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Administrative

This class is being recorded

Grades for the midterm are available.  The median score was 
88.5.  Remember that 100 is the maximum score possible.  The 
original raw scores have been left in for now but anything over 
100 will be reduced to 100 before the final grade.

Problem set 7 is due on Thursday at noon.
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We discussed message authentication, whereby Alice can send a 
message to Bob without encryption and Bob can be sure it came 
from Alice unchanged.
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from Alice unchanged.



MAC Definition
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Definition: A message authentication code (MAC) is a set of 
three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy):

Gen is the key generation algorithm.  It takes as input s, the 
security parameter, and outputs a private key  of 
length poly(s).

k ∈ {0,1}*

Mac is the tag-generation algorithm.  It takes as input k and a 
message  and outputs a tag .m ∈ {0,1}* t ∈ {0,1}*
Vrfy is the verification algorithm.  It takes as input k and (m,t) 
and outputs “valid” or “invalid.” 

The MAC is correct if

Vrfy(k, m, Mac(k, m)) = valid

Often Vrfy just runs Mac(k,m) to get a tag t’ and outputs “valid” if 
t=t’.



MACs from Pseudorandom Functions

.Mac(k, m) = Fk(m)

This class is being recorded

We can make a secure MAC from a pseudorandom function 
.  I.e., Fk(m)

We can also make MACs with a tag much shorter than the 
message using a CBC-MAC structure:

Fk Fk Fk

m1 m2 m3

Tag: t3

Fk

length
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possible messages than tags, which means the pigeonhole 
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pigeons and m holes.
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When the tag is shorter than the message, there are more 
possible messages than tags, which means the pigeonhole 
principle applies:

Suppose we have n 
pigeons and m holes.

If , then each pigeon 
can be in its own hole.

n ≤ m

But if , then more than one pigeon has to be in the same 
hole.  This is the pigeonhole principle.

n > m



Collisions and MACs
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If we want to have long messages and short tags, we are 
necessarily going to have more than one message that has the 
same tag.  For a MAC to be secure, it should be hard for Eve to 
find two such messages:

E.g.: Suppose Eve knows that messages with all bits flipped 
have the same tag.

Then she sees message 00110011 with tag 1001.
Now she can forge 11001100 also with tag 1001.

Thus, we need such a MAC to be collision-resistant: It is hard for 
Eve to find two messages m, m’ such that Mac(k,m) = Mac(k,m’).



Hash Functions
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Perhaps surprisingly, there are functions that have collision 
resistance (as far as we can tell) even without a key or if the key is 
known.

A collision-resistant hash function is a function H(x) such that it 
is hard to find two values x, x’ such that H(x) = H(x’).

“Hard” means polynomial-time as usual for us, so to make 
this a rigorous definition, you actually need to look at a 
family of hash functions with larger output lengths.

Informally, we can still consider a hash function of fixed size 
to be collision-resistant if it is hard in practice to find a 
collision.

This notion only really makes sense if , so the 
output is shorter than the input.

|H(x) | < |x |



Cryptographic Hash Functions
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Hash functions are also used in non-cryptographic settings.  (E.g. 
as hash tables.)

In a non-cryptographic hash function, collisions between 
typical elements from the domain should be rare.
In a cryptographic hash function, all collisions should be hard 
to find.

E.g.: A simple non-cryptographic hash function is mod:

H(x) = x mod p

But it is very easy to find collisions in this function if you are 
actively trying to.
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Hash functions are also used in non-cryptographic settings.  (E.g. 
as hash tables.)

In a non-cryptographic hash function, collisions between 
typical elements from the domain should be rare.
In a cryptographic hash function, all collisions should be hard 
to find.

E.g.: A simple non-cryptographic hash function is mod:

H(x) = x mod p

But it is very easy to find collisions in this function if you are 
actively trying to.

Try it: p = 563, x = 822, H(x) = 259

Can you find x’ (not 822) with H(x’) = 259?

One answer: x’ = 259



Hash Functions for MACs
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Given a hash function H(x) and a MAC Mac(k,m), we can make a 
new MAC:

Mac′￼(k, m) = Mac(k, H(m))

H(m)

m

Mac(k,H(m))

k

This allows us to 
authenticate even long 
messages using short tags 
and a small key.

Generally this “hash-and-
MAC” protocol is faster 
than a CBC-MAC because 
one hash function is easier 
than many block ciphers.

HMAC is an even better 
variant of this idea.

Theorem: If H(x) and Mac(k,m) are both 
secure, then Mac’ is also secure.
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Suppose Eve is trying to forge a message authenticated with 
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

• Forge a message with  for all m’ for which 
she has seen a tag.  But that would require breaking the 
original MAC protocol.

H(m) ≠ H(m′￼)

• Forge a message with  for some .  But 
that would require breaking the collision-resistance of the 
hash function.

H(m) = H(m′￼) m′￼≠ m

Note that both elements are needed.

Try it: Forge a message if the tag is H(m) instead of MAC(k,H(m)).

Now: Forge a message if H(m) is not collision-resistant.

Answer: Choose any m and compute H(m) — no key needed.

Answer: Find a collision  and use the tag of m’ 
to forge m.  (They have the same tag.)

H(m) = H(m′￼)



Constructing Hash Functions
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Strategy: Construct a hash function for fixed-size input blocks.  
This is called a compression function.  Then for larger inputs, 
break them up into chunks of an appropriate size and apply the 
compression function repeatedly, adding one chunk each time.

Specifically, we want a compression function h(z,x) that takes 
two inputs of size n and n’, and has one output of size n.

h

x (n’ bits)

z
(n bits)

h(z,x)
(n bits)

h(z,x) should be 
collision-resistant.

I.e., it should be hard 
to find two pairs (z,x) 
and (z’,x’) such that 

.h(z, x) = h(z′￼, x′￼)



Merkle-Damgard Construction
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h

x1

z0
z1

h

x2

z2
h

x3

z3
h

x4

z4

The input x is broken up into ; each  is n’ bits 
long.

(x1, x2, x3, …) xi

 is set to some IV.  (It is fixed based on the specific 
construction, not chosen randomly.)
z0

But … since x might not be a multiple of n’, we need to pad 
it to fill out the blocks.  A bad choice of padding makes this 
construction insecure.

To make H(x) for long x:
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For instance, suppose we pad with 0s.  Then an input x that is 
not a multiple of n’ bits long will hash to the same value as .(x∥0)
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For instance, suppose we pad with 0s.  Then an input x that is 
not a multiple of n’ bits long will hash to the same value as .(x∥0)
Padding Construction:

Construct  by following x by 1 and then a string of 0s, 
followed by the length of x.  Choose a number of 0s so that 
the length of  is a multiple of n’. (Length string is always the 
same size,  bits long.)
Then break  up into t pieces  of n’ bits each. 

x̃

x̃
ℓ ≤ n′￼

x̃ x̃i

Then , where .H(x) = zt zi = h(zi−1, x̃i)
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x̃ = 110110000100, x̃1 = 110110, x̃2 = 000100
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Examples: Suppose n’ = 6,  = 3.ℓ

Input x = 1101:  Length is 4, written as 100 in binary.  Then we 
will need 2 blocks, total length 12.  Thus, we need 5 more 
padding bits 10000.

x̃ = 110110000100, x̃1 = 110110, x̃2 = 000100
Input x = 1101100:  Length is 7, written as 111 in binary.  Again 
we need 2 blocks, total length 12.  Thus, we need only 2 more 
padding bits 10.

x̃ = 110110010111, x̃1 = 110110, x̃2 = 010111

Input x = 10:  Length is 2, written as 010 in binary.  Now we can 
manage with 1 block, total length 6.  Thus, we need only 1 more 
padding bit 1.

x̃ = 101010, x̃1 = 101010



Merkle-Damgard security
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h
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h
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Proof Idea: 
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Theorem: If h(z,x) is collision-resistant, then H(x) given by the 
Merkle-Damgard construction is collision-resistant as well.
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Theorem: If h(z,x) is collision-resistant, then H(x) given by the 
Merkle-Damgard construction is collision-resistant as well.
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Proof Idea: 

Suppose we have two inputs x, x’ to H such that .zi = z′￼i

Recall that . zi = h(zi−1, x̃i) = z′￼i = h(z′￼i−1, x̃′￼i)
• If , then we have a collision in h.(zi−1, x̃i) ≠ (z′￼i−1, x̃′￼i)
• Otherwise  and we can apply induction to either 

find a collision in h or show that x = x’.
zi−1 = z′￼i−1
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Theorem: If h(z,x) is collision-resistant, then H(x) given by the 
Merkle-Damgard construction is collision-resistant as well.



Making a Compression Function
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A common strategy: the Davies-Meyer construction

Given block cipher , letFk(x)

h(z, x) = Fz(x) ⊕ x

(This doesn’t always work.  The block cipher F needs to be 
sufficiently similar to an ideal cipher, which essentially has no 
exploitable internal structure.)



Practical Ciphers

Examples of hash functions constructed via Davies-Meyer 
and Merkle-Damgard:

• MD5 (no longer secure)
• SHA-1 (no longer secure)
• SHA-2 (still OK)

These hash functions use their own block ciphers which involve 
multiple rounds, in each of which the input is shifted cyclically 
with some minor changes to most of it and major change to one 
segment.

• SHA-3 is the newest standard and it is based on different 
principles.

This class is being recorded
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Recall the birthday paradox: With N possible dates for birthdays, 
with high probability, a group of M people has two people with 
the same birthday if .M ≈ N

We can take advantage of this to look for collisions in a hash 
function: If the hash function H(x) has s-bit output, we will 
find a collision after computing H on about  random 
input values.

2s/2

Consequence: A hash function needs to have output size twice as 
long as a block cipher to be secure in practice!

In particular, SHA-2 and SHA-3 have 224-bit and higher output 
sizes, compared to 128-bit block size and minimum key length for 
AES.
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There is a quantum algorithm to find collisions with only  
function evaluations on a quantum computer.  Thus, if quantum 
computers are a concern, we need to increase hash function 
sizes further to keep the same security.
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Quantum Birthday Attacks
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There is a quantum algorithm to find collisions with only  
function evaluations on a quantum computer.  Thus, if quantum 
computers are a concern, we need to increase hash function 
sizes further to keep the same security.

O(2s/3)

Specifically:

For SHA-2 or SHA-3, 224-bit outputs means a classical 
computer needs about  hash function evaluations to 
find a collision.

2112

A quantum computer would need only about  
hash function evaluations.

2224/3 < 275

A hash function with 336-bit outputs would need  hash 
function evaluations on a quantum computer, and could thus 
have post-quantum security comparable to SHA-2 or 
SHA-3 vs. classical attacks.

2112



Key Derivation

Recall in the RSA-based KEM, we needed to pick a key derivation 
function to convert the key to bits.  We also needed it with 
Diffie-Hellman.

This class is being recorded

Gen: Pick a (public) key derivation function H(x), then as usual 
for RSA, i.e., generate two random primes p and q which are s 
bits long.  Let N = pq.  Choose  s.t. .  
The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*N ed = 1 mod φ(N)

Encaps: Choose random x.  The ciphertext is  and 
the key is H(x).

c = xe mod N

Decaps: Given c and d, compute .  Then the key is 
H(x’).

x′￼= cd mod N

RSA KEM:



Hash Functions for Key Derivation
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One solution (although not the only one) is to use a hash 
function for key derivation.

Public key 
output

Actual 
key

k H(k)

We don’t care so much about collisions here.  Instead what we 
want is that H(k) should be roughly uniformly distributed and 
that any partial information Eve might have about k should get 
squeezed out, so she has little information about H(k).

These come from a stronger property of the hash function, 
namely that it can be well modeled by a random oracle.



Hash Functions as Random Oracles
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A random oracle is a random function which is implemented as a 
black box.  That is, we count complexity by how many times the 
function is evaluated. 

If H(x) is a random oracle, knowing the value of  for 
any set  doesn’t help you predict H(y) if .

H(xi)
{xi} y ∉ {xi}
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Hash Functions as Random Oracles

This class is being recorded

A random oracle is a random function which is implemented as a 
black box.  That is, we count complexity by how many times the 
function is evaluated. 

If H(x) is a random oracle, knowing the value of  for 
any set  doesn’t help you predict H(y) if .

H(xi)
{xi} y ∉ {xi}

A random oracle is automatically collision resistant:

For any pair H(x), H(y) ( ), the probability that 
 is exactly , where H has an s-bit output.

This is precisely the limit on collisions set by birthday 
attacks.

x ≠ y
H(x) = H(y) 2−s

But collision resistance doesn’t necessarily imply that the 
hash function is a good random oracle.



Random Oracle vs. Pseudorandom
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A random oracle can be used to make a pseudorandom 
generator or function, but they are not the same.

Random Oracle Pseudorandom Function

• No key
• Can be evaluated by 

everyone
• Outputs always look 

random

• Keyed
• Evaluated only using the 

key
• Outputs look random 

only if key is unknown.

Both are things that look like random functions, but in different 
contexts.



What Does it Mean to be RO?
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When we say a hash function is “well-modeled as a random 
oracle,” we mean that it has no useful structure for an attacker 
to exploit.

It means 

• The output strings have no special properties and no 
discernible correlations.

• Birthday attacks are the best or only way to find collisions.
• Computing intermediate values (i.e., stopping the evaluation 

partway through) is not useful for speeding up searches.
• In general, brute force attacks are the best or only attacks 

that will work.

Any real function must fail to match a random oracle to some 
degree, but some functions seem to be close enough in practice 
for security proofs based on random oracles to be useful.



Key Derivation and Random Oracle
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Public key 
output

Actual 
key

k H(k)

If H(k) is well-approximated as a random oracle, then it is a 
good key derivation function:

• All output strings are equally likely, averaged over H.
• If Eve has narrowed k down to N possibilities, there are 

still N possibilities for H(k), but they are completely 
unrelated to each other.  E.g., even if Eve knows the first 
few bits of k, she does not know any bits of H(k).




