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Administrative

This class is being recorded

I am not sure if there will be a problem set this week.

Next week I will be away, and there will be guest lectures by 
Gorjan Alagic, topic TBA.
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Definition of Public Key Encryption
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Definition: A public-key encryption protocol is a set of three 
probabilistic polynomial-time algorithms (Gen, Enc, Dec).

Gen is the key generation algorithm.  It takes as input s, the 
security parameter, and outputs a public key, private key pair 

.(e, d) ∈ {0,1}* × {0,1}*

Enc is the encryption algorithm.  It takes as input e and a 
plaintext or message  and outputs a ciphertext 

.
m ∈ {0,1}*

c ∈ {0,1}*

Dec is the decryption algorithm.  It takes as input d and c and 
outputs some . m′ ∈ {0,1}*

The encryption protocol is correct if

Dec(d, Enc(e, m)) = m
Note: Gen here is much more complex than for private-key 
encryption and doesn’t just generate random bit strings.
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Recall that EAV security for public key encryption is the same as 
CPA security and that both are defined by a game similar to the 
private key case:

The main difference from private keys is that now Eve is given 
the public key e.  She can use e to choose the messages she 
wants to use as challenges as well as in her attack to decipher 
the message.



Public Key Security
Definition: A public-key encryption protocol (Gen, Enc, Dec) with 
security parameter s has is EAV-secure and CPA-secure if, for any 
pair of messages  and  chosen by the adversary (using 
efficient algorithm ) and for any efficient attack ,

m0 m1
ℬ(e, s) 𝒜(e, c)

|Pr(e,d)(𝒜(e, Enc(e, m0)) = 1) − Pr(e,d)(𝒜(e, Enc(e, m1)) = 1) | ≤ ϵ(s)

for negligible  and probability taken over valid public key, 
private key pairs (e,d) and randomness of Enc, , and .

ϵ(s)
𝒜 ℬ
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In RSA, Gen creates a public key (N, e) and a private key (N,d) 
with .ed = 1 mod φ(N)

“RSA” stands for the inventors: Rivest, Shamir, and Adleman
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RSA Encryption (Gen, Enc, Dec)

Gen: Generate two random primes p and q which are s bits long.  
Let N = pq.  Choose  such that .  

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

Enc: Given message m and public key (N, e).  The ciphertext is 
.c = me mod N

Dec: Given ciphertext c and private key (N, d).  The decrypted 
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Example:
Gen: Let p = 11, q = 17.  Then N = 187 and 

.  Let e = 3; then 
d = 107 (so ).
φ(N) = (p − 1)(q − 1) = 10 ⋅ 16 = 160

3 ⋅ 107 = 1 mod 160
Enc: Let m = 113.  Then .c = 1133 mod 187 = 5
Dec: .m′ = 5107 mod 187 = 113



Why is RSA Correct?
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Why does ?Dec(d, Enc(e, m)) = m

Recall the Euler-Fermat theorem: .xφ(N) = 1 mod N

Then

Dec(d, Enc(e, m)) = med mod N

But

ed = 1 + kφ(N)

so

Dec(d, Enc(e, m)) = m1+kφ(N) mod N
= m ⋅ (mφ(N))k mod N
= m ⋅ 1k mod N
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How do we pick e and d?

Gen: Generate two random primes p and q which are s bits long.  
Let N = pq.  Choose  such that .  

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

1. From p and q, we can find .φ(N) = (p − 1)(q − 1)
2. Choose a convenient value for .  It doesn’t 

need to be random.  A common choice is e=3.

e ∈ ℤ*φ(N)

3.  Then use Euclid’s algorithm.  Since , e and 

 are relatively prime, so we find X, Y such that:

e ∈ ℤ*φ(N)
φ(N)

Xe + Yφ(N) = 1
4. Then we can let d=X, because

Xe = 1 − Yφ(N) = 1 mod φ(N)
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RSA Q&A
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• Why pick p and q instead of picking N directly?

To pick e and d, we need to know , and to find , 
we need to know the prime factorization of N.  Factoring 
seems hard, so we pick the prime factors directly.

φ(N) φ(N)

• Eve knows e.  Can’t she also apply Euclid’s algorithm to find e?

Only if she knows .  But to compute , it seems she 
needs to know the prime factorization of N.  And factoring 
seems hard.

φ(N) φ(N)



Hardness of Factoring
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Factoring a product of two large primes seems to be hard.

Definition: Given a security parameter s, let P(N) be a probability 
distribution over (2s)-bit numbers.  We say that factoring is 
average-case hard for P(N) if for any polynomial time algorithm 

, for random N chosen according to P(N),𝒜

Pr(𝒜(N) succeeds) ≤ ϵ(s)

for  a negligible function, where we say  succeeds if 
 with p a non-trivial factor of N:  and .

ϵ(s) 𝒜(N)
𝒜(N) = p 1 < p < N p |N

When N is chosen to be the product of two random s-bit 
primes, it appears that factoring is hard for the resulting 
distribution.
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Theorem: Given N, if Eve knows d and e, she has an efficient 
probabilistic algorithm to factor N.



Factoring and RSA

This class is being recorded

If Eve can factor N, she can break RSA:

Eve factors N = pq and computes .  
Using Euclid’s algorithm, she computes d given e and .

φ(N) = (p − 1)(q − 1)
φ(N)

Factoring N

Learning the private key for RSA

But perhaps it is possible to break RSA without learning the 
private key ….

Theorem: Given N, if Eve knows d and e, she has an efficient 
probabilistic algorithm to factor N.
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This version of RSA (Plain RSA) is deterministic: It cannot be 
CPA-secure.

If Eve is trying to determine which of two messages was sent, 
she can just try encrypting each of them using the public key.  
In Plain RSA, the message  always corresponds to 
ciphertext , so she can easily find i by 
matching .
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Is RSA Secure?
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Vote: Is RSA as I’ve presented it CPA-secure? (Yes/No/Unknown)

Answer: No.

This version of RSA (Plain RSA) is deterministic: It cannot be 
CPA-secure.

If Eve is trying to determine which of two messages was sent, 
she can just try encrypting each of them using the public key.  
In Plain RSA, the message  always corresponds to 
ciphertext , so she can easily find i by 
matching .

mi
ci = me

i mod N
c = ci

We need to add a random element to Enc.
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Enc: Given message m, generate -bit random r and let 
 (the concatenation r followed by m).  Then the 

ciphertext .

ℓ
m̃ = r∥m

c = m̃e mod N
Dec: Given c, compute .  Discard the first  
bits of  to get m’.

m̃′ = cd mod N ℓ
m̃′ 
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One option to add randomness to RSA is to pad the message 
with random bits:

Gen remains the same.

Enc: Given message m, generate -bit random r and let 
 (the concatenation r followed by m).  Then the 

ciphertext .

ℓ
m̃ = r∥m

c = m̃e mod N
Dec: Given c, compute .  Discard the first  
bits of  to get m’.

m̃′ = cd mod N ℓ
m̃′ 

Example:
Gen: N = 187, e = 3, and d = 107 as before.

Enc: Let . Pad using .  Then
 and .

m = 15 = 11112 r = 1102
m̃ = 11011112 = 111 c = 1113 mod 187 = 100
Dec:  and m’ = 15.m̃′ = 100107 mod 187 = 111



Security of Padded RSA
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If , Padded RSA is CPA-secure assuming 
security of an RSA assumption: It is hard to find x such that 

.

ℓ = ⌊log2 N⌋ − 1

xe = y mod N

It also implies just 1-bit messages.

Shorter padding is not known to be secure (at least without a 
stronger assumption), but is plausibly secure as long as  is not 
too short.

ℓ

RSA PKCS #1 v1.5 is a variant of padded RSA where some of 
the padded bits are random and some have fixed values.  With a 
good choice of parameters, it is probably CPA-secure in the 
same sense as Padded RSA.

Note: This is a stronger assumption than factoring 
being hard, as far as we know.
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Another Attack on RSA
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Suppose e and m are both small: .me < N
Then the modular arithmetic is irrelevant, since  is the 
same as  (the integers).

me ∈ ℤ*N
me ∈ ℤ

Here’s an attack that takes advantage of this:

1. Guess a value  for m.  Compute .m0 me
0

2. If , guess a new  that is larger.me
0 < me m1

3. Otherwise, guess a new smaller .m1
4. Repeat steps 1-3, narrowing the search space exponentially 

(for instance, by choosing an  halfway between the 
current upper and lower bounds) until .

mi
me

i = me

Why doesn’t this work if ? me > N
Because < and > are not well-defined in modular arithmetic!

Taking eth roots is easy in  and hard in !ℤ ℤ*N



Picking e

How do we pick e?

This class is being recorded

• e must be relatively prime to  so that it has an 
inverse .

• If e and m are both small ( ), decrypting is easy.
• But when we pad the high bits of m, this is very unlikely, so 

any e works.
• Might as well pick an e so that it is easy to calculate 

.
• Using repeated squaring, the # of terms to multiply 

together is the # of 1’s in the binary representation of e.
• So pick e with weight 2, e.g., e=3.
• Or maybe a larger e of the form  to avoid the 

possible small e and small m attack.

φ(N)
mod φ(N)

me < N

me mod N

2a + 1



Algorithms for Factoring
A factoring algorithm breaks RSA … so how hard is factoring?

This class is being recorded

• When N=pq and p-1 is a product of small primes, Pollard’s 
p-1 algorithm factors efficiently.

• For general N, the number field sieve runs in time 
 (apparently).  This is sub-exponential.

• Except: A quantum computer can efficiently factor 
arbitrary N.

2O((log N)1/3(log log N)2/3)

Similar to discrete log:

So recommended key lengths for secure variants of RSA are 
2048 bits and higher.
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Recall that a KEM creates and sends a random key string to 
someone whose public key you have.

That key then becomes the key for a private-key encryption 
system, which is here called a data-encapsulation mechanism 
(DEM)

Alice Bob

Encaps

k c

(c,c’)

Gen
e

d

Enc c’
message m

c

c’

Decaps

k

Dec
m



RSA-based KEM

This class is being recorded

Gen: Pick a (public) key derivation function H(x), then as usual for 
RSA, i.e., generate two random primes p and q which are s bits 
long.  Let N = pq.  Choose  s.t. .  

The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*φ(N) ed = 1 mod φ(N)

Encaps: Choose random x.  The ciphertext is  and 
the key is H(x).

c = xe mod N

Decaps: Given c and d, compute .  Then the key is 
H(x’).

x′ = cd mod N

As with Diffie-Hellman-based KEM/DEM, this allows us to 
combine the strengths of public key and private key 
cryptography.

This KEM is secure given RSA assumption and an assumption on 
the key derivation function H(x).



How Do We Distribute Public Keys?
Recall that Diffie-Hellman had a man-in-the-middle attack where 
Eve pretended to be Bob when talking to Alice and vice-versa.

This class is being recorded

Public key systems have the same sort of problem at the 
time of distribution of the public keys:
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How Do We Distribute Public Keys?
Recall that Diffie-Hellman had a man-in-the-middle attack where 
Eve pretended to be Bob when talking to Alice and vice-versa.

This class is being recorded

Public key systems have the same sort of problem at the 
time of distribution of the public keys:

Alice

pub. key e

e

Eve

How does Alice know Bob’s public key really comes from Bob 
and not from Eve?  Bob needs some way to authenticate it.



Chosen Ciphertext Attack on RSA

This class is being recorded

Plain RSA and Padded RSA are vulnerable to another kind of 
attack with a stronger threat model, a chosen ciphertext attack:

Suppose Alice sends Bob the ciphertext .c = m̃e mod N

Eve can easily create .c′ = 2ec = (2m̃)e mod N

Why is that a problem? What if Eve sends c’ to Bob, who 
decrypts it and then acts on the message assuming it to be from 
Alice.  By observing Bob, Eve may be able to deduce the plaintext 
corresponding to c’, namely .  This tells her .2m̃ m̃

Authenticating messages will help us deal with this class of 
attacks as well, by removing Eve’s ability to change the 
message.



To Do List

• Message authentication and digital signatures to ensure validity 
of public keys.

• Hash functions to serve as key derivation functions.
• Chosen-ciphertext attacks (CCA) and CCA-security.

This class is being recorded

Message authentication, digital signatures, and hash functions 
all have other applications beyond their usefulness for public 
key cryptography.




