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Administrative

This class is being recorded

Midterm: Thursday, Oct. 19 (2 weeks from Thursday)

• In class
• Open book (including textbook), no electronic devices
• Will cover classical cryptographic, private key encryption, 

modular arithmetic, and public key exchange (probably not 
public key encryption).

• Those with accommodations remember to book with ADS.

Problem set #5 due Thursday.



Order Under Modular Exponentiation

This class is being recorded

What are the possible orders of an element under modular 
exponentiation?

By Lagrange’s Theorem,  divides .  This tells 
us the possible values of the order of g: the factors of .

ord(g) = |⟨g⟩ | |ℤ*N |
|ℤ*N |

When N is prime, then everything smaller than N is 
relatively prime to it, so .|ℤ*N | = N − 1

What is  when N is not prime?|ℤ*N |

Recall that , the set of elements relatively prime to N, forms a 
group under multiplication, and that , the powers of g mod N, 
is a subgroup of .

ℤ*N
⟨g⟩

ℤ*N



Euler Totient Function

This class is being recorded

Let .  That is,  is equal to the number of positive 
integers  such that .  (Euler’s totient function)

φ(N) = ℤ*N φ(N)
j ≤ N gcd( j, N) = 1

Examples:
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Euler Totient Function

This class is being recorded

Let .  That is,  is equal to the number of positive 
integers  such that .  (Euler’s totient function)

φ(N) = ℤ*N φ(N)
j ≤ N gcd( j, N) = 1

Examples:

When p prime, φ(p) = p − 1
: 1 and 3 are relatively prime to 4.φ(4) = 2

: 1 and 5 are relatively prime to 6.φ(6) = 2

: 1, 3, 7, and 9 are relatively prime to 10.φ(10) = 4

: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20 are 
relatively prime to 21.
φ(21) = 12

: 1, 5, 7, 11, 13, 17, 19, and 23 are relatively prime 
to 24.
φ(24) = 8
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Totient for Product of Two Primes

This class is being recorded

Let  for p and q prime, .  What is ?N = pq p < q φ(N)

List numbers not relatively prime to N:

Divisible by p: p, 2p, 3p, 4p, …, (q-1)p, pq = N

There are exactly q numbers on this list.

But: Some numbers appear on both lists.

Divisible by q: q, 2q, 3q, 4q, …, (p-1)q, pq = N

There are exactly p numbers on this list.

To appear on both lists, the number must be divisible by 
both p and q.  Only N qualifies.

Thus: # not relatively prime = .(q − 1) + (p − 1) + 1 = p + q − 1

φ(N) = N − (p + q − 1) = (p − 1)(q − 1)



General Formula for Totient

This class is being recorded

Theorem: If  is the prime factorization of N (so every 

 is prime), then 

N = ∏
i

pei
i

pi

φ(N) = ∏
i

pei−1
i (pi − 1)

In general, numbers with fewer factors have larger values of 
.φ(N)
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Putting together our deductions about the order of numbers for 
modular exponentiation with the rules for , we get the 
following theorem:

φ(N)

Euler-Fermat Theorem:  for any integers x, N 
with .

xφ(N) = 1 mod N
gcd(x, N) = 1

Corollary (Fermat’s Little Theorem):  for any 
integer x and any prime p.

xp = x mod p
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Euler-Fermat Theorem

This class is being recorded

Putting together our deductions about the order of numbers for 
modular exponentiation with the rules for , we get the 
following theorem:

φ(N)

Euler-Fermat Theorem:  for any integers x, N 
with .

xφ(N) = 1 mod N
gcd(x, N) = 1

Corollary (Fermat’s Little Theorem):  for any 
integer x and any prime p.

xp = x mod p

Proof: Since the order divides ,|ℤ*N | = φ(N)

xφ(N) = (xord(x))φ(N)/ord(x) = 1φ(N)/ord(x) = 1 mod N

If we want to have elements of a large order, our best bet is to 
work modulo a prime, or failing that, a product of 2 primes.
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Euler’s Theorem Examples

Example 1:

This class is being recorded

N = 10, φ(10) = 4

34 = 81 = 1 mod 10

Actually, in , the highest order is 6.  But , so the 
Euler-Fermat theorem still applies.

ℤ*21 6 |12

74 = 2401 = 1 mod 10
Example 2:

N = 21, φ(21) = 12

56 = 15,625 = 1 mod 21
116 = 1,771,561 = 1 mod 21
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Modulo a Prime

This class is being recorded

When p is prime, the theorems we have only say that the order 
divides p-1, not that it is p-1.

Theorem: When p is prime,  is cyclic.ℤ*p

By picking a large prime base, we could 
have a high order element … but how 
many elements actually have order p-1?

Recall the example mod 11.  It is actually 
the case that ord(7) = 10.  This implies 
that  is cyclic, and 7 is a generator.ℤ*11

ord(7) = 10

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11



Number of Generators

Recall: if  and , theny = xa mod N r = ord(x)

This class is being recorded

ord(y) =
r

gcd(a, r)

The group  has  generators.ℤ*p φ(p − 1)

Thus, if  has order r, then  also has order r if .g0 gj
0 gcd( j, r) = 1

In particular, if  is a generator of  (p prime), then  is also a 
generator if  .

g0 ℤ*p gj
0

gcd( j, p − 1) = 1

Note: These are the only generators: every element of 
can be written as  for some j because  is a generator, 
but if , then .

ℤ*p
gj

0 g0
gcd( j, p − 1) ≠ 1 ord(gj

0) < p − 1



Order Distribution Example

ord(7) = 10
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71 = 7 mod 11
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Order Distribution Example

ord(7) = 10

Let’s see how this works with p=11.
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We can also conclude that 5, 3, 4, and 9 
have order 5 since they are even 
powers of 7: e.g.,

35 = 243 mod 11 = 1 mod 11

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11

Since 1, 3, 7, and 9 are relatively prime 
to p-1 = 10, we conclude the possible 
generators of  are 7, 2, 6, and 8.ℤ*11



Order Distribution Example

ord(7) = 10

Let’s see how this works with p=11.

This class is being recorded

We can also conclude that 5, 3, 4, and 9 
have order 5 since they are even 
powers of 7: e.g.,

35 = 243 mod 11 = 1 mod 11

And  has order 2:10 = 75 mod 11

102 = 100 mod 11 = 1 mod 11

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11

Since 1, 3, 7, and 9 are relatively prime 
to p-1 = 10, we conclude the possible 
generators of  are 7, 2, 6, and 8.ℤ*11



Subgroups of ℤ*p

This class is being recorded

It is also interesting to look at subgroups of  generated 
by  for .

ℤ*p
gj

0 gcd( j, p − 1) ≠ 1

In particular, the subgroup  has order .⟨gj
0⟩ (p − 1)/ gcd( j, p − 1)

For the  example, we get two non-trivial subgroups:ℤ*11

 of order 5⟨5⟩ = {1,3,4,5,9}

 of order 2.⟨10⟩ = {1,10}

There is a subgroup corresponding to any factor of p-1.



Other Groups

This class is being recorded

The same arguments apply to any finite cyclic group G: There are 
 possible generators and other elements will generate 

cyclic subgroups whose order is a factor of .
φ( |G | )

|G |

Note that when  is prime, then all non-identity elements 
are generators of the group.  (And a group of prime order is 
automatically cyclic as well.)

|G |

Unfortunately, for any prime ,  is not 
prime, so we are left with the case that only some elements 
are generators.

p > 3 |ℤ*p | = p − 1

Also note that when N is not prime,  might not be cyclic, 
although it is always a group.

ℤ*N

For instance, in , all three non-zero elements 
3, 5, and 7 have order 2 and therefore only generate order 2 
subgroups.   is another example.

ℤ*8 = {1,3,5,7}

ℤ*21
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So 4 also seems possible.
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Multiple Moduli

This class is being recorded

We can convert back and forth between integer type and 
modular type.  Can we convert between different moduli?

Example:

Suppose we know that .  What is ?x = 3 mod 5 x mod 14

Actually, it could be anything!

But the integer x=18 is also 3 mod 5, and .  
So 4 also seems possible.

18 = 4 mod 14

Answer:

Certainly, x=3, 8, 13 all work.

It’s not unique.



Chinese Remainder Theorem

This class is being recorded

Chinese Remainder Theorem: Let N = ab, with a and b relatively 
prime.  Given any pair of non-negative integers , with 

 and , there exists a unique non-negative integer 
 such that  and .  There is an 

efficient algorithm to compute x. 

(xa, xb)
xa < a xb < b
x < N x = xa mod a x = xb mod b

x = xa mod a x = xb mod b

Unique x mod N = ab
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Reasoning

This class is being recorded

Mod a Mod N=ab Mod b

(Assume a<b and .)gcd(a, b) = 1

xa + a xa + a mod b
x = xa mod a xa xa

xa + 2a xa + 2a mod b

⋮
xa + ma xa + ma + nb = xb

with n chosen so that 
. xa + ma + nb < b

We need to find m and n so that .ma + nb = xb − xa

Euclid’s algorithm gives X and Y with .  Multiply by 
.

aX + bY = 1
(xb − xa)



Chinese Remainder Theorem Alg.

1. Using Euclid’s algorithm, compute X and Y such that 
.aX + bY = 1

3. Let .x = xa + ma = xa(1 − aX) + xbaX

Algorithm: 

This class is being recorded

2. Let , .m = X(xb − xa) n = Y(xb − xa)
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1. Using Euclid’s algorithm, compute X and Y such that 
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3. Let .x = xa + ma = xa(1 − aX) + xbaX

Algorithm: 
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Chinese Remainder Theorem Alg.

1. Using Euclid’s algorithm, compute X and Y such that 
.aX + bY = 1

3. Let .x = xa + ma = xa(1 − aX) + xbaX

Algorithm: 

This class is being recorded

2. Let , .m = X(xb − xa) n = Y(xb − xa)

Note that  and , so1 − aX = bY aX = 1 − bY
x = xabY + xb(1 − bY ) = xb + nb

x = xbaX + xabY

Alternative more symmetric formula:

x = xa mod a

x = xb mod b



Chinese Remainder Theorem

Example:

Suppose we want to find an x such that

x = 5 mod 14
x = 3 mod 5

We could apply Euclid’s algorithm to see that

3 * 5 − 1 * 14 = 1

This class is being recorded

We then have

x = 3 * 14 * (−1) + 5 * 5 * 3 = 33

x = xbaX + xabY

xa = 5, a = 14
xb = 3, b = 5

X = − 1, Y = 3



Discrete Log

This class is being recorded

Modular Exponentiation

x mod N xa mod N

Discrete Log

y = xa mod N a

The discrete log problem is, given y and x, to find a such that 
.  It is the inverse of modular exponentiation.y = xa mod N

Modular exponentiation can be performed efficiently as function 
of the input size via repeated squaring.  What about discrete log?



Repeated Squaring

This class is being recorded

We can get large exponents quickly by 
repeated squaring:

From  , we can calculate 
 using 1 multiplication by 

squaring it.

xi mod N
x2i mod N

Doing this repeatedly gives us , , , 
, …, , with only c multiplications.

x x2 x4

x8 x2c

To calculate  for general a, 
first write a in binary:

xa mod N

a = a02c + a12c−1 + ⋯ + ac−12 + ac

Then xa =
c

∏
i=0

xac−i2i

This needs  multiplications.O(log a)

Example:

Calculate :6512 mod 71

652 = 36 mod 71
654 = 362 = 18 mod 71
658 = 182 = 40 mod 71

Then

6512 = 658 ⋅ 654 mod 71
= 40 ⋅ 18 mod 71
= 10 mod 71



Ideas for Solving Discrete Log
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How might we try to find the discrete log of y, for base x?
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check powers up to , since we know  just 
repeats values after that.
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ord(x) xa mod N
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Ideas for Solving Discrete Log

This class is being recorded

How might we try to find the discrete log of y, for base x?

Could loop through all possible a and compute .xa mod N

But this takes O(N) trials (or actually ) — not 
efficient in general

O(φ(N))

If we know  is small, we can do it: We only need to 
check powers up to , since we know  just 
repeats values after that.

ord(x)
ord(x) xa mod N

We could take repeated square roots to get a ballpark value 
for a and then narrow it down.

This works for integers — but for mod N arithmetic, there 
are two problems: It is not clear how to take square roots; 
and taking the square root does not consistently give us 
something smaller in modular arithmetic unlike for integers.
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It appears to be hard to find the discrete log, even though 
computing modular exponentials is easy.



Ideas for Solving Discrete Log

This class is being recorded

How might we try to find the discrete log of y, for base x?

We could compute powers  and then try to find a 
product of these values that gives us y.

x2i mod N

Not easy to find which subset of possible powers of powers 
of 2 to multiply together to get y.

It appears to be hard to find the discrete log, even though 
computing modular exponentials is easy.

But it is not always hard, for instance if the base x has low order.  
We should restrict attention to hard cases if we want to build a 
cryptographic system.



Hardness of Discrete Log

Definition: Given a security parameter s, let  be an s-bit long 
number, and let  be an element of .  We say that 

discrete log for  is worst-case hard if there is no 
polynomial time algorithm  such that for all ,  
with .

Ns
xs ∈ ℤ*Ns

ℤ*Ns

(Ns, xs)
𝒜 y ∈ ⟨xs⟩ 𝒜(y) = a

y = xa
s mod Ns

This class is being recorded

Recall that we are defining hardness in terms of asymptotic 
complexity, so we need to let the numbers get large and 
study how rapidly the problem gets harder in that limit.

Thus, we have a sequence of pairs (modulus, base) that get 
longer, and the problem is hard if it can’t be solved in a 
time polynomial in the length of the numbers.



Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b

This class is being recorded

Public choice of p, g



Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

This class is being recorded

Public choice of p, g



Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

gagb

ga, gb

This class is being recorded

Public choice of p, g



Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

gagb

ga, gb

This class is being recorded

(gb)a = gab (ga)b = gab

Public choice of p, g



Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

gagb

ga, gb

This class is being recorded

(gb)a = gab (ga)b = gab

Attack

???

Public choice of p, g




