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Cryptography (Fall 2023)
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Daniel Gottesman



Administrative

This class is being recorded

Midterm: Thursday, Oct. 19 (2 weeks from today)

• In class
• Open book (including textbook), no electronic devices
• Will cover classical cryptographic, private key encryption, 

modular arithmetic, and public key exchange (probably not 
public key encryption).

• Those with accommodations remember to book with ADS.

Problem set #5 should have been turned in.  Problem set #6 is 
now available on the course web page, and solution set #4 is on 
ELMS.
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This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Answer: A cryptographer will tell you how they did it.

Let us now perform a cryptographic magic trick:

Alice and Bob will generate a shared secret key using only 
public communication!
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Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

A = gaB = gb

ga, gb

This class is being recorded

Ba = gab Ab = gab

Attack

???

Public choice of p, g

identical key



Diffie-Hellman Security Idea

This class is being recorded

In Diffie-Hellman, Alice and Bob must perform modular 
exponentiation: Alice announces  and Bob 
announces  for secret a and b chosen by Alice and 
Bob respectively and not shared with each other or Eve.  Then 
they do another pair of modular exponentiations  and  to 
calculate the key.

A = ga mod p
B = gb mod p

Ba Ab

• Alice and Bob can compute modular exponentials 
efficiently.

Eve can break Diffie-Hellman if she can calculate the discrete log 
for (g,p): That is, if given A, she can find a such that 

.ga = A mod p

• But we believe that computing the discrete log is hard.  
Thus, Eve cannot learn a or b to help her find .gab mod p
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Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65.  Note that p is prime and g has 
order 70.

Alice: Choose & record a secret number a from 2 to 70.  
Compute 

A = 65a mod 71
Bob: Choose &record a secret number b from 2 to 70.  
Compute 

B = 65b mod 71

Alice and Bob: announce A and B to the class.

Alice: Compute  and write it down secretly.Ba mod 71
Bob: Compute  and write it down secretly.Ab mod 71

Do not reveal them until I say to.
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This class is being recorded

How did that attack work?  Ideas?

Maybe p was not big enough.

Indeed, 71 is not very big.  I could have pre-computed all 
powers .65a mod 71
But that is not what I did.

I did precompute a few powers, and I used the fact that 
, and 2, 5, and 7 are all small primes.p − 1 = 70 = 2 ⋅ 5 ⋅ 7

Hint: When I asked Alice to compute some additional modular 
exponentials, that was telling me the values of a mod 2, mod 5, 
and mod 7.  How?  And why does that help?

Hint: Our goal is to find a mod 70, since the powers repeat after 
the order of g.

Hint: What is the order of ?  How is it related to ?A10 g10
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When p-1 is itself a product of small primes, there is a fast 
algorithm for discrete log (Pohlig-Hellman). 
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We are given p, g, with p-1 a product of small primes, g a 
generator, and we are also given A.  We wish to find a such 
that .ga = A mod p

Suppose .p − 1 = ∏
i

pi

 is a factor of , so 
.

(p − 1)/pi ord(g) = p − 1
gcd(p − 1,(p − 1)/pi) = (p − 1)/pi

Thus, .ord(gi) =
p − 1

(p − 1)/pi
= pi

Note: What is the order of ?gi = g(p−1)/pi mod p

p − 1
pi

= p1p2⋯pi−1pi+1⋯pm
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Pohlig-Hellman Algorithm

This class is being recorded

Given p, g, A.  We wish to find a such that .ga = A mod p

We have  and  has order .p − 1 = ∏
i

pi gi = g(p−1)/pi mod p pi

Note: A(p−1)/pi = (ga)(p−1)/pi = (g(p−1)/pi)a = ga
i mod p

But  is small.  We can easily precompute all powerspi

and compare them with .  This tells us .A(p−1)/pi ai

 (all mod p)g0
i , g1

i , g2
i , …gpi−1

i

Since  has order , , wheregi pi ga
i = gai

i mod p

ai = a mod pi

With all , we can find a using the Chinese remainder theorem.ai



Pohlig-Hellman Summary

This class is being recorded

Given p, g, A.  We wish to find a such that .ga = A mod p

1. Write .

2. Compute .
3. Compute  for all .
4. Receive A.
5. For each i, compute  and find  such 

that .
6. Use the Chinese remainder theorem to find 

a such that  for all i.

p − 1 = ∏
i

pi

gi = g(p−1)/pi mod p
gj

i mod p j = 0,…pi − 1

A(p−1)/pi ai
A(p−1)/pi = gai

i mod p

ai = a mod pi

precompute
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Discrete Log Example

Example: g = 65, p = 71.

This class is being recorded

1. , , , .p − 1 = 2 ⋅ 5 ⋅ 7 p1 = 7 p2 = 5 p3 = 2

6510 = 20 mod 71
6514 = 5 mod 71
6535 = 70 mod 71

2. Compute :gi = g(p−1)/pi mod p

3. Compute powers of 20, 5, and 70 mod 71.  E.g.:

203 = 48 mod 71
52 = 25 mod 71

⋮

Precompute phase:
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Calculate  and compare to .5410 = 1 mod 71 20a1 mod 71
a1 = 0 mod 7

Calculate  and compare to .5414 = 25 mod 71 5a2 mod 71
a2 = 2 mod 5

Calculate  and compare to .5435 = 1 mod 71 70a3 mod 71
a3 = 0 mod 2

6. , a = 0 mod 14 a = 2 mod 5

6542 = 54 mod 71

a = 15 ⋅ 0 − 14 ⋅ 2 = − 28 = 42 mod 70

Formula for Chinese 
remainder theorem

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute  and find  such that 

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p
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Diffie-Hellman Requirements

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

In order to have some hope that Diffie-Hellman is secure, we 
want:

• To pick a large prime p
• To ensure that p-1 is not a product of small primes
• To have  large so it is not too hard to find 

elements with high order
φ(p − 1)

• To actually pick a g with high order
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Safe Primes

For Diffie-Hellman to be secure, we need to find a prime base p 
such that p-1 has at least one large prime factor, and we also 
need to be able to find g with large order mod p.

This class is being recorded

We will look for a prime of the form , where r is 
small (e.g., r=2) and q is also prime.  This guarantees a large 
prime factor for p-1.

p = rq + 1

Since p is prime,  is cyclic, so there exist elements of order rq.  
How many?  

ℤ*p

Let us specialize to prime r, although this is not essential.

(If the order is not large, Eve can just try all powers of g.)

: the relatively prime powers of 
the generator.  This is large.
φ(p − 1) = (r − 1)(q − 1)

There are also q-1 elements of order q and r-1 of order r.



Finding Primes

This class is being recorded

How can we find a prime, let alone a prime of a specific form?

1. Choose a random number p of the desired length.
2. Check that p is prime.
3. Check that (p-1)/r is prime.
4. Repeat until both p and (p-1)/r are prime.

Remarkably, this works.  But there are two pieces needed to 
make it work:

• We need to be sure that primes are sufficiently 
common that we can find a prime in a reasonable time.

• We need an efficient algorithm to check that a number 
is prime.

For secure Diffie-Hellman, we will need p that is at least 
thousands of bits long, so efficiency is important.
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How Common Are Primes?

This class is being recorded

What do we expect?

2 3 5 7 11 13 17 19 23 29 31 37 41

Primes get rarer as the numbers get larger, but only slowly.

The probability that a random s-bit number is prime is about 1/s.

Prime Number Theorem: Let  be the number of primes less 
than or equal to n.  Then

π(n)

π(n) ≈ n /ln n

Therefore, if we choose s-bit numbers at random, we find 
a prime after O(s) tries, which is efficient.



Testing Primes

We also need a method to test for primes: Given N, is N prime?

This class is being recorded

Fermat’s Little Theorem states that, if N is prime, then

xN = x mod N

for all x.

This suggests the following algorithm:

1. Choose random x
2. Calculate 
3. If , end the loop and return: Composite
4. Repeat steps 1-3 a number of times
5. If we are still going, return: Prime

y = xN mod N
y ≠ x

Vote: Does this algorithm work?  (Yes/No)
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We also need a method to test for primes: Given N, is N prime?

This class is being recorded

Fermat’s Little Theorem states that, if N is prime, then

xN = x mod N

for all x.

This suggests the following algorithm:

1. Choose random x
2. Calculate 
3. If , end the loop and return: Composite
4. Repeat steps 1-3 a number of times
5. If we are still going, return: Prime

y = xN mod N
y ≠ x

Vote: Does this algorithm work?  (Yes/No) Answer: No



Pseudoprimes

This class is being recorded

Unfortunately, there are some composite numbers N such that

xN = x mod N

for all x.  These are called pseudoprimes or Carmichael numbers.

The smallest one is 561.  They seem to be rarer than prime 
numbers, but it is not clear if they are sufficiently rare that 
we can neglect the probability of choosing one if we choose 
N at random.

(Carmichael numbers fail the test  when x is 
not relatively prime to N.  Unfortunately, it is possible that only a 
small fraction of possible x’s share a common factor with N.)

xN−1 = 1 mod N



Miller-Rabin Primality Test
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Some modifications are needed to make the previous algorithm 
work.  

The Miller-Rabin primality test is a probabilistic test but one that 
works (except with negligible probability) for all N, including 
pseudoprimes.

It takes advantage of the fact that if N is composite, then 
exists some a such that  but .a ≠ ± 1 mod N a2 = 1 mod N

E.g., for N = 561, .1882 = 1 mod 561



Miller-Rabin Primality Test

This class is being recorded

Some modifications are needed to make the previous algorithm 
work.  

The Miller-Rabin primality test is a probabilistic test but one that 
works (except with negligible probability) for all N, including 
pseudoprimes.

It takes advantage of the fact that if N is composite, then 
exists some a such that  but .a ≠ ± 1 mod N a2 = 1 mod N

E.g., for N = 561, .1882 = 1 mod 561

This follows from the Chinese remainder theorem:

If , there is a solution to N = uv
a = − 1 mod u
a = 1 mod v

which must satisfy the desired two conditions.



Choosing a Base

This class is being recorded

Once we have a modulus , with p and q both prime 
and r small (e.g., r=2), the next step is to find a base g.

p = rq + 1

We want to pick g to have large order.  Let us specialize to r=2.  
Then the factors of p-1 are 1, 2, q, and 2q.  These are the possible 
orders for g.  Obviously we shouldn’t choose g with order 2, 
since then  would either be g or 1, which can be easily solved.ga

Vote: Do we prefer order q or order 2q? Or does it not 
matter?



Base of Order 2q
Suppose we choose g with order 2q, so , but 
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Base of Order 2q
Suppose we choose g with order 2q, so , but 

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given , 
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an 
order q subgroup consisting of elements  for integer i.

ℤ*p
g2i

How? Calculate  and see if it is 1.Aq mod p

A has order q iff a is even.  Similarly, B has order q iff b is even.

The final key  has order q iff either a or b is even, 
which happens iff A or B is order q.

k = gab mod p

Eve can deduce one bit of information about the key 
k. She can use this to distinguish k from random k’.
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Picking an Element of Order q

This class is being recorded

How can we choose an element of order q?

This means it is better to use a base which has order q.

We want to pick an element of prime order to avoid leaking any 
information about the key.  This is why we need to pick a prime p 
of this specific form to make Diffie-Hellman secure.

Steps 1 and 2 generate a random element of the order q cyclic 
subgroup of .  Since q is prime, all elements of that subgroup 
have order q except for 1.

ℤ*p

This generates a random element of order q in .ℤ*p

1. Choose random .
2. Let .
3. Repeat until .

x ∈ ℤ*p
g = xr mod p

g ≠ 1



Choosing g and p for Diffie-Hellman

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

• Choose random p until we find one such that p is prime 
and p-1 = rq, for small r and prime q.

• Choose  with order q.
• Or use standard values for g and p.

g ∈ ℤ*p

Is this secure?




