g“ € Z7}. (g) is the cyclic
subgroup of Z generated by g.

Why is (g) a subgroup?
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Now let us consider the question: what are the possible orders
of a number under modular exponentiation?

Let ¢ € Z3 and define (g) = {g“ € Z7}. (g) is the cyclic
subgroup of Z generated by g.

Why is (g) a subgroup?

. gagb = ga+b, so (g) is closed under the group operation.
°* g - gOI'd(g)—l — 1’50 g—l — gOI'd(g)—l c <g>
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By Lagrange’s Theorem, ord(g) = |(g) | divides | Z}|. This tells
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Cyclic Subgroups of Z:*

Now let us consider the question: what are the possible orders
of a number under modular exponentiation?

Let ¢ € Z3 and define (g) = {g“ € Z7}. (g) is the cyclic
subgroup of Z generated by g.

Why is (g) a subgroup?

. gagb = ga+b, so (g) is closed under the group operation.
°* g - gOI'd(g)—l — 1’50 g—l — gOI'd(g)—l c <g>
e (g9 = (g71% so (g) has inverses.

By Lagrange’s Theorem, ord(g) = |(g) | divides | Z}|. This tells
us the possible values of the order of g: the factors of | Z7|.

What is |Z;’\j|?
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