
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 16
Daniel Gottesman

Administrative

This class is being recorded

I am not sure if there will be a problem set this week.

Next week I will be away, and there will be guest lectures by
Gorjan Alagic, topic TBA.

Public Key Encryption

Alice Bob

Eve

private key d

This class is being recorded

Public-key encryption is an asymmetric protocol.

Public Key Encryption

Alice Bob

Eve

private key d
public key e

This class is being recorded

e

e

Public-key encryption is an asymmetric protocol.

Public Key Encryption

Alice Bob

Eve

private key d
public key e

plaintext m

ciphertext c

Encryption

This class is being recorded

e

e

Public-key encryption is an asymmetric protocol.

Public Key Encryption

Alice Bob

Eve

private key d
public key e

plaintext m

ciphertext c

Encryption

This class is being recorded

c

c

e

e

Public-key encryption is an asymmetric protocol.

Public Key Encryption

Alice Bob

Eve

private key d
public key e

plaintext m

ciphertext c

Encryption

This class is being recorded

c

c
Decryption

plaintext m

e

e

Public-key encryption is an asymmetric protocol.

Public Key Encryption

Alice Bob

Eve

private key d
public key e

plaintext m

ciphertext c

Encryption

This class is being recorded

c

c
Decryption

plaintext m

Attack

???

e

e

Public-key encryption is an asymmetric protocol.

Public Key Encryption

Alice Bob

Eve

private key d
public key e

plaintext m

ciphertext c

Encryption

This class is being recorded

c

c
Decryption

plaintext m

Encryption

Decryption Attack

???

e

e

Public-key encryption is an asymmetric protocol.

Definition of Public Key Encryption

This class is being recorded

Definition: A public-key encryption protocol is a set of three
probabilistic polynomial-time algorithms (Gen, Enc, Dec).

Gen is the key generation algorithm. It takes as input s, the
security parameter, and outputs a public key, private key pair

.(e, d) ∈ {0,1}* × {0,1}*

Enc is the encryption algorithm. It takes as input e and a
plaintext or message and outputs a ciphertext

.
m ∈ {0,1}*

c ∈ {0,1}*

Dec is the decryption algorithm. It takes as input d and c and
outputs some . m′ ∈ {0,1}*

The encryption protocol is correct if

Dec(d, Enc(e, m)) = m
Note: Gen here is much more complex than for private-key
encryption and doesn’t just generate random bit strings.

Security of Public Key Encryption

This class is being recorded

Alice Eve

c

𝒜(e, c)

i

mi

c

: and .ℬ(e, s) m0 m1
, m0 m1

i public key e
e

Gen

Recall that EAV security for public key encryption is the same as
CPA security and that both are defined by a game similar to the
private key case:

The main difference from private keys is that now Eve is given
the public key e. She can use e to choose the messages she
wants to use as challenges as well as in her attack to decipher
the message.

Public Key Security
Definition: A public-key encryption protocol (Gen, Enc, Dec) with
security parameter s has is EAV-secure and CPA-secure if, for any
pair of messages and chosen by the adversary (using
efficient algorithm) and for any efficient attack ,

m0 m1
ℬ(e, s) 𝒜(e, c)

|Pr(e,d)(𝒜(e, Enc(e, m0)) = 1) − Pr(e,d)(𝒜(e, Enc(e, m1)) = 1) | ≤ ϵ(s)

for negligible and probability taken over valid public key,
private key pairs (e,d) and randomness of Enc, , and .

ϵ(s)
𝒜 ℬ

This class is being recorded

Alice Eve

c

𝒜(e, c)

i

mi public key e

c

: and .ℬ(e, s) m0 m1
, m0 m1

i e
Gen

RSA Encryption (Picture)

Alice Bob

(N, e)

This class is being recorded

In RSA, Gen creates a public key (N, e) and a private key (N,d)
with .ed = 1 mod φ(N)

“RSA” stands for the inventors: Rivest, Shamir, and Adleman

(N, e)
Gen

(N, d)

RSA Encryption (Picture)

Alice Bob

(N, e)

c = me mod N

message m

This class is being recorded

In RSA, Gen creates a public key (N, e) and a private key (N,d)
with .ed = 1 mod φ(N)

“RSA” stands for the inventors: Rivest, Shamir, and Adleman

(N, e)
Gen

(N, d)

RSA Encryption (Picture)

Alice Bob

(N, e)

c

c = me mod N

message m

This class is being recorded

In RSA, Gen creates a public key (N, e) and a private key (N,d)
with .ed = 1 mod φ(N)

“RSA” stands for the inventors: Rivest, Shamir, and Adleman

(N, e)
Gen

(N, d)

RSA Encryption (Picture)

Alice Bob

(N, e)

m = cd mod N

c

c = me mod N

message m

This class is being recorded

In RSA, Gen creates a public key (N, e) and a private key (N,d)
with .ed = 1 mod φ(N)

“RSA” stands for the inventors: Rivest, Shamir, and Adleman

(N, e)
Gen

(N, d)

RSA Encryption (Gen, Enc, Dec)

Gen: Generate two random primes p and q which are s bits long.
Let N = pq. Choose such that .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

Enc: Given message m and public key (N, e). The ciphertext is
.c = me mod N

Dec: Given ciphertext c and private key (N, d). The decrypted
message is .m′ = cd mod N

This class is being recorded

RSA Encryption (Gen, Enc, Dec)

Gen: Generate two random primes p and q which are s bits long.
Let N = pq. Choose such that .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

Enc: Given message m and public key (N, e). The ciphertext is
.c = me mod N

Dec: Given ciphertext c and private key (N, d). The decrypted
message is .m′ = cd mod N

This class is being recorded

Example:
Gen: Let p = 11, q = 17. Then N = 187 and

. Let e = 3; then
d = 107 (so).
φ(N) = (p − 1)(q − 1) = 10 ⋅ 16 = 160

3 ⋅ 107 = 1 mod 160
Enc: Let m = 113. Then .c = 1133 mod 187 = 5
Dec: .m′ = 5107 mod 187 = 113

Why is RSA Correct?

This class is being recorded

Why does ?Dec(d, Enc(e, m)) = m

Recall the Euler-Fermat theorem: .xφ(N) = 1 mod N

Then

Dec(d, Enc(e, m)) = med mod N

But

ed = 1 + kφ(N)

so

Dec(d, Enc(e, m)) = m1+kφ(N) mod N
= m ⋅ (mφ(N))k mod N
= m ⋅ 1k mod N

Picking e and d

This class is being recorded

How do we pick e and d?

Gen: Generate two random primes p and q which are s bits long.
Let N = pq. Choose such that .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

Picking e and d

This class is being recorded

How do we pick e and d?

Gen: Generate two random primes p and q which are s bits long.
Let N = pq. Choose such that .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

1. From p and q, we can find .φ(N) = (p − 1)(q − 1)

Picking e and d

This class is being recorded

How do we pick e and d?

Gen: Generate two random primes p and q which are s bits long.
Let N = pq. Choose such that .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

1. From p and q, we can find .φ(N) = (p − 1)(q − 1)
2. Choose a convenient value for . It doesn’t

need to be random. A common choice is e=3.

e ∈ ℤ*φ(N)

Picking e and d

This class is being recorded

How do we pick e and d?

Gen: Generate two random primes p and q which are s bits long.
Let N = pq. Choose such that .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

1. From p and q, we can find .φ(N) = (p − 1)(q − 1)
2. Choose a convenient value for . It doesn’t

need to be random. A common choice is e=3.

e ∈ ℤ*φ(N)

3. Then use Euclid’s algorithm. Since , e and

 are relatively prime, so we find X, Y such that:

e ∈ ℤ*φ(N)
φ(N)

Xe + Yφ(N) = 1

Picking e and d

This class is being recorded

How do we pick e and d?

Gen: Generate two random primes p and q which are s bits long.
Let N = pq. Choose such that .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

1. From p and q, we can find .φ(N) = (p − 1)(q − 1)
2. Choose a convenient value for . It doesn’t

need to be random. A common choice is e=3.

e ∈ ℤ*φ(N)

3. Then use Euclid’s algorithm. Since , e and

 are relatively prime, so we find X, Y such that:

e ∈ ℤ*φ(N)
φ(N)

Xe + Yφ(N) = 1
4. Then we can let d=X, because

Xe = 1 − Yφ(N) = 1 mod φ(N)

RSA Q&A

This class is being recorded

• Why pick p and q instead of picking N directly?

RSA Q&A

This class is being recorded

• Why pick p and q instead of picking N directly?

To pick e and d, we need to know , and to find ,
we need to know the prime factorization of N. Factoring
seems hard, so we pick the prime factors directly.

φ(N) φ(N)

RSA Q&A

This class is being recorded

• Why pick p and q instead of picking N directly?

To pick e and d, we need to know , and to find ,
we need to know the prime factorization of N. Factoring
seems hard, so we pick the prime factors directly.

φ(N) φ(N)

• Eve knows e. Can’t she also apply Euclid’s algorithm to find e?

RSA Q&A

This class is being recorded

• Why pick p and q instead of picking N directly?

To pick e and d, we need to know , and to find ,
we need to know the prime factorization of N. Factoring
seems hard, so we pick the prime factors directly.

φ(N) φ(N)

• Eve knows e. Can’t she also apply Euclid’s algorithm to find e?

Only if she knows . But to compute , it seems she
needs to know the prime factorization of N. And factoring
seems hard.

φ(N) φ(N)

Hardness of Factoring

This class is being recorded

Factoring a product of two large primes seems to be hard.

Definition: Given a security parameter s, let P(N) be a probability
distribution over (2s)-bit numbers. We say that factoring is
average-case hard for P(N) if for any polynomial time algorithm

, for random N chosen according to P(N),𝒜

Pr(𝒜(N) succeeds) ≤ ϵ(s)

for a negligible function, where we say succeeds if
 with p a non-trivial factor of N: and .

ϵ(s) 𝒜(N)
𝒜(N) = p 1 < p < N p |N

When N is chosen to be the product of two random s-bit
primes, it appears that factoring is hard for the resulting
distribution.

Factoring and RSA

This class is being recorded

If Eve can factor N, she can break RSA:

Eve factors N = pq and computes .
Using Euclid’s algorithm, she computes d given e and .

φ(N) = (p − 1)(q − 1)
φ(N)

Factoring and RSA

This class is being recorded

If Eve can factor N, she can break RSA:

Eve factors N = pq and computes .
Using Euclid’s algorithm, she computes d given e and .

φ(N) = (p − 1)(q − 1)
φ(N)

Factoring N

Learning the private key for RSA

Theorem: Given N, if Eve knows d and e, she has an efficient
probabilistic algorithm to factor N.

Factoring and RSA

This class is being recorded

If Eve can factor N, she can break RSA:

Eve factors N = pq and computes .
Using Euclid’s algorithm, she computes d given e and .

φ(N) = (p − 1)(q − 1)
φ(N)

Factoring N

Learning the private key for RSA

But perhaps it is possible to break RSA without learning the
private key ….

Theorem: Given N, if Eve knows d and e, she has an efficient
probabilistic algorithm to factor N.

Is RSA Secure?

This class is being recorded

Vote: Is RSA as I’ve presented it CPA-secure? (Yes/No/Unknown)

Is RSA Secure?

This class is being recorded

Vote: Is RSA as I’ve presented it CPA-secure? (Yes/No/Unknown)

Answer: No.

This version of RSA (Plain RSA) is deterministic: It cannot be
CPA-secure.

If Eve is trying to determine which of two messages was sent,
she can just try encrypting each of them using the public key.
In Plain RSA, the message always corresponds to
ciphertext , so she can easily find i by
matching .

mi
ci = me

i mod N
c = ci

Is RSA Secure?

This class is being recorded

Vote: Is RSA as I’ve presented it CPA-secure? (Yes/No/Unknown)

Answer: No.

This version of RSA (Plain RSA) is deterministic: It cannot be
CPA-secure.

If Eve is trying to determine which of two messages was sent,
she can just try encrypting each of them using the public key.
In Plain RSA, the message always corresponds to
ciphertext , so she can easily find i by
matching .

mi
ci = me

i mod N
c = ci

We need to add a random element to Enc.

Padded RSA

This class is being recorded

One option to add randomness to RSA is to pad the message
with random bits:

Gen remains the same.

Enc: Given message m, generate -bit random r and let
 (the concatenation r followed by m). Then the

ciphertext .

ℓ
m̃ = r∥m

c = m̃e mod N
Dec: Given c, compute . Discard the first
bits of to get m’.

m̃′ = cd mod N ℓ
m̃′

Padded RSA

This class is being recorded

One option to add randomness to RSA is to pad the message
with random bits:

Gen remains the same.

Enc: Given message m, generate -bit random r and let
 (the concatenation r followed by m). Then the

ciphertext .

ℓ
m̃ = r∥m

c = m̃e mod N
Dec: Given c, compute . Discard the first
bits of to get m’.

m̃′ = cd mod N ℓ
m̃′

Example:
Gen: N = 187, e = 3, and d = 107 as before.

Enc: Let . Pad using . Then
 and .

m = 15 = 11112 r = 1102
m̃ = 11011112 = 111 c = 1113 mod 187 = 100
Dec: and m’ = 15.m̃′ = 100107 mod 187 = 111

Security of Padded RSA

This class is being recorded

If , Padded RSA is CPA-secure assuming
security of an RSA assumption: It is hard to find x such that

.

ℓ = ⌊log2 N⌋ − 1

xe = y mod N

It also implies just 1-bit messages.

Shorter padding is not known to be secure (at least without a
stronger assumption), but is plausibly secure as long as is not
too short.

ℓ

RSA PKCS #1 v1.5 is a variant of padded RSA where some of
the padded bits are random and some have fixed values. With a
good choice of parameters, it is probably CPA-secure in the
same sense as Padded RSA.

Note: This is a stronger assumption than factoring
being hard, as far as we know.

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value for m. Compute .m0 me
0

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value for m. Compute .m0 me
0

2. If , guess a new that is larger.me
0 < me m1

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value for m. Compute .m0 me
0

2. If , guess a new that is larger.me
0 < me m1

3. Otherwise, guess a new smaller .m1

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value for m. Compute .m0 me
0

2. If , guess a new that is larger.me
0 < me m1

3. Otherwise, guess a new smaller .m1
4. Repeat steps 1-3, narrowing the search space exponentially

(for instance, by choosing an halfway between the
current upper and lower bounds) until .

mi
me

i = me

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value for m. Compute .m0 me
0

2. If , guess a new that is larger.me
0 < me m1

3. Otherwise, guess a new smaller .m1
4. Repeat steps 1-3, narrowing the search space exponentially

(for instance, by choosing an halfway between the
current upper and lower bounds) until .

mi
me

i = me

Why doesn’t this work if ? me > N

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value for m. Compute .m0 me
0

2. If , guess a new that is larger.me
0 < me m1

3. Otherwise, guess a new smaller .m1
4. Repeat steps 1-3, narrowing the search space exponentially

(for instance, by choosing an halfway between the
current upper and lower bounds) until .

mi
me

i = me

Why doesn’t this work if ? me > N
Because < and > are not well-defined in modular arithmetic!

Another Attack on RSA

This class is being recorded

Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since is the
same as (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value for m. Compute .m0 me
0

2. If , guess a new that is larger.me
0 < me m1

3. Otherwise, guess a new smaller .m1
4. Repeat steps 1-3, narrowing the search space exponentially

(for instance, by choosing an halfway between the
current upper and lower bounds) until .

mi
me

i = me

Why doesn’t this work if ? me > N
Because < and > are not well-defined in modular arithmetic!

Taking eth roots is easy in and hard in !ℤ ℤ*N

Picking e

How do we pick e?

This class is being recorded

• e must be relatively prime to so that it has an
inverse .

• If e and m are both small (), decrypting is easy.
• But when we pad the high bits of m, this is very unlikely, so

any e works.
• Might as well pick an e so that it is easy to calculate

.
• Using repeated squaring, the # of terms to multiply

together is the # of 1’s in the binary representation of e.
• So pick e with weight 2, e.g., e=3.
• Or maybe a larger e of the form to avoid the

possible small e and small m attack.

φ(N)
mod φ(N)

me < N

me mod N

2a + 1

Algorithms for Factoring
A factoring algorithm breaks RSA … so how hard is factoring?

This class is being recorded

• When N=pq and p-1 is a product of small primes, Pollard’s
p-1 algorithm factors efficiently.

• For general N, the number field sieve runs in time
 (apparently). This is sub-exponential.

• Except: A quantum computer can efficiently factor
arbitrary N.

2O((log N)1/3(log log N)2/3)

Similar to discrete log:

So recommended key lengths for secure variants of RSA are
2048 bits and higher.

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

Gen
e

d

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

Gen
e

d

message m

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

Encaps

k c

Gen
e

d

message m

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

Encaps

k c

Gen
e

d

Enc c’
message m

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

Encaps

k c

(c,c’)

Gen
e

d

Enc c’
message m

c

c’

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

Encaps

k c

(c,c’)

Gen
e

d

Enc c’
message m

c

c’

Decaps

k

KEM/DEM

This class is being recorded

Recall that a KEM creates and sends a random key string to
someone whose public key you have.

That key then becomes the key for a private-key encryption
system, which is here called a data-encapsulation mechanism
(DEM)

Alice Bob

Encaps

k c

(c,c’)

Gen
e

d

Enc c’
message m

c

c’

Decaps

k

Dec
m

RSA-based KEM

This class is being recorded

Gen: Pick a (public) key derivation function H(x), then as usual for
RSA, i.e., generate two random primes p and q which are s bits
long. Let N = pq. Choose s.t. .

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

Encaps: Choose random x. The ciphertext is and
the key is H(x).

c = xe mod N

Decaps: Given c and d, compute . Then the key is
H(x’).

x′ = cd mod N

As with Diffie-Hellman-based KEM/DEM, this allows us to
combine the strengths of public key and private key
cryptography.

This KEM is secure given RSA assumption and an assumption on
the key derivation function H(x).

How Do We Distribute Public Keys?
Recall that Diffie-Hellman had a man-in-the-middle attack where
Eve pretended to be Bob when talking to Alice and vice-versa.

This class is being recorded

Public key systems have the same sort of problem at the
time of distribution of the public keys:

BobAlice

pub. key e

e

How Do We Distribute Public Keys?
Recall that Diffie-Hellman had a man-in-the-middle attack where
Eve pretended to be Bob when talking to Alice and vice-versa.

This class is being recorded

Public key systems have the same sort of problem at the
time of distribution of the public keys:

Alice

pub. key e

e

Eve

How does Alice know Bob’s public key really comes from Bob
and not from Eve? Bob needs some way to authenticate it.

Chosen Ciphertext Attack on RSA

This class is being recorded

Plain RSA and Padded RSA are vulnerable to another kind of
attack with a stronger threat model, a chosen ciphertext attack:

Suppose Alice sends Bob the ciphertext .c = m̃e mod N

Eve can easily create .c′ = 2ec = (2m̃)e mod N

Why is that a problem? What if Eve sends c’ to Bob, who
decrypts it and then acts on the message assuming it to be from
Alice. By observing Bob, Eve may be able to deduce the plaintext
corresponding to c’, namely . This tells her .2m̃ m̃

Authenticating messages will help us deal with this class of
attacks as well, by removing Eve’s ability to change the
message.

To Do List

• Message authentication and digital signatures to ensure validity
of public keys.

• Hash functions to serve as key derivation functions.
• Chosen-ciphertext attacks (CCA) and CCA-security.

This class is being recorded

Message authentication, digital signatures, and hash functions
all have other applications beyond their usefulness for public
key cryptography.

