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Administrative

This class is being recorded

Midterm: Thursday, Oct. 19 (1.5 weeks from today)

• In class
• Open book (including textbook), no electronic devices
• Will cover material through key exchange, but not public 

key encryption.
• Those with accommodations remember to book with ADS.

Problem set #6 is due Thursday at noon.

Tuesday, Oct. 17 I will answer questions and review a few 
(probably 1-3) selected topics from the first half of the class.  I 
will create a poll on Piazza as to which topics people would like 
to see reviewed.
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Diffie-Hellman with Groups

Alice Bob

secret a secret b
gb
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(gb)a = gab (ga)b = gab

Diffie-Hellman also works when g is drawn from a group G.

Alice and Bob must first agree on the group G and the element 
g.  G is cyclic and .G = ⟨g⟩
Again, they can use standardized values for g and G.

Elliptic curves are common; they allow smaller groups than 
modular arithmetic.



Choosing g and p for Diffie-Hellman

Alice Bob
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(gb)a = gab (ga)b = gab

• Choose random p until we find one such that p is prime 
and p-1 = rq, for small r and prime q.

• Choose  with order q.
• Or use standard values for g and p.

g ∈ ℤ*p

Is this secure?



Hardness of Discrete Log

Definition: Given a security parameter s, let  be an s-bit long 
number, and let  be an element of .  We say that 

discrete log for  is worst-case hard if there is no 
polynomial time algorithm  such that for all ,  
with .

Ns
xs ∈ ℤ*Ns

ℤ*Ns

(Ns, xs)
𝒜 y ∈ ⟨xs⟩ 𝒜(y) = a

y = xa
s mod Ns
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To get an asymptotic complexity definition, we take a 
sequence of pairs (modulus, base) that get longer.

Vote: If we have a family  such that discrete log for  
is worst-case hard, does this suffice to prove the security of 
Diffie-Hellman?  (Yes/No/No one knows)

(ps, gs) (ps, gs)
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To get an asymptotic complexity definition, we take a 
sequence of pairs (modulus, base) that get longer.

Vote: If we have a family  such that discrete log for  
is worst-case hard, does this suffice to prove the security of 
Diffie-Hellman?  (Yes/No/No one knows)

(ps, gs) (ps, gs)

One possible problem is that Alice and Bob are choosing random 
a and b, which might not be the hardest examples.

Unknown



Discrete Log Average Case
Try again:

This class is being recorded

Definition: Given a security parameter s, let  be an s-
bit long prime with  also prime, and let  be an element 
of order .  We say that discrete log for  is average-case 
hard if for any polynomial time algorithm , for random 

,

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ Pr(𝒜(y) succeeds) ≤ ϵ(s)

for  a negligible function, where we say  succeeds if 
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𝒜(y) = x y = gx
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Discrete Log Average Case
Try again:
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Definition: Given a security parameter s, let  be an s-
bit long prime with  also prime, and let  be an element 
of order .  We say that discrete log for  is average-case 
hard if for any polynomial time algorithm , for random 

,

ps = rqs + 1
qs gs ∈ ℤ*ps

qs (ps, gs)
𝒜

y ∈ ⟨gs⟩ Pr(𝒜(y) succeeds) ≤ ϵ(s)

for  a negligible function, where we say  succeeds if 
 with .

ϵ(s) 𝒜(y)
𝒜(y) = x y = gx

s mod ps

However, this isn’t actually the problem.  It turns out that if 
discrete log is worst-case hard, it is average-case hard.  (This is 
known as random self-reducibility.)

But what does it mean for Diffie-Hellman to be secure?
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Alice Bob
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f(a), g(b)f, g, h, h’

This class is being recorded

Transcript T(Π)

The transcript  is all the information publicly announced 
during a run of the key exchange protocol .

T(Π)
Π



Key Exchange Security Game
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Alice Eve

x = ( , k or k’)T(Π)

𝒜(x)
k if 
k’ if 

𝒜(x) = 0
𝒜(x) = 1

In the key exchange security game, Eve receives a transcript  
generated through a run of the key exchange protocol .  
Suppose that the actual key generated in the run that produced 

 is k.  Can Eve determine if the key is k or a random k’?

T(Π)
Π

T(Π)

Alice sends Eve  corresponding to key k, and then she either 
sends Eve k or she generates a random key k’ and sends it to 
Eve instead.  Eve must determine if the key she received is the 
one generated with the transcript she received.

T(Π)



Security Definition for Key Exchange

This class is being recorded

Definition: Consider a key exchange protocol .  The transcript 
 for the protocol is a full record of all public information 

announced during a run of the protocol.  Suppose the protocol is 
run generating the key k and let k’ be a uniformly randomly 
generated key.  Then  is secure in the presence of an 
eavesdropper if for all attacks  with a 1-bit output and taking 
as inputs a transcript  and a key k or k’,

Π
T(Π)

Π
𝒜

T(Π)
|Pr(𝒜(T(Π), k) = 1) − Pr(𝒜(T(Π), k′ ) = 1) | ≤ ϵ(s)

Alice Eve

x = ( , k or k’)T(Π)

𝒜(x)
k if 
k’ if 

𝒜(x) = 0
𝒜(x) = 1

with  negligible and the probabilities averaged over k’ and 
over the randomness of  and .

ϵ(s)
𝒜 Π



Why This Definition?

This class is being recorded

• It is similar to the definition of security for a pseudorandom 
generator and for EAV-secure encryption.  This means the key 
generated can be used the same way, e.g., in a pseudo one-time 
pad.

• In particular, we can prove a similar reduction to that for 
pseudorandom generators: Define a pseudo one-time pad 
protocol , which uses a key k, generated with the key 
exchange protocol.  If Eve has an attack against , then Eve has 
an attack against the key exchange protocol.

Π
Π

The definition says that the key generated by Alice and Bob 
looks the same to Eve as a random key, even when Eve has 
access to Alice and Bob’s transcript.
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Diffie-Hellman and Discrete Log 
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Proposition: If Diffie-Hellman is a secure key exchange protocol 
using modulus and base , then the discrete log problem is 
average-case hard for .

(ps, gs)
(ps, gs)

Proof: By a reduction from the Diffie-Hellman decision problem 
to discrete log.

If we have an algorithm  which succeeds in solving discrete 
log for  with non-negligible probability (for any y), we can 
use it to create an algorithm to find k in Diffie-Hellman using 

, also with non-negligible probability.

𝒜(y)
(ps, gs)

(ps, gs)

HW#6, problem 2b asks you to do this, essentially.

If you know the value of k implied by the transcript of Diffie-
Hellman, you can easily distinguish k from random k’.

Therefore, if discrete log is easy, Diffie-Hellman is insecure.  Or 
conversely, if Diffie-Hellman is secure, discrete log is hard.
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Diffie-Hellman.  But can we show that Diffie-Hellman is exactly 
as hard as discrete log?
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Hardness of Diffie-Hellman

This class is being recorded

The reduction shows that discrete log is at least as hard as 
Diffie-Hellman.  But can we show that Diffie-Hellman is exactly 
as hard as discrete log?

No one knows how to do this.

We would want to reduce discrete log to Diffie-Hellman.  That is, 
given an attack  against Diffie-Hellman, use it to break discrete log.𝒜

The issue is that given  and , 
there might be a way to find , or just to 
distinguish k from random k’ without learning much about a 
or b.  Maybe.  We don’t know.

A = ga mod N B = gb mod N
k = gab mod N

Why do we care?  
• Because discrete log is harder, it is more likely that is genuinely 

hard, so it is better to base security on that (a weaker assumption).
• Discrete log is a cleaner problem, easier to reuse in other 

cryptosystems.



Algorithms for Discrete Log
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In practice, the best known algorithms for breaking Diffie-
Hellman work by breaking discrete log.

• For poor choices of p and/or g, there are good algorithms 
(such as the Pohlig-Hellman algorithm we saw when p-1 is 
a product of small primes).

• For general , the number field sieve runs in time 
 (apparently).  This is sub-exponential.

• No sub-exponential algorithm for Diffie-Hellman over 
elliptic curves is known.

• Except: A quantum computer can efficiently break discrete 
log over any abelian group, including elliptic curves.

ℤ*p
2O((log p)1/3(log log p)2/3)

Recommended key lengths:

• Over : use p of length 2048 bits or longer.
• Elliptic curves key length: 224 bits or higher.
• But don’t use either if concerned about quantum attacks.

ℤ*p
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Another Attack on Diffie-Hellman

Alice

secret a secret b
gb mod p

ga mod p

gagb

(gb)a = gab (ga)b = gab

Bob

secret a’ secret b’
gb′ mod p

ga′ mod p

ga′ gb′ 

(gb′ )a′ = ga′ b′ (ga′ )b′ = ga′ b′ 
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Eve

Eve



Man-in-the-Middle Attack
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Alice Eve Bob

In a man-in-the-middle attack, Eve intercepts all communications 
between Alice and Bob and replaces them with messages of her 
choice.  In Diffie-Hellman as we’ve discussed it, Alice and Bob 
have no way to fight this attack and Eve can read all their 
messages.

Alice and Bob need to authenticate their messages.
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We can use it as the key for a pseudo one-time pad.

But … it is not a bit string.
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Diffie-Hellman and Encryption

This class is being recorded

Diffie-Hellman generates a key, a random element of a prime-
order group G (a subgroup of  or an elliptic curve).ℤ*p
How do we use it to encrypt?

We can use it as the key for a pseudo one-time pad.

But … it is not a bit string.

Use some key derivation function H(k) to convert it into a 
bit string.  H(k) needs to be carefully chosen to make sure 
the key still appears uniform.

Example: Key k is random number in .  Write k in 
binary (7 bits) and let H(k) be the least significant 6 bits of k.  

{0,…,96}

Problem: About 1/3 of the time, , which means 
the most significant bit of H(k) is 0.  When , the first 
bit of H(k) is random.  Overall, first bit is more likely to be 0!

64 ≤ k < 96
k < 64



Encryption With Diffie-Hellman
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1. Alice and Bob choose their secrets a and b.
2. Alice and Bob compute and transmit  

and , respectively.  (Eve gets both.)
3. Alice and Bob compute .
4. Alice and Bob apply the key derivation function to 

get .
5. Alice wishes to send a message m.  She encrypts to 

ciphertext  and transmits c.
6. Bob (and Eve) receive c and Bob decrypts to 

.

A = ga mod p
B = gb mod p

k = Ba = Ab mod p

̂k = H(k)

c = m ⊕ ̂k

c ⊕ ̂k = m

key 
generation

message 
encryption 
and 
decryption 
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Encryption With Diffie-Hellman
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1. Alice and Bob choose their secrets a and b.
2. Alice and Bob compute and transmit  

and , respectively.  (Eve gets both.)
3. Alice and Bob compute .
4. Alice and Bob apply the key derivation function to 

get .
5. Alice wishes to send a message m.  She encrypts to 

ciphertext  and transmits c.
6. Bob (and Eve) receive c and Bob decrypts to 

.

A = ga mod p
B = gb mod p

k = Ba = Ab mod p

̂k = H(k)

c = m ⊕ ̂k

c ⊕ ̂k = m

key 
generation

message 
encryption 
and 
decryption 

Question: Is this EAV-secure or CPA-secure?

Answer: It is EAV-secure since the key can only be used once.  
But Alice and Bob can easily run the key generation phase again 
to send a new message.



Another Approach to Encryption
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Alice Bob

secret b

Another approach to encryption is to integrate encryption into 
the key exchange process.

To see how to do this, the first step is notice that Alice’s and 
Bob’s announcements in Diffie-Hellman don’t have to be 
simultaneous.
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Alice Bob
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Another approach to encryption is to integrate encryption into 
the key exchange process.
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To see how to do this, the first step is notice that Alice’s and 
Bob’s announcements in Diffie-Hellman don’t have to be 
simultaneous.
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When Alice sends , she can also send an encrypted message m, 
for instance with ciphertext .
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message m
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Bob’s public key is . gb

Advantage over Diffie-Hellman: each phase is non-interactive
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gb mod p

(ga, c) mod p

gb

c = m ⋅ gab m = c/gab

(ga, c)

When Alice sends , she can also send an encrypted message m, 
for instance with ciphertext .

ga

c = m ⋅ gab

message m

This class is being recorded

Bob’s public key is . gb

Advantage over Diffie-Hellman: each phase is non-interactive



El Gamal Encryption

This class is being recorded

1. A prime p and base g are chosen as part of the 
protocol, as with Diffie-Hellman.

2. Bob picks a random value b as his private key.
3. Bob computes . This is his public key.  

Bob announces it, and Alice receives it (but so does 
Eve).

4. Alice wishes to send a message m.  She picks a secret 
random value a. Alice computes  and 

.
5. Alice transmits (A, c) (but not a).  Bob receives it, as 

does Eve.
6. Bob computes .  This is his decryption of 

the message.

B = gb mod p

A = ga mod p
c = m ⋅ Ba mod p

c/Ab mod p

key 
generation

message 
encryption 
and 
decryption 



El Gamal Encryption

This class is being recorded

1. A prime p and base g are chosen as part of the 
protocol, as with Diffie-Hellman.

2. Bob picks a random value b as his private key.
3. Bob computes . This is his public key.  

Bob announces it, and Alice receives it (but so does 
Eve).

4. Alice wishes to send a message m.  She picks a secret 
random value a. Alice computes  and 

.
5. Alice transmits (A, c) (but not a).  Bob receives it, as 

does Eve.
6. Bob computes .  This is his decryption of 

the message.

B = gb mod p

A = ga mod p
c = m ⋅ Ba mod p

c/Ab mod p

Since c/Ab = mBa/Ab = mgab/gab = m mod p
this protocol is correct.

key 
generation

message 
encryption 
and 
decryption 
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Alice Bob

b = 5

m = 10

This class is being recorded

Example using p = 23, g = 2.  (g has order 11 in .)ℤ*23
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In this example, Bob’s public key is 9.  Alice uses 
it to encrypt. 
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Example using p = 23, g = 2.  (g has order 11 in .)ℤ*23

In this example, Bob’s public key is 9.  Alice uses 
it to encrypt. 
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a = 8 b = 5
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c = 10 ⋅ 98 mod 23 = 15
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Example using p = 23, g = 2.  (g has order 11 in .)ℤ*23

In this example, Bob’s public key is 9.  Alice uses 
it to encrypt. 
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In this example, Bob’s public key is 9.  Alice uses 
it to encrypt. 
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This class is being recorded

Example using p = 23, g = 2.  (g has order 11 in .)ℤ*23

In this example, Bob’s public key is 9.  Alice uses 
it to encrypt. 

Bob’s private key is 5.  He uses it to decrypt.



El Gamal Example

Alice Bob

a = 8 b = 5
25 mod 23 = 9

(28 = 3,15)

9

c = 10 ⋅ 98 mod 23 = 15 m = 15/35 = 15/13 = 10

(3,15)

m = 10

This class is being recorded

Example using p = 23, g = 2.  (g has order 11 in .)ℤ*23

In this example, Bob’s public key is 9.  Alice uses 
it to encrypt. 

Bob’s private key is 5.  He uses it to decrypt.




