CMSC/Math 456:
 Cryptography (Fall 2023)
 Lecture 2
 Daniel Gottesman

Administrative

Reminder: this class is being recorded.
The first problem set is available on the course web page and on Gradescope.

If you are reading these slides before the lecture, stop and think when you get to the vote before reading on.

Private Key Encryption

Eve

Private Key Encryption

Eve

Private Key Encryption

This class is being recorded

Private Key Encryption

This class is being recorded

Private Key Encryption

I. Alice and Bob initially share a secret key that is unknown to the eavesdropper Eve.
2. Alice has a plaintext message that she wishes to send. She uses an encryption algorithm and the key to create a ciphertext.
3. Alice sends the ciphertext to Bob. However, Eve may be listening in, in which case she knows the ciphertext as well.
4. Bob uses the key and the decryption algorithm to recover the plaintext.
5. Eve does not know the key and is therefore unable to learn the plaintext.

> Kerckhoffs' Principle:Assume the protocol (encryption and decryption algorithms in this case) is known by the adversary. Only the key is secret.

Shift Cipher

The shift cipher is a special case of a substitution cipher.
Key: random number k from $0, \ldots, 25$
Encrypt: shift each letter in the plaintext m forward by k spaces in the alphabet

Decrypt: shift each letter in the ciphertext c backwards by k spaces in the alphabet

Example: k=3

$$
\begin{aligned}
\mathrm{m} & =\text { "theti meisf iveoc lock" } \\
\mathrm{c} & =\text { "WKHWL PHLVI LYHRF ORFN" }
\end{aligned}
$$

This is easy to break by brute force: try all possible key values.
The advantage over the general substitution cipher is the key is smaller and the encryption/decryption is easier.

The Vigenère Cipher

The weakness of the substitution cipher is that some letters are more common than others, creating a pattern which is still visible in the ciphertext. But what if we use a different shift rule for each letter?

Key: List k of s numbers $\left\{k_{i}\right\} \in\{0, \ldots, 25\}$
Encrypt: For the letter in position $j=i \bmod s$ of plaintext m , shift the letter forward by k_{i} positions.
Decrypt: For the letter in position $j=i \bmod s$ of ciphertext c, shift the letter backwards by k_{i} positions.

The key is often specified by a word or phrase, translating k_{i} into a letter ($0=\mathrm{a}, \mathrm{I}=\mathrm{b}$, etc.) This makes it easier to remember.

The number of possible keys is 26^{s}, too many for a brute force attack, even for modest s. (Compare to the substitution cipher, which has $26!\approx 4 \times 10^{26}$ possible keys; 26^{s} is larger for $s>19$.)

Vigenère Encryption and Decryption

Key = "boy" = (I, I4, 24)

ext	a	b	c	d	e			h			k		m		\bigcirc	P		r	s							z	
+1	B	C		E	F	,	H		J	K	L			O	P	Q		S	T								
14	O		Q	R	S	T	U		M	X				B	C	D	E	F	G	H			K				
+24		Z		B	C	D	E		G	H					M						S	T					

Example

$$
\begin{aligned}
& \text { c="U V C U W K F W Q G W T F C A M C A L" }
\end{aligned}
$$

This class is being recorded

A Longer Example of Vigenère

S	X	VPYLL	HHCKX	OS	Z	DVYLL	LFNAW	UCVDI	YWHLL	LACFH
ACMMJ	MSNZI	ZZCFK	zohVe	YFIOW	VTIMX	YOAWS	BGZGV	AIHWS	YHILE	RSUJQ
ZOASM	ZHUKI	HCZLV	VIVDI	ZOHVF	FCJHS	ZWHYI	URNZI	THIVM	LHIKP	LSJFS
TCLWE	URVQE	ZZYWT	ACMSC	DSYFH	AVYZI	HFNSG	OSUFH	AVYL	VLMSR	KBULY
YOFKL	VQEKX	OONXP	LGBAW	OSCJX	VHCKE	JCHKY	TAULM	VBXWZ	VINDC	WA
PGBWH	ACXAI	ACMDI	LDNGW	SSYHT	LFWZE	UQYLS	KFYSQ	HMYLL	LFYKX	OSLMF
MCLAR	AVULW	SSYHS	MRYSX	OKBSX	KFYSQ	ZAUQG	VAYOL	LBQWL	HJYKL	BTZDI
KCzXX	OWMES	YHUDG	VWFEY	ZHAAZ	LUMHE	BGYLL	LFYKX	OSLWW	WSWLX	OONEE
RSMUE	SOGAX	FCZKS	SCHYP	PTYXS	YKBGA	VIFVF	LOLLI	LKBAT	ZOHVW	JC
VTNAQ	LHBWS	WDLWW	ZCLKA	YCHYX	OSJJS	BRGSR	ZQIFX	BAYDC	AVYHE	UUMJG
KWMHM	ZSXDS	CSNZI	SOQKH	LZUQX	OSCFW	VZYFG	LCZGJ	MWWWE	URNZI	ZDOJR
zHBSX	WONAI	UHGWV	PHIXX	OIHOS	YHBQX	HYYKA	OSHZI	OWGKI	STGAK	OHBAW
XICWX	BGGSO	LKCLL	HPUJI	ICXCM	UKBGA	VIFVJ	HFXWP	ZPYSV	ACAJY	JHU
ZKYSX	BBXWV	HKYSV	FZCXI	IINLL	HHNZI	KFYSH	VTMGQ	LHBAR	NOZLI	YR
OHBWY	URCKG	VJYJI	KQIMR	AFSXV	VAQZS	ZSVGY	YBHGX	YOPWP	SSLJI	AIL
WITRP	LGNZI	DWFDE	URGSO	LGOKV	HHBWV	ISUJX	OCMWM	SZMOI	OOPWX	ООНX
FHIGX	OSLKX	OONOI	RBIOR	VHIXX	OIMUS	UGWAI	UQYVS	LGGSO	LQIOE	YRMGJ
BGUDP	HBXLL	BGNZI	UONAZ	LVOWS	MFYKS	SINAS	UWMKM	JYFAI	KCYJA	PHBLL
LDUDI	JOMLS	MHBGY	NVNSR	KSHLI	YDLAW	LGIXK	YSULT	PHWZE	URGGQ	LBNOM
AVNZM	ZFYYE	YRNZI	PFWMV	YSHLW	AILFE	DFSSR	KZIKI	AVYFE	TSIXE	JHCGR
ZCZLC	VIHGA	AVYXE	PFIHL	LZCSR	FAJZM	UHBQS	YWMGR	ZBYSP	SASKM	GLWQ
LAVWV	K									

This class is being recorded

Letter Frequencies

Ciphertext		
Letter	\# times	\%
L	84	7.5\%
S	79	7.0\%
H	68	6.0\%
Y	66	5.9\%
1	64	5.7\%
W	58	5.2\%
A	55	4.9\%
O	52	4.6\%
Z	52	4.6\%
V	51	4.5\%
X	46	4.1\%
G	43	3.8\%
C	42	3.7\%
F	42	3.7\%
K	39	3.5\%
M	38	3.4\%
U	35	3.1\%
B	34	3.0\%
R	28	2.5\%
J	25	2.2\%
N	25	2.2\%
E	23	2.0\%
P	21	1.9\%
D	19	1.7\%
Q	19	1.7\%
T	16	1.4\%

English

Letter	\%
e	12.7\%
t	9.1\%
a	8.2\%
0	7.5\%
i	7.0\%
n	6.7\%
s	6.3\%
h	6.1\%
r	6.0\%
d	4.3\%
1	4.0\%
c	2.8\%
u	2.8\%
m	2.4\%
w	2.4\%
f	2.2\%
g	2.0\%
y	2.0\%
p	1.9\%
b	1.5\%
v	1.0\%
k	0.8\%
j	0.2\%
X	0.2\%
q	0.1\%
z	0.1\%

The frequency distribution of ciphertext letters is much flatter than English.
How can we quantify the "flatness" of a distribution?
p_{i} frequency of letter i.
Calculate $\sum_{i=0}^{25} p_{i}^{2}$.
This quantity (related to the Rényi entropy) quantifies flatness: It is larger for less flat distributions.
English: 0.065
Ciphertext: 0.045
Uniform distribution: 0.038
This class is being recorded

Security of Vigenère

The Vigenère cipher was long believed to be unbreakable and was used for hundreds of years.
In the example, the letter frequency is closer to uniform, although still not quite there. We would be closer with a longer key.

Security of Vigenère

The Vigenère cipher was long believed to be unbreakable and was used for hundreds of years.

In the example, the letter frequency is closer to uniform, although still not quite there. We would be closer with a longer key.

However, there is still a more clever attack based on frequency analysis.

Consider the pattern of shifts. It repeats every s steps. For instance if $s=3$, the shifts are:

$$
+k_{0}+k_{1}+k_{2}+k_{0}+k_{1}+k_{2}+k_{0}+k_{1}+k_{2}+k_{0}+k_{1}+k_{2}
$$

If we look at every sth letter in the ciphertext, they will all be shifted by the same amount and thus should have a distribution similar to that in English (or the source language, if not English).

What if the Key Has Length 3?

Let us look at the frequency if we take every 3rd letter:

This class is being recorded

Frequency of Every 3rd Letter

Every 3rd		
Letter	\# times	\%
H	31	8.0\%
S	29	7.5\%
Y	28	7.2\%
1	24	6.2\%
L	24	6.2\%
W	22	5.7\%
A	18	4.6\%
O	17	4.4\%
Z	17	4.4\%
G	16	4.1\%
V	16	4.1\%
K	15	3.9\%
B	14	3.6\%
M	14	3.6\%
X	14	3.6\%
C	12	3.1\%
F	11	2.8\%
J	11	2.8\%
E	9	2.3\%
Q	8	2.1\%
T	7	1.8\%
U	7	1.8\%
N	6	1.6\%
P	6	1.6\%
R	6	1.6\%
D	5	1.3\%

Full	Ciphertext	
Letter	\# times	\%
L	84	7.5\%
S	79	7.0\%
H	68	6.0\%
Y	66	5.9\%
I	64	5.7\%
W	58	5.2\%
A	55	4.9\%
O	52	4.6\%
Z	52	4.6\%
V	51	4.5\%
X	46	4.1\%
G	43	3.8\%
C	42	3.7\%
F	42	3.7\%
K	39	3.5\%
M	38	3.4\%
U	35	3.1\%
B	34	3.0\%
R	28	2.5\%
J	25	2.2\%
N	25	2.2\%
E	23	2.0\%
P	21	1.9\%
D	19	1.7\%
Q	19	1.7\%
T	16	1.4\%

English	
Letter	\%
e	12.7\%
t	9.1\%
a	8.2\%
0	7.5\%
i	7.0\%
n	6.7\%
S	6.3\%
h	6.1\%
r	6.0\%
d	4.3\%
1	4.0\%
C	2.8\%
u	2.8\%
m	2.4\%
w	2.4\%
f	2.2\%
g	2.0\%
y	2.0\%
p	1.9\%
b	1.5\%
v	1.0\%
k	0.8\%
J	0.2\%
X	0.2\%
q	0.1\%
z	0.1\%

Catatate $\sum_{\sum_{n}}^{\underline{n}}$
English: 0.065
Ciphertext: 0.045
Every 3rd letter: 0.048

Seems more like the full ciphertext; this is not the right key length.

This class is being recorded

What if the Key Has Length 5?

Then every 5th letter is shifted by the same amount:

This class is being recorded

Frequency of Every 5th Letter

Every 5th		
Letter	\# times	\%
L	28	12.1\%
0	22	9.5\%
Z	22	9.5\%
V	19	8.2\%
Y	19	8.2\%
A	18	7.8\%
U	18	7.8\%
H	12	5.1\%
K	11	4.7\%
S	10	4.3\%
B	9	3.9\%
P	7	3.0\%
M	6	2.6\%
F	5	2.1\%
J	5	2.1\%
D	4	1.7\%
T	4	1.7\%
W	4	1.7\%
1	3	1.3\%
R	3	1.3\%
N	2	0.9\%
C	1	0.4\%
X	1	0.4\%
E	0	0\%
G	0	0\%
Q	0	0\%

Full Ciphertext		
Letter	\# times	\%
L	84	7.5\%
S	79	7.0\%
H	68	6.0\%
Y	66	5.9\%
1	64	5.7\%
W	58	5.2\%
A	55	4.9\%
0	52	4.6\%
z	52	4.6\%
V	51	4.5\%
X	46	4.1\%
G	43	3.8\%
C	42	3.7\%
F	42	3.7\%
K	39	3.5\%
M	38	3.4\%
U	35	3.1\%
B	34	3.0\%
R	28	2.5\%
J	25	2.2\%
N	25	2.2\%
E	23	2.0\%
P	21	1.9\%
D	19	1.7\%
Q	19	1.7\%
T	16	1.4\%

English	
Letter	\%
e	12.7\%
t	9.1\%
a	8.2\%
-	7.5\%
i	7.0\%
n	6.7\%
s	6.3\%
h	6.1\%
r	6.0\%
d	4.3\%
1	4.0\%
c	2.8\%
u	2.8\%
m	2.4\%
w	2.4\%
f	2.2\%
g	2.0\%
y	2.0\%
p	1.9\%
b	1.5\%
v	1.0\%
k	0.8\%
1	0.2\%
x	0.2\%
9	0.1\%
z	0.1\%

Calculate $\sum_{i=0}^{25} p_{i}^{2}$.
English: 0.065
Ciphertext: 0.045
Every 5th letter: 0.070

This does seem like English. The key must be 5 letters long.

If"L" = "e", shift is 7 letters.

This class is being recorded

Vigenère Example Decoded

tobeo rnott obeth atist heque stion wheth ertis noble rinth emind
tosuf fethe sling sanda rrows ofout rageo usfor tuneo rtota kearm
sagai stase aoftr ouble sandb yoppo singe ndthe mtodi etosl eepno
morea ndbya sleep tosay weend thehe artac heand theth ousan dnatu
ralsh ockst hatfl eshis heirt otisa consu mmati ondev outly tobew
ished todie tosle eptos leepp ercha nceto dream ayeth erest herub
forin thats leepo fdeat hwhat dream smayc omewh enweh avesh uffle
dofft hismo rtalc oilmu stgiv euspa useth erest heres pectt hatma
kesca lamit yofso longl ifefo rwhow ouldb earth ewhip sands corns
oftim etheo ppres sorsw rongt hepro udman scont umely thepa ngsof
dispi sedlo vethe lawsd elayt heins olenc eofof ficea ndthe spurn
sthat patie ntmer itoft hunwo rthyt akesw henhe himse lfmig hthis
quiet usmak ewith abare bodki nwhow ouldf ardel sbear togru ntand
sweat under awear ylife butth atthe dread ofsom ethin gafte rdeat
htheu ndisc overe dcoun tryfr omwho sebou rnnot ravel lerre turns
puzzl esthe willa ndmak esusr ather beart hosei llswe havet hanfl
ytoot herst hatwe known otoft husco nscie ncedo esmak ecowa rdsof
usall andth usthe nativ ehueo freso lutio nissi cklie doerw ithth
epale casto fthou ghtan dente rpris esofg reatp itcha ndmom entwi

Calculate frequencies for letters in position i mod 5 to determine the full key: "house"

Analysis of Attack

Summary of attack:
I. For each candidate key length t, tabulate the frequency of the ciphertext characters in position $1 \bmod t$.
2. For each t , calculate $\sum_{i=0}^{25} p_{i}^{2}$ where p_{i} is the frequency of letter i.
3. Keep going until you find a t for which this sum is close to 0.065 .
4. Set $\mathrm{s}=\mathrm{t}$ and calculate frequencies for each position $j \bmod s$. Use these to deduce the shift for j and thus the key.
For a single value of t and a message of length n, steps l-3 take $\mathrm{O}(\mathrm{n} / \mathrm{t})$ steps. We need to try different values of t up to $\mathrm{t}=\mathrm{s}$, so steps I-3 take a total of $O\left(\sum_{t=0}^{s} n / t\right)=O(n \log s)$ steps. Step 4 takes $O(\mathrm{~s} \mathrm{n} / \mathrm{s})=O(\mathrm{n})$ steps.
However, if n is very large, we don't need to tabulate the frequency of letters throughout the whole message to learn the key; we only need to look at enough to have good statistics.

[^0]
How Much Text do We Need?

We tabulate the frequency of letters in position $j \bmod s$, so we need enough such letters that the distribution is close to that of the language in use. This is just a constant, independent of n and s. The example has a bit over 1000 characters in total and $s=5$, so it seems around 200 characters is sufficient. You could probably go a bit lower but you might have to do some additional guessing as to which shift was best.

This means the attack works for messages with

$$
n / s>200 \text { or } \mathrm{n}=\mathrm{O}(\mathrm{~s})
$$

Since we need to look at a constant number of characters for value of t, the total time for the attack is then just $O(s)$ as well.

Note: the time of the attack and the amount of text needed scale with s . s is a security parameter.

Really Long Keys

If we make s very large, comparable to the message size, this attack stops working. For instance, some people used a book as the key:Alice and Bob would agree on the book and a starting point in the book. The sequence of letters in the book beginning from that point give the shifts for the Vigenère cipher.

Vote: is the Vigenère cipher secure when using a book as a key?

Really Long Keys

If we make s very large, comparable to the message size, this attack stops working. For instance, some people used a book as the key:Alice and Bob would agree on the book and a starting point in the book. The sequence of letters in the book beginning from that point give the shifts for the Vigenère cipher.

Vote: is the Vigenère cipher secure when using a book as a key?
Well ... not if you can identify the book.
And even if you can't, there is still a pattern you can attack. In particular, the key is also text in English (or whatever language) and therefore has uneven distribution of letters. This means that certain (key, plaintext) combinations are more likely. For instance, if you see ciphertext " l ", there is a good chance it is "e" encrypted with key "e". This creates an avenue of attack - and you can work on determining the text of both the key and the message.

One-Time Pad

OK, suppose we remove this weakness by using not a book, but a sequence of completely random letters, generated for each message. This is called the one-time pad.

Vote: Is the one-time pad secure?

One-Time Pad

OK, suppose we remove this weakness by using not a book, but a sequence of completely random letters, generated for each message. This is called the one-time pad.

Vote: Is the one-time pad secure?
Yes!
How can we know this? Maybe it's just that no one has figured out yet how to attack it.

One-Time Pad

OK, suppose we remove this weakness by using not a book, but a sequence of completely random letters, generated for each message. This is called the one-time pad.

Vote: Is the one-time pad secure?
Yes!
How can we know this? Maybe it's just that no one has figured out yet how to attack it.

This is where security proofs come into play.
We can prove that the one-time pad is secure

One-Time Pad

OK, suppose we remove this weakness by using not a book, but a sequence of completely random letters, generated for each message. This is called the one-time pad.

Vote: Is the one-time pad secure?
Yes!
How can we know this? Maybe it's just that no one has figured out yet how to attack it.

This is where security proofs come into play.
We can prove that the one-time pad is secure
... but first we need to define what it means for a cryptographic protocol to be secure.

Probability Review

A random variable is a quantity that takes on different values with certain probabilities. If X is a random variable, I will use the notation

$$
\operatorname{Pr}(X=x)
$$

for the probability that the event occurs that random variable X takes on value x.

Sometimes we will want to talk about more complicated events. For instance, suppose that we have a random variable X and we wish to discuss the probability that $f(X)<5$ for some particular function f. This could be written as

$$
\operatorname{Pr}(f(X)<5) \quad \text { or } \quad \operatorname{Pr}_{X}(f(X)<5)
$$

(using the second notation in cases where it is not necessarily clear that X is the random variable).

Probability Review II

If we have two events E and F (which could involve different or multiple random variables), we can discuss the joint probability of both events happening $\operatorname{Pr}(E, F)$

The conditional probability, defined as

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E, F)}{\operatorname{Pr}(F)}
$$

is the chance that E occurs given that we already know F occurs.
Example: For a random day of the year, what is the chance that it is Thanksgiving?

$$
\operatorname{Pr}(\text { day }=\text { Thanksgiving })=1 / 365
$$

Probability Review II

If we have two events E and F (which could involve different or multiple random variables), we can discuss the joint probability of both events happening $\operatorname{Pr}(E, F)$

The conditional probability, defined as

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E, F)}{\operatorname{Pr}(F)}
$$

is the chance that E occurs given that we already know F occurs.
Example: For a random day of the year, what is the chance that it is Thanksgiving?

$$
\operatorname{Pr}(\text { day }=\text { Thanksgiving })=1 / 365
$$

But we know today is Thursday:

$$
\operatorname{Pr}(\text { day }=\text { Thanksgiving } \mid \text { day is Thursday })=1 / 52
$$

Probability Review II

If we have two events E and F (which could involve different or multiple random variables), we can discuss the joint probability of both events happening $\operatorname{Pr}(E, F)$

The conditional probability, defined as

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E, F)}{\operatorname{Pr}(F)}
$$

is the chance that E occurs given that we already know F occurs.
Example: For a random day of the year, what is the chance that it is Thanksgiving?

$$
\operatorname{Pr}(\text { day }=\text { Thanksgiving })=1 / 365
$$

But we know today is Thursday:

$$
\operatorname{Pr}(\text { day }=\text { Thanksgiving } \mid \text { day is Thursday })=1 / 52
$$

But there is class today:
$\operatorname{Pr}($ day $=$ Thanksgiving \mid there is class today $)=0$
This class is being recorded

Probability Review III

Two events E and F are independent events if

$$
\operatorname{Pr}(E, F)=\operatorname{Pr}(E) \operatorname{Pr}(F)
$$

If two events are independent, then

$$
\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E)
$$

so knowing that event F happened doesn't tell us more about whether event E happened.

Bayes'Theorem:

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(F \mid E) \operatorname{Pr}(E)}{\operatorname{Pr}(F)}
$$

It just follows from the definition of conditional probability. Bayes' theorem is useful because it allows us to switch which variable we condition on.

Towards a Definition of Security

> With the substitution cipher, we saw that having different frequencies for different ciphertext letters allowed frequency analysis. So maybe our security definition should say that all ciphertext letters should occur with the same frequency?

Towards a Definition of Security

With the substitution cipher, we saw that having different frequencies for different ciphertext letters allowed frequency analysis. So maybe our security definition should say that all ciphertext letters should occur with the same frequency?

No.
Imagine the Vigenère cipher with key
"abcdefghijklmnopqrstuvwxyz": Every letter would have the same frequency in the ciphertext, since it could be shifted by any amount, but it would still be insecure.

Conversely, take a "secure" protocol (whatever that is), and alternate the ciphertext letters with additional letter "A"s.
This would not make the protocol any less secure, but now " A " is very common.

Independence From the Plaintext

Adding extra "A"s doesn't impede security because they are there regardless of what the message is. That's the answer:A definition of security should have the ciphertext independent of the plaintext.

> One-time pad

Plaintext:	hellothere	goodbyenow
Key:	xfaycrsegf	yvxgpmvvjn
Ciphertext:	EJLJQKZIXJ	EJLJQKZIXJ

The ciphertext "EJLJQKZIXJ" could correspond to either the message "hellothere" or "goodbyenow" with different keys. Exactly one key works for each plaintext and both keys are equally likely (since all keys are) and therefore both messages are equally possible.

Side Information

Recall that Eve is allowed to use any side information she might have about Alice and Bob's messages or protocol. She doesn't know the precise message sent and she doesn't know the key, but she might know a lot more.

Eve might have narrowed the message down to two possibilities m and m '. She should still not be able to tell which is the two was sent when she sees the ciphertext.

Eve might be 90% sure that the message is m and not m '. She should not be able to increase that to 95% sure.

We can quantify Eve's prior knowledge about the message using probability theory.
Eve has an estimate of the probability that Alice will send message m before she sees any ciphertext:

$$
\operatorname{Pr}(M=m)
$$

Conditional Information

What happens once Eve sees the ciphertext?
She now has (potentially) additional information. Given that she knows the protocol (Kerckhoffs' principle), including the distribution over keys, she can deduce the probability that if the message is m then the ciphertext is c averaged over keys.

$$
\operatorname{Pr}(C=c \mid M=m)=\frac{\operatorname{Pr}_{k}(C=c, M=m)}{\operatorname{Pr}(M=m)}
$$

How should she update her probability of the message once she sees the ciphertext c?

Use Bayes' Theorem:

$$
\operatorname{Pr}(M=m \mid C=c)=\frac{\operatorname{Pr}(C=c \mid M=m) \operatorname{Pr}(M=m)}{\operatorname{Pr}(C=c)}
$$

Definition of Encryption

Definition:A private-key encryption protocol is a set of three probabilistic algorithms (Gen, Enc, Dec).

Gen is the key generation algorithm. It takes as input s, the security parameter, and outputs a key $k \in\{0,1\}^{*}$.
Enc is the encryption algorithm. It takes as input k and a plaintext or message $m \in\{0,1\}^{*}$ and outputs a ciphertext $c \in\{0,1\}^{*}$.

Dec is the decryption algorithm. It takes as input k and c and outputs some $m^{\prime} \in\{0,1\}^{*}$.

An encryption protocol is correct if

$$
\operatorname{Dec}(k, E n c(k, m))=m
$$

Unless otherwise stated, assume that Gen(n) chooses a random bit string of length s. Note that there may be some restrictions on the allowed space of messages (e.g., length).

The One-Time Pad for Bits

In the modern era, we have computers to do encryption and decryption, and so we like to write things in terms of bits. We can convert a message m written with letters into a message written in bits by converting it to ASCII (for instance).

Note that in the pre-computer era, encrypted messages usually dropped the spaces (because information about where they were makes a message much easier to decrypt), but in the modern era, "space" is just another character and is encrypted along with everything else.

The key k is a random string of bits, and Enc takes the bitwise XOR between the key and message. Dec does the same:

Message	001011001010
Key	110001011100
Ciphertext	111010010110

Correctness of the One-Time Pad

It is straightforward to prove that the one-time pad is correct:
We can write Enc and Dec as

$$
\begin{aligned}
& \operatorname{Enc}(k, m)=m \oplus k \\
& \operatorname{Dec}(k, c)=c \oplus k
\end{aligned}
$$

Then:

$$
\operatorname{Dec}(k, \operatorname{Enc}(k, m))=(m \oplus k) \oplus k=m
$$

[^0]: This class is being recorded

