
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 12
Daniel Gottesman

Administrative

This class is being recorded

Midterm: Thursday, Oct. 19 (2 weeks from today)

• In class
• Open book (including textbook), no electronic devices
• Will cover classical cryptographic, private key encryption,

modular arithmetic, and public key exchange (probably not
public key encryption).

• Those with accommodations remember to book with ADS.

Problem set #5 should have been turned in. Problem set #6 is
now available on the course web page, and solution set #4 is on
ELMS.

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Answer: A cryptographer will tell you how they did it.

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Answer: A cryptographer will tell you how they did it.

Let us now perform a cryptographic magic trick:

Two Questions

This class is being recorded

Question: How is a cryptographer like a magician?

Answer: A cryptographer never reveals their secrets.

Question: How is a cryptographer not like a magician?

Answer: A cryptographer will tell you how they did it.

Let us now perform a cryptographic magic trick:

Alice and Bob will generate a shared secret key using only
public communication!

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b

This class is being recorded

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

This class is being recorded

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

A = gaB = gb

ga, gb

This class is being recorded

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

A = gaB = gb

ga, gb

This class is being recorded

Ba = gab Ab = gab

Public choice of p, g

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

A = gaB = gb

ga, gb

This class is being recorded

Ba = gab Ab = gab

Public choice of p, g

identical key

Diffie-Hellman Key Exchange

Alice Bob

Eve

secret a secret b
gb mod p

ga mod p

A = gaB = gb

ga, gb

This class is being recorded

Ba = gab Ab = gab

Attack

???

Public choice of p, g

identical key

Diffie-Hellman Security Idea

This class is being recorded

In Diffie-Hellman, Alice and Bob must perform modular
exponentiation: Alice announces and Bob
announces for secret a and b chosen by Alice and
Bob respectively and not shared with each other or Eve. Then
they do another pair of modular exponentiations and to
calculate the key.

A = ga mod p
B = gb mod p

Ba Ab

• Alice and Bob can compute modular exponentials
efficiently.

Eve can break Diffie-Hellman if she can calculate the discrete log
for (g,p): That is, if given A, she can find a such that

.ga = A mod p

• But we believe that computing the discrete log is hard.
Thus, Eve cannot learn a or b to help her find .gab mod p

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65. Note that p is prime and g has
order 70.

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65. Note that p is prime and g has
order 70.

Alice: Choose & record a secret number a from 2 to 70.
Compute

A = 65a mod 71
Bob: Choose &record a secret number b from 2 to 70.
Compute

B = 65b mod 71

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65. Note that p is prime and g has
order 70.

Alice: Choose & record a secret number a from 2 to 70.
Compute

A = 65a mod 71
Bob: Choose &record a secret number b from 2 to 70.
Compute

B = 65b mod 71

Alice and Bob: announce A and B to the class.

Diffie-Hellman Magic Demonstration

This class is being recorded

We will use p = 71 and g = 65. Note that p is prime and g has
order 70.

Alice: Choose & record a secret number a from 2 to 70.
Compute

A = 65a mod 71
Bob: Choose &record a secret number b from 2 to 70.
Compute

B = 65b mod 71

Alice and Bob: announce A and B to the class.

Alice: Compute and write it down secretly.Ba mod 71
Bob: Compute and write it down secretly.Ab mod 71

Do not reveal them until I say to.

Bad Primes for Discrete Log

This class is being recorded

How did that attack work? Ideas?

Bad Primes for Discrete Log

This class is being recorded

How did that attack work? Ideas?

Maybe p was not big enough.

Bad Primes for Discrete Log

This class is being recorded

How did that attack work? Ideas?

Maybe p was not big enough.

Indeed, 71 is not very big. I could have pre-computed all
powers .65a mod 71
But that is not what I did.

Bad Primes for Discrete Log

This class is being recorded

How did that attack work? Ideas?

Maybe p was not big enough.

Indeed, 71 is not very big. I could have pre-computed all
powers .65a mod 71
But that is not what I did.

I did precompute a few powers, and I used the fact that
, and 2, 5, and 7 are all small primes.p − 1 = 70 = 2 ⋅ 5 ⋅ 7

Bad Primes for Discrete Log

This class is being recorded

How did that attack work? Ideas?

Maybe p was not big enough.

Indeed, 71 is not very big. I could have pre-computed all
powers .65a mod 71
But that is not what I did.

I did precompute a few powers, and I used the fact that
, and 2, 5, and 7 are all small primes.p − 1 = 70 = 2 ⋅ 5 ⋅ 7

Hint: Our goal is to find a mod 70, since the powers repeat after
the order of g.

Bad Primes for Discrete Log

This class is being recorded

How did that attack work? Ideas?

Maybe p was not big enough.

Indeed, 71 is not very big. I could have pre-computed all
powers .65a mod 71
But that is not what I did.

I did precompute a few powers, and I used the fact that
, and 2, 5, and 7 are all small primes.p − 1 = 70 = 2 ⋅ 5 ⋅ 7

Hint: When I asked Alice to compute some additional modular
exponentials, that was telling me the values of a mod 2, mod 5,
and mod 7. How? And why does that help?

Hint: Our goal is to find a mod 70, since the powers repeat after
the order of g.

Bad Primes for Discrete Log

This class is being recorded

How did that attack work? Ideas?

Maybe p was not big enough.

Indeed, 71 is not very big. I could have pre-computed all
powers .65a mod 71
But that is not what I did.

I did precompute a few powers, and I used the fact that
, and 2, 5, and 7 are all small primes.p − 1 = 70 = 2 ⋅ 5 ⋅ 7

Hint: When I asked Alice to compute some additional modular
exponentials, that was telling me the values of a mod 2, mod 5,
and mod 7. How? And why does that help?

Hint: Our goal is to find a mod 70, since the powers repeat after
the order of g.

Hint: What is the order of ? How is it related to ?A10 g10

Pohlig-Hellman Algorithm

When p-1 is itself a product of small primes, there is a fast
algorithm for discrete log (Pohlig-Hellman).

This class is being recorded

We are given p, g, with p-1 a product of small primes, g a
generator, and we are also given A. We wish to find a such
that .ga = A mod p

Pohlig-Hellman Algorithm

When p-1 is itself a product of small primes, there is a fast
algorithm for discrete log (Pohlig-Hellman).

This class is being recorded

We are given p, g, with p-1 a product of small primes, g a
generator, and we are also given A. We wish to find a such
that .ga = A mod p

Suppose .p − 1 = ∏
i

pi

Pohlig-Hellman Algorithm

When p-1 is itself a product of small primes, there is a fast
algorithm for discrete log (Pohlig-Hellman).

This class is being recorded

We are given p, g, with p-1 a product of small primes, g a
generator, and we are also given A. We wish to find a such
that .ga = A mod p

Suppose .p − 1 = ∏
i

pi

Note: What is the order of ?gi = g(p−1)/pi mod p

p − 1
pi

= p1p2⋯pi−1pi+1⋯pm

Pohlig-Hellman Algorithm

When p-1 is itself a product of small primes, there is a fast
algorithm for discrete log (Pohlig-Hellman).

This class is being recorded

We are given p, g, with p-1 a product of small primes, g a
generator, and we are also given A. We wish to find a such
that .ga = A mod p

Suppose .p − 1 = ∏
i

pi

 is a factor of , so
.

(p − 1)/pi ord(g) = p − 1
gcd(p − 1,(p − 1)/pi) = (p − 1)/pi

Note: What is the order of ?gi = g(p−1)/pi mod p

p − 1
pi

= p1p2⋯pi−1pi+1⋯pm

Pohlig-Hellman Algorithm

When p-1 is itself a product of small primes, there is a fast
algorithm for discrete log (Pohlig-Hellman).

This class is being recorded

We are given p, g, with p-1 a product of small primes, g a
generator, and we are also given A. We wish to find a such
that .ga = A mod p

Suppose .p − 1 = ∏
i

pi

 is a factor of , so
.

(p − 1)/pi ord(g) = p − 1
gcd(p − 1,(p − 1)/pi) = (p − 1)/pi

Thus, .ord(gi) =
p − 1

(p − 1)/pi
= pi

Note: What is the order of ?gi = g(p−1)/pi mod p

p − 1
pi

= p1p2⋯pi−1pi+1⋯pm

Pohlig-Hellman Algorithm

This class is being recorded

Given p, g, A. We wish to find a such that .ga = A mod p

We have and has order .p − 1 = ∏
i

pi gi = g(p−1)/pi mod p pi

Pohlig-Hellman Algorithm

This class is being recorded

Given p, g, A. We wish to find a such that .ga = A mod p

We have and has order .p − 1 = ∏
i

pi gi = g(p−1)/pi mod p pi

Note: A(p−1)/pi = (ga)(p−1)/pi = (g(p−1)/pi)a = ga
i mod p

Pohlig-Hellman Algorithm

This class is being recorded

Given p, g, A. We wish to find a such that .ga = A mod p

We have and has order .p − 1 = ∏
i

pi gi = g(p−1)/pi mod p pi

Note: A(p−1)/pi = (ga)(p−1)/pi = (g(p−1)/pi)a = ga
i mod p

Since has order , , wheregi pi ga
i = gai

i mod p

ai = a mod pi

Pohlig-Hellman Algorithm

This class is being recorded

Given p, g, A. We wish to find a such that .ga = A mod p

We have and has order .p − 1 = ∏
i

pi gi = g(p−1)/pi mod p pi

Note: A(p−1)/pi = (ga)(p−1)/pi = (g(p−1)/pi)a = ga
i mod p

But is small. We can easily precompute all powerspi

and compare them with . This tells us .A(p−1)/pi ai

 (all mod p)g0
i , g1

i , g2
i , …gpi−1

i

Since has order , , wheregi pi ga
i = gai

i mod p

ai = a mod pi

Pohlig-Hellman Algorithm

This class is being recorded

Given p, g, A. We wish to find a such that .ga = A mod p

We have and has order .p − 1 = ∏
i

pi gi = g(p−1)/pi mod p pi

Note: A(p−1)/pi = (ga)(p−1)/pi = (g(p−1)/pi)a = ga
i mod p

But is small. We can easily precompute all powerspi

and compare them with . This tells us .A(p−1)/pi ai

 (all mod p)g0
i , g1

i , g2
i , …gpi−1

i

Since has order , , wheregi pi ga
i = gai

i mod p

ai = a mod pi

With all , we can find a using the Chinese remainder theorem.ai

Pohlig-Hellman Summary

This class is being recorded

Given p, g, A. We wish to find a such that .ga = A mod p

1. Write .

2. Compute .
3. Compute for all .
4. Receive A.
5. For each i, compute and find such

that .
6. Use the Chinese remainder theorem to find

a such that for all i.

p − 1 = ∏
i

pi

gi = g(p−1)/pi mod p
gj

i mod p j = 0,…pi − 1

A(p−1)/pi ai
A(p−1)/pi = gai

i mod p

ai = a mod pi

precompute

Discrete Log Example

Example: g = 65, p = 71.

This class is being recorded

Precompute phase:

Discrete Log Example

Example: g = 65, p = 71.

This class is being recorded

1. , , , .p − 1 = 2 ⋅ 5 ⋅ 7 p1 = 7 p2 = 5 p3 = 2
Precompute phase:

Discrete Log Example

Example: g = 65, p = 71.

This class is being recorded

1. , , , .p − 1 = 2 ⋅ 5 ⋅ 7 p1 = 7 p2 = 5 p3 = 2

6510 = 20 mod 71
6514 = 5 mod 71
6535 = 70 mod 71

2. Compute :gi = g(p−1)/pi mod p

Precompute phase:

Discrete Log Example

Example: g = 65, p = 71.

This class is being recorded

1. , , , .p − 1 = 2 ⋅ 5 ⋅ 7 p1 = 7 p2 = 5 p3 = 2

6510 = 20 mod 71
6514 = 5 mod 71
6535 = 70 mod 71

2. Compute :gi = g(p−1)/pi mod p

3. Compute powers of 20, 5, and 70 mod 71. E.g.:

203 = 48 mod 71
52 = 25 mod 71

⋮

Precompute phase:

Discrete Log Example

4. Receive A = 54. Want to find a such that 65a = 54 mod 71

Discrete Log Example

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute and find such that

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p

Discrete Log Example

Calculate and compare to .5410 = 1 mod 71 20a1 mod 71
a1 = 0 mod 7

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute and find such that

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p

Discrete Log Example

Calculate and compare to .5410 = 1 mod 71 20a1 mod 71
a1 = 0 mod 7

Calculate and compare to .5414 = 25 mod 71 5a2 mod 71
a2 = 2 mod 5

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute and find such that

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p

Discrete Log Example

Calculate and compare to .5410 = 1 mod 71 20a1 mod 71
a1 = 0 mod 7

Calculate and compare to .5414 = 25 mod 71 5a2 mod 71
a2 = 2 mod 5

Calculate and compare to .5435 = 1 mod 71 70a3 mod 71
a3 = 0 mod 2

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute and find such that

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p

Discrete Log Example

Calculate and compare to .5410 = 1 mod 71 20a1 mod 71
a1 = 0 mod 7

Calculate and compare to .5414 = 25 mod 71 5a2 mod 71
a2 = 2 mod 5

Calculate and compare to .5435 = 1 mod 71 70a3 mod 71
a3 = 0 mod 2

6. , a = 0 mod 14 a = 2 mod 5

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute and find such that

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p

Discrete Log Example

Calculate and compare to .5410 = 1 mod 71 20a1 mod 71
a1 = 0 mod 7

Calculate and compare to .5414 = 25 mod 71 5a2 mod 71
a2 = 2 mod 5

Calculate and compare to .5435 = 1 mod 71 70a3 mod 71
a3 = 0 mod 2

6. , a = 0 mod 14 a = 2 mod 5

a = 15 ⋅ 0 − 14 ⋅ 2 = − 28 = 42 mod 70

Formula for Chinese
remainder theorem

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute and find such that

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p

Discrete Log Example

Calculate and compare to .5410 = 1 mod 71 20a1 mod 71
a1 = 0 mod 7

Calculate and compare to .5414 = 25 mod 71 5a2 mod 71
a2 = 2 mod 5

Calculate and compare to .5435 = 1 mod 71 70a3 mod 71
a3 = 0 mod 2

6. , a = 0 mod 14 a = 2 mod 5

6542 = 54 mod 71

a = 15 ⋅ 0 − 14 ⋅ 2 = − 28 = 42 mod 70

Formula for Chinese
remainder theorem

4. Receive A = 54. Want to find a such that 65a = 54 mod 71
 5. For each i, compute and find such that

:
A(p−1)/pi ai

A(p−1)/pi = gai
i mod p

Diffie-Hellman Requirements

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

In order to have some hope that Diffie-Hellman is secure, we
want:

Diffie-Hellman Requirements

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

In order to have some hope that Diffie-Hellman is secure, we
want:

• To pick a large prime p

Diffie-Hellman Requirements

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

In order to have some hope that Diffie-Hellman is secure, we
want:

• To pick a large prime p
• To ensure that p-1 is not a product of small primes

Diffie-Hellman Requirements

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

In order to have some hope that Diffie-Hellman is secure, we
want:

• To pick a large prime p
• To ensure that p-1 is not a product of small primes
• To have large so it is not too hard to find

elements with high order
φ(p − 1)

Diffie-Hellman Requirements

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

In order to have some hope that Diffie-Hellman is secure, we
want:

• To pick a large prime p
• To ensure that p-1 is not a product of small primes
• To have large so it is not too hard to find

elements with high order
φ(p − 1)

• To actually pick a g with high order

Safe Primes

For Diffie-Hellman to be secure, we need to find a prime base p
such that p-1 has at least one large prime factor, and we also
need to be able to find g with large order mod p.

This class is being recorded

(If the order is not large, Eve can just try all powers of g.)

Safe Primes

For Diffie-Hellman to be secure, we need to find a prime base p
such that p-1 has at least one large prime factor, and we also
need to be able to find g with large order mod p.

This class is being recorded

We will look for a prime of the form , where r is
small (e.g., r=2) and q is also prime. This guarantees a large
prime factor for p-1.

p = rq + 1

Let us specialize to prime r, although this is not essential.

(If the order is not large, Eve can just try all powers of g.)

Safe Primes

For Diffie-Hellman to be secure, we need to find a prime base p
such that p-1 has at least one large prime factor, and we also
need to be able to find g with large order mod p.

This class is being recorded

We will look for a prime of the form , where r is
small (e.g., r=2) and q is also prime. This guarantees a large
prime factor for p-1.

p = rq + 1

Since p is prime, is cyclic, so there exist elements of order rq.
How many?

ℤ*p

Let us specialize to prime r, although this is not essential.

(If the order is not large, Eve can just try all powers of g.)

Safe Primes

For Diffie-Hellman to be secure, we need to find a prime base p
such that p-1 has at least one large prime factor, and we also
need to be able to find g with large order mod p.

This class is being recorded

We will look for a prime of the form , where r is
small (e.g., r=2) and q is also prime. This guarantees a large
prime factor for p-1.

p = rq + 1

Since p is prime, is cyclic, so there exist elements of order rq.
How many?

ℤ*p

Let us specialize to prime r, although this is not essential.

(If the order is not large, Eve can just try all powers of g.)

: the relatively prime powers of
the generator. This is large.
φ(p − 1) = (r − 1)(q − 1)

There are also q-1 elements of order q and r-1 of order r.

Finding Primes

This class is being recorded

How can we find a prime, let alone a prime of a specific form?

1. Choose a random number p of the desired length.
2. Check that p is prime.
3. Check that (p-1)/r is prime.
4. Repeat until both p and (p-1)/r are prime.

Remarkably, this works. But there are two pieces needed to
make it work:

• We need to be sure that primes are sufficiently
common that we can find a prime in a reasonable time.

• We need an efficient algorithm to check that a number
is prime.

For secure Diffie-Hellman, we will need p that is at least
thousands of bits long, so efficiency is important.

How Common Are Primes?

This class is being recorded

What do we expect?

2 3 5 7 11 13 17 19 23 29 31 37 41

Primes get rarer as the numbers get larger, but only slowly.

How Common Are Primes?

This class is being recorded

What do we expect?

2 3 5 7 11 13 17 19 23 29 31 37 41

Primes get rarer as the numbers get larger, but only slowly.

The probability that a random s-bit number is prime is about 1/s.

Prime Number Theorem: Let be the number of primes less
than or equal to n. Then

π(n)

π(n) ≈ n /ln n

How Common Are Primes?

This class is being recorded

What do we expect?

2 3 5 7 11 13 17 19 23 29 31 37 41

Primes get rarer as the numbers get larger, but only slowly.

The probability that a random s-bit number is prime is about 1/s.

Prime Number Theorem: Let be the number of primes less
than or equal to n. Then

π(n)

π(n) ≈ n /ln n

Therefore, if we choose s-bit numbers at random, we find
a prime after O(s) tries, which is efficient.

Testing Primes

We also need a method to test for primes: Given N, is N prime?

This class is being recorded

Fermat’s Little Theorem states that, if N is prime, then

xN = x mod N

for all x.

This suggests the following algorithm:

1. Choose random x
2. Calculate
3. If , end the loop and return: Composite
4. Repeat steps 1-3 a number of times
5. If we are still going, return: Prime

y = xN mod N
y ≠ x

Vote: Does this algorithm work? (Yes/No)

Testing Primes

We also need a method to test for primes: Given N, is N prime?

This class is being recorded

Fermat’s Little Theorem states that, if N is prime, then

xN = x mod N

for all x.

This suggests the following algorithm:

1. Choose random x
2. Calculate
3. If , end the loop and return: Composite
4. Repeat steps 1-3 a number of times
5. If we are still going, return: Prime

y = xN mod N
y ≠ x

Vote: Does this algorithm work? (Yes/No) Answer: No

Pseudoprimes

This class is being recorded

Unfortunately, there are some composite numbers N such that

xN = x mod N

for all x. These are called pseudoprimes or Carmichael numbers.

The smallest one is 561. They seem to be rarer than prime
numbers, but it is not clear if they are sufficiently rare that
we can neglect the probability of choosing one if we choose
N at random.

(Carmichael numbers fail the test when x is
not relatively prime to N. Unfortunately, it is possible that only a
small fraction of possible x’s share a common factor with N.)

xN−1 = 1 mod N

Miller-Rabin Primality Test

This class is being recorded

Some modifications are needed to make the previous algorithm
work.

The Miller-Rabin primality test is a probabilistic test but one that
works (except with negligible probability) for all N, including
pseudoprimes.

It takes advantage of the fact that if N is composite, then
exists some a such that but .a ≠ ± 1 mod N a2 = 1 mod N

E.g., for N = 561, .1882 = 1 mod 561

Miller-Rabin Primality Test

This class is being recorded

Some modifications are needed to make the previous algorithm
work.

The Miller-Rabin primality test is a probabilistic test but one that
works (except with negligible probability) for all N, including
pseudoprimes.

It takes advantage of the fact that if N is composite, then
exists some a such that but .a ≠ ± 1 mod N a2 = 1 mod N

E.g., for N = 561, .1882 = 1 mod 561

This follows from the Chinese remainder theorem:

If , there is a solution to N = uv
a = − 1 mod u
a = 1 mod v

which must satisfy the desired two conditions.

Choosing a Base

This class is being recorded

Once we have a modulus , with p and q both prime
and r small (e.g., r=2), the next step is to find a base g.

p = rq + 1

We want to pick g to have large order. Let us specialize to r=2.
Then the factors of p-1 are 1, 2, q, and 2q. These are the possible
orders for g. Obviously we shouldn’t choose g with order 2,
since then would either be g or 1, which can be easily solved.ga

Vote: Do we prefer order q or order 2q? Or does it not
matter?

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How?

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

A has order q iff a is even. Similarly, B has order q iff b is even.

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

A has order q iff a is even. Similarly, B has order q iff b is even.

The final key has order q iff either a or b is even,
which happens iff A or B is order q.

k = gab mod p

Base of Order 2q
Suppose we choose g with order 2q, so , but

.
g2q = 1 mod p

gq ≠ 1 mod p

This class is being recorded

Notice: Eve can deduce something about a: Given ,
Eve can tell if A is in the order q subgroup or not.

A = ga mod p

In this case, g generates the whole group of , which has an
order q subgroup consisting of elements for integer i.

ℤ*p
g2i

How? Calculate and see if it is 1.Aq mod p

A has order q iff a is even. Similarly, B has order q iff b is even.

The final key has order q iff either a or b is even,
which happens iff A or B is order q.

k = gab mod p

Eve can deduce one bit of information about the key
k. She can use this to distinguish k from random k’.

Picking an Element of Order q

This class is being recorded

How can we choose an element of order q?

This means it is better to use a base which has order q.

Picking an Element of Order q

This class is being recorded

How can we choose an element of order q?

This means it is better to use a base which has order q.

This generates a random element of order q in .ℤ*p

1. Choose random .
2. Let .
3. Repeat until .

x ∈ ℤ*p
g = xr mod p

g ≠ 1

Picking an Element of Order q

This class is being recorded

How can we choose an element of order q?

This means it is better to use a base which has order q.

Steps 1 and 2 generate a random element of the order q cyclic
subgroup of . Since q is prime, all elements of that subgroup
have order q except for 1.

ℤ*p

This generates a random element of order q in .ℤ*p

1. Choose random .
2. Let .
3. Repeat until .

x ∈ ℤ*p
g = xr mod p

g ≠ 1

Picking an Element of Order q

This class is being recorded

How can we choose an element of order q?

This means it is better to use a base which has order q.

We want to pick an element of prime order to avoid leaking any
information about the key. This is why we need to pick a prime p
of this specific form to make Diffie-Hellman secure.

Steps 1 and 2 generate a random element of the order q cyclic
subgroup of . Since q is prime, all elements of that subgroup
have order q except for 1.

ℤ*p

This generates a random element of order q in .ℤ*p

1. Choose random .
2. Let .
3. Repeat until .

x ∈ ℤ*p
g = xr mod p

g ≠ 1

Choosing g and p for Diffie-Hellman

Alice Bob

secret a secret b
gb mod p

ga mod p

gagb

This class is being recorded

(gb)a = gab (ga)b = gab

• Choose random p until we find one such that p is prime
and p-1 = rq, for small r and prime q.

• Choose with order q.
• Or use standard values for g and p.

g ∈ ℤ*p

Is this secure?

