
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 20
Daniel Gottesman

Administrative

This class is being recorded

Grades for the midterm are available. The median score was
88.5. Remember that 100 is the maximum score possible. The
original raw scores have been left in for now but anything over
100 will be reduced to 100 before the final grade.

Problem set 7 is due on Thursday at noon.

Message Authentication

Alice Bob

Eve
This class is being recorded

key k

message m

We discussed message authentication, whereby Alice can send a
message to Bob without encryption and Bob can be sure it came
from Alice unchanged.

Message Authentication

Alice Bob

Eve
This class is being recorded

key k

(m,t)
message m

(m,t)

We discussed message authentication, whereby Alice can send a
message to Bob without encryption and Bob can be sure it came
from Alice unchanged.

Message Authentication

Alice Bob

Eve
This class is being recorded

key k

(m,t)

Attack

message m

(m,t)

We discussed message authentication, whereby Alice can send a
message to Bob without encryption and Bob can be sure it came
from Alice unchanged.

Message Authentication

Alice Bob

Eve
This class is being recorded

key k

(m,t)

Attack

(m’,t’)

message m

(m,t)

We discussed message authentication, whereby Alice can send a
message to Bob without encryption and Bob can be sure it came
from Alice unchanged.

Message Authentication

Alice Bob

Eve
This class is being recorded

key k

(m,t)

Attack

(m’,t’)

No!

message m

(m,t)

We discussed message authentication, whereby Alice can send a
message to Bob without encryption and Bob can be sure it came
from Alice unchanged.

MAC Definition

This class is being recorded

Definition: A message authentication code (MAC) is a set of
three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy):

Gen is the key generation algorithm. It takes as input s, the
security parameter, and outputs a private key of
length poly(s).

k ∈ {0,1}*

Mac is the tag-generation algorithm. It takes as input k and a
message and outputs a tag .m ∈ {0,1}* t ∈ {0,1}*
Vrfy is the verification algorithm. It takes as input k and (m,t)
and outputs “valid” or “invalid.”

The MAC is correct if

Vrfy(k, m, Mac(k, m)) = valid

Often Vrfy just runs Mac(k,m) to get a tag t’ and outputs “valid” if
t=t’.

MACs from Pseudorandom Functions

.Mac(k, m) = Fk(m)

This class is being recorded

We can make a secure MAC from a pseudorandom function
. I.e., Fk(m)

We can also make MACs with a tag much shorter than the
message using a CBC-MAC structure:

Fk Fk Fk

m1 m2 m3

Tag: t3

Fk

length

Pigeonhole Principle

This class is being recorded

When the tag is shorter than the message, there are more
possible messages than tags, which means the pigeonhole
principle applies:

Suppose we have n
pigeons and m holes.

Pigeonhole Principle

This class is being recorded

When the tag is shorter than the message, there are more
possible messages than tags, which means the pigeonhole
principle applies:

Suppose we have n
pigeons and m holes.

If , then each pigeon
can be in its own hole.

n ≤ m

Pigeonhole Principle

This class is being recorded

When the tag is shorter than the message, there are more
possible messages than tags, which means the pigeonhole
principle applies:

Suppose we have n
pigeons and m holes.

If , then each pigeon
can be in its own hole.

n ≤ m

Pigeonhole Principle

This class is being recorded

When the tag is shorter than the message, there are more
possible messages than tags, which means the pigeonhole
principle applies:

Suppose we have n
pigeons and m holes.

If , then each pigeon
can be in its own hole.

n ≤ m

Pigeonhole Principle

This class is being recorded

When the tag is shorter than the message, there are more
possible messages than tags, which means the pigeonhole
principle applies:

Suppose we have n
pigeons and m holes.

If , then each pigeon
can be in its own hole.

n ≤ m

But if , then more than one pigeon has to be in the same
hole. This is the pigeonhole principle.

n > m

Collisions and MACs

This class is being recorded

If we want to have long messages and short tags, we are
necessarily going to have more than one message that has the
same tag. For a MAC to be secure, it should be hard for Eve to
find two such messages:

E.g.: Suppose Eve knows that messages with all bits flipped
have the same tag.

Then she sees message 00110011 with tag 1001.
Now she can forge 11001100 also with tag 1001.

Thus, we need such a MAC to be collision-resistant: It is hard for
Eve to find two messages m, m’ such that Mac(k,m) = Mac(k,m’).

Hash Functions

This class is being recorded

Perhaps surprisingly, there are functions that have collision
resistance (as far as we can tell) even without a key or if the key is
known.

A collision-resistant hash function is a function H(x) such that it
is hard to find two values x, x’ such that H(x) = H(x’).

“Hard” means polynomial-time as usual for us, so to make
this a rigorous definition, you actually need to look at a
family of hash functions with larger output lengths.

Informally, we can still consider a hash function of fixed size
to be collision-resistant if it is hard in practice to find a
collision.

This notion only really makes sense if , so the
output is shorter than the input.

|H(x) | < |x |

Cryptographic Hash Functions

This class is being recorded

Hash functions are also used in non-cryptographic settings. (E.g.
as hash tables.)

In a non-cryptographic hash function, collisions between
typical elements from the domain should be rare.
In a cryptographic hash function, all collisions should be hard
to find.

E.g.: A simple non-cryptographic hash function is mod:

H(x) = x mod p

But it is very easy to find collisions in this function if you are
actively trying to.

Cryptographic Hash Functions

This class is being recorded

Hash functions are also used in non-cryptographic settings. (E.g.
as hash tables.)

In a non-cryptographic hash function, collisions between
typical elements from the domain should be rare.
In a cryptographic hash function, all collisions should be hard
to find.

E.g.: A simple non-cryptographic hash function is mod:

H(x) = x mod p

But it is very easy to find collisions in this function if you are
actively trying to.

Try it: p = 563, x = 822, H(x) = 259

Can you find x’ (not 822) with H(x’) = 259?

Cryptographic Hash Functions

This class is being recorded

Hash functions are also used in non-cryptographic settings. (E.g.
as hash tables.)

In a non-cryptographic hash function, collisions between
typical elements from the domain should be rare.
In a cryptographic hash function, all collisions should be hard
to find.

E.g.: A simple non-cryptographic hash function is mod:

H(x) = x mod p

But it is very easy to find collisions in this function if you are
actively trying to.

Try it: p = 563, x = 822, H(x) = 259

Can you find x’ (not 822) with H(x’) = 259?

One answer: x’ = 259

Hash Functions for MACs

This class is being recorded

Given a hash function H(x) and a MAC Mac(k,m), we can make a
new MAC:

Mac′￼(k, m) = Mac(k, H(m))

H(m)

m

Mac(k,H(m))

k

This allows us to
authenticate even long
messages using short tags
and a small key.

Generally this “hash-and-
MAC” protocol is faster
than a CBC-MAC because
one hash function is easier
than many block ciphers.

HMAC is an even better
variant of this idea.

Theorem: If H(x) and Mac(k,m) are both
secure, then Mac’ is also secure.

Security of Hash-and-MAC

This class is being recorded

Suppose Eve is trying to forge a message authenticated with
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

Security of Hash-and-MAC

This class is being recorded

Suppose Eve is trying to forge a message authenticated with
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

• Forge a message with for all m’ for which
she has seen a tag. But that would require breaking the
original MAC protocol.

H(m) ≠ H(m′￼)

Security of Hash-and-MAC

This class is being recorded

Suppose Eve is trying to forge a message authenticated with
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

• Forge a message with for all m’ for which
she has seen a tag. But that would require breaking the
original MAC protocol.

H(m) ≠ H(m′￼)

• Forge a message with for some . But
that would require breaking the collision-resistance of the
hash function.

H(m) = H(m′￼) m′￼≠ m

Security of Hash-and-MAC

This class is being recorded

Suppose Eve is trying to forge a message authenticated with
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

• Forge a message with for all m’ for which
she has seen a tag. But that would require breaking the
original MAC protocol.

H(m) ≠ H(m′￼)

• Forge a message with for some . But
that would require breaking the collision-resistance of the
hash function.

H(m) = H(m′￼) m′￼≠ m

Note that both elements are needed.

Try it: Forge a message if the tag is H(m) instead of MAC(k,H(m)).

Security of Hash-and-MAC

This class is being recorded

Suppose Eve is trying to forge a message authenticated with
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

• Forge a message with for all m’ for which
she has seen a tag. But that would require breaking the
original MAC protocol.

H(m) ≠ H(m′￼)

• Forge a message with for some . But
that would require breaking the collision-resistance of the
hash function.

H(m) = H(m′￼) m′￼≠ m

Note that both elements are needed.

Try it: Forge a message if the tag is H(m) instead of MAC(k,H(m)).
Answer: Choose any m and compute H(m) — no key needed.

Security of Hash-and-MAC

This class is being recorded

Suppose Eve is trying to forge a message authenticated with
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

• Forge a message with for all m’ for which
she has seen a tag. But that would require breaking the
original MAC protocol.

H(m) ≠ H(m′￼)

• Forge a message with for some . But
that would require breaking the collision-resistance of the
hash function.

H(m) = H(m′￼) m′￼≠ m

Note that both elements are needed.

Try it: Forge a message if the tag is H(m) instead of MAC(k,H(m)).

Now: Forge a message if H(m) is not collision-resistant.

Answer: Choose any m and compute H(m) — no key needed.

Security of Hash-and-MAC

This class is being recorded

Suppose Eve is trying to forge a message authenticated with
hash-and-MAC.

She has two options to forge (m, MAC(k,H(m))):

• Forge a message with for all m’ for which
she has seen a tag. But that would require breaking the
original MAC protocol.

H(m) ≠ H(m′￼)

• Forge a message with for some . But
that would require breaking the collision-resistance of the
hash function.

H(m) = H(m′￼) m′￼≠ m

Note that both elements are needed.

Try it: Forge a message if the tag is H(m) instead of MAC(k,H(m)).

Now: Forge a message if H(m) is not collision-resistant.

Answer: Choose any m and compute H(m) — no key needed.

Answer: Find a collision and use the tag of m’
to forge m. (They have the same tag.)

H(m) = H(m′￼)

Constructing Hash Functions

This class is being recorded

Strategy: Construct a hash function for fixed-size input blocks.
This is called a compression function. Then for larger inputs,
break them up into chunks of an appropriate size and apply the
compression function repeatedly, adding one chunk each time.

Specifically, we want a compression function h(z,x) that takes
two inputs of size n and n’, and has one output of size n.

h

x (n’ bits)

z
(n bits)

h(z,x)
(n bits)

h(z,x) should be
collision-resistant.

I.e., it should be hard
to find two pairs (z,x)
and (z’,x’) such that

.h(z, x) = h(z′￼, x′￼)

Merkle-Damgard Construction

This class is being recorded

h

x1

z0
z1

h

x2

z2
h

x3

z3
h

x4

z4

The input x is broken up into ; each is n’ bits
long.

(x1, x2, x3, …) xi

 is set to some IV. (It is fixed based on the specific
construction, not chosen randomly.)
z0

But … since x might not be a multiple of n’, we need to pad
it to fill out the blocks. A bad choice of padding makes this
construction insecure.

To make H(x) for long x:

Padding for Merkle-Damgard

h

x̃1

z0
z1

h

x̃2

z2
h

x̃3

z3
h

x̃4

z4

This class is being recorded

For instance, suppose we pad with 0s. Then an input x that is
not a multiple of n’ bits long will hash to the same value as .(x∥0)

Padding for Merkle-Damgard

h

x̃1

z0
z1

h

x̃2

z2
h

x̃3

z3
h

x̃4

z4

This class is being recorded

For instance, suppose we pad with 0s. Then an input x that is
not a multiple of n’ bits long will hash to the same value as .(x∥0)
Padding Construction:

Construct by following x by 1 and then a string of 0s,
followed by the length of x. Choose a number of 0s so that
the length of is a multiple of n’. (Length string is always the
same size, bits long.)
Then break up into t pieces of n’ bits each.

x̃

x̃
ℓ ≤ n′￼

x̃ x̃i

Then , where .H(x) = zt zi = h(zi−1, x̃i)

Padding Examples

This class is being recorded

Examples: Suppose n’ = 6, = 3.ℓ

Padding Examples

This class is being recorded

Examples: Suppose n’ = 6, = 3.ℓ

Input x = 1101: Length is 4, written as 100 in binary. Then we
will need 2 blocks, total length 12. Thus, we need 5 more
padding bits 10000.

x̃ = 110110000100, x̃1 = 110110, x̃2 = 000100

Padding Examples

This class is being recorded

Examples: Suppose n’ = 6, = 3.ℓ

Input x = 1101: Length is 4, written as 100 in binary. Then we
will need 2 blocks, total length 12. Thus, we need 5 more
padding bits 10000.

x̃ = 110110000100, x̃1 = 110110, x̃2 = 000100
Input x = 1101100: Length is 7, written as 111 in binary. Again
we need 2 blocks, total length 12. Thus, we need only 2 more
padding bits 10.

x̃ = 110110010111, x̃1 = 110110, x̃2 = 010111

Padding Examples

This class is being recorded

Examples: Suppose n’ = 6, = 3.ℓ

Input x = 1101: Length is 4, written as 100 in binary. Then we
will need 2 blocks, total length 12. Thus, we need 5 more
padding bits 10000.

x̃ = 110110000100, x̃1 = 110110, x̃2 = 000100
Input x = 1101100: Length is 7, written as 111 in binary. Again
we need 2 blocks, total length 12. Thus, we need only 2 more
padding bits 10.

x̃ = 110110010111, x̃1 = 110110, x̃2 = 010111

Input x = 10: Length is 2, written as 010 in binary. Now we can
manage with 1 block, total length 6. Thus, we need only 1 more
padding bit 1.

x̃ = 101010, x̃1 = 101010

Merkle-Damgard security

h

x̃1

z0
z1

h

x̃2

z2
h

x̃3

z3
h

x̃4

z4

Proof Idea:

This class is being recorded

Theorem: If h(z,x) is collision-resistant, then H(x) given by the
Merkle-Damgard construction is collision-resistant as well.

Merkle-Damgard security

h

x̃1

z0
z1

h

x̃2

z2
h

x̃3

z3
h

x̃4

z4

Proof Idea:

Suppose we have two inputs x, x’ to H such that .zi = z′￼i

This class is being recorded

Theorem: If h(z,x) is collision-resistant, then H(x) given by the
Merkle-Damgard construction is collision-resistant as well.

Merkle-Damgard security

h

x̃1

z0
z1

h

x̃2

z2
h

x̃3

z3
h

x̃4

z4

Proof Idea:

Suppose we have two inputs x, x’ to H such that .zi = z′￼i

Recall that . zi = h(zi−1, x̃i) = z′￼i = h(z′￼i−1, x̃′￼i)

This class is being recorded

Theorem: If h(z,x) is collision-resistant, then H(x) given by the
Merkle-Damgard construction is collision-resistant as well.

Merkle-Damgard security

h

x̃1

z0
z1

h

x̃2

z2
h

x̃3

z3
h

x̃4

z4

Proof Idea:

Suppose we have two inputs x, x’ to H such that .zi = z′￼i

Recall that . zi = h(zi−1, x̃i) = z′￼i = h(z′￼i−1, x̃′￼i)
• If , then we have a collision in h.(zi−1, x̃i) ≠ (z′￼i−1, x̃′￼i)

This class is being recorded

Theorem: If h(z,x) is collision-resistant, then H(x) given by the
Merkle-Damgard construction is collision-resistant as well.

Merkle-Damgard security

h

x̃1

z0
z1

h

x̃2

z2
h

x̃3

z3
h

x̃4

z4

Proof Idea:

Suppose we have two inputs x, x’ to H such that .zi = z′￼i

Recall that . zi = h(zi−1, x̃i) = z′￼i = h(z′￼i−1, x̃′￼i)
• If , then we have a collision in h.(zi−1, x̃i) ≠ (z′￼i−1, x̃′￼i)
• Otherwise and we can apply induction to either

find a collision in h or show that x = x’.
zi−1 = z′￼i−1

This class is being recorded

Theorem: If h(z,x) is collision-resistant, then H(x) given by the
Merkle-Damgard construction is collision-resistant as well.

Making a Compression Function

This class is being recorded

A common strategy: the Davies-Meyer construction

Given block cipher , letFk(x)

h(z, x) = Fz(x) ⊕ x

(This doesn’t always work. The block cipher F needs to be
sufficiently similar to an ideal cipher, which essentially has no
exploitable internal structure.)

Practical Ciphers

Examples of hash functions constructed via Davies-Meyer
and Merkle-Damgard:

• MD5 (no longer secure)
• SHA-1 (no longer secure)
• SHA-2 (still OK)

These hash functions use their own block ciphers which involve
multiple rounds, in each of which the input is shifted cyclically
with some minor changes to most of it and major change to one
segment.

• SHA-3 is the newest standard and it is based on different
principles.

This class is being recorded

Birthday Attacks

This class is being recorded

Recall the birthday paradox: With N possible dates for birthdays,
with high probability, a group of M people has two people with
the same birthday if .M ≈ N

Birthday Attacks

This class is being recorded

Recall the birthday paradox: With N possible dates for birthdays,
with high probability, a group of M people has two people with
the same birthday if .M ≈ N

We can take advantage of this to look for collisions in a hash
function: If the hash function H(x) has s-bit output, we will
find a collision after computing H on about random
input values.

2s/2

Birthday Attacks

This class is being recorded

Recall the birthday paradox: With N possible dates for birthdays,
with high probability, a group of M people has two people with
the same birthday if .M ≈ N

We can take advantage of this to look for collisions in a hash
function: If the hash function H(x) has s-bit output, we will
find a collision after computing H on about random
input values.

2s/2

Consequence: A hash function needs to have output size twice as
long as a block cipher to be secure in practice!

Birthday Attacks

This class is being recorded

Recall the birthday paradox: With N possible dates for birthdays,
with high probability, a group of M people has two people with
the same birthday if .M ≈ N

We can take advantage of this to look for collisions in a hash
function: If the hash function H(x) has s-bit output, we will
find a collision after computing H on about random
input values.

2s/2

Consequence: A hash function needs to have output size twice as
long as a block cipher to be secure in practice!

In particular, SHA-2 and SHA-3 have 224-bit and higher output
sizes, compared to 128-bit block size and minimum key length for
AES.

Quantum Birthday Attacks

This class is being recorded

There is a quantum algorithm to find collisions with only
function evaluations on a quantum computer. Thus, if quantum
computers are a concern, we need to increase hash function
sizes further to keep the same security.

O(2s/3)

Specifically:

Quantum Birthday Attacks

This class is being recorded

There is a quantum algorithm to find collisions with only
function evaluations on a quantum computer. Thus, if quantum
computers are a concern, we need to increase hash function
sizes further to keep the same security.

O(2s/3)

Specifically:

For SHA-2 or SHA-3, 224-bit outputs means a classical
computer needs about hash function evaluations to
find a collision.

2112

Quantum Birthday Attacks

This class is being recorded

There is a quantum algorithm to find collisions with only
function evaluations on a quantum computer. Thus, if quantum
computers are a concern, we need to increase hash function
sizes further to keep the same security.

O(2s/3)

Specifically:

For SHA-2 or SHA-3, 224-bit outputs means a classical
computer needs about hash function evaluations to
find a collision.

2112

A quantum computer would need only about
hash function evaluations.

2224/3 < 275

Quantum Birthday Attacks

This class is being recorded

There is a quantum algorithm to find collisions with only
function evaluations on a quantum computer. Thus, if quantum
computers are a concern, we need to increase hash function
sizes further to keep the same security.

O(2s/3)

Specifically:

For SHA-2 or SHA-3, 224-bit outputs means a classical
computer needs about hash function evaluations to
find a collision.

2112

A quantum computer would need only about
hash function evaluations.

2224/3 < 275

A hash function with 336-bit outputs would need hash
function evaluations on a quantum computer, and could thus
have post-quantum security comparable to SHA-2 or
SHA-3 vs. classical attacks.

2112

Key Derivation

Recall in the RSA-based KEM, we needed to pick a key derivation
function to convert the key to bits. We also needed it with
Diffie-Hellman.

This class is being recorded

Gen: Pick a (public) key derivation function H(x), then as usual
for RSA, i.e., generate two random primes p and q which are s
bits long. Let N = pq. Choose s.t. .
The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*N ed = 1 mod φ(N)

Encaps: Choose random x. The ciphertext is and
the key is H(x).

c = xe mod N

Decaps: Given c and d, compute . Then the key is
H(x’).

x′￼= cd mod N

RSA KEM:

Hash Functions for Key Derivation

This class is being recorded

One solution (although not the only one) is to use a hash
function for key derivation.

Public key
output

Actual
key

k H(k)

We don’t care so much about collisions here. Instead what we
want is that H(k) should be roughly uniformly distributed and
that any partial information Eve might have about k should get
squeezed out, so she has little information about H(k).

These come from a stronger property of the hash function,
namely that it can be well modeled by a random oracle.

Hash Functions as Random Oracles

This class is being recorded

A random oracle is a random function which is implemented as a
black box. That is, we count complexity by how many times the
function is evaluated.

If H(x) is a random oracle, knowing the value of for
any set doesn’t help you predict H(y) if .

H(xi)
{xi} y ∉ {xi}

Hash Functions as Random Oracles

This class is being recorded

A random oracle is a random function which is implemented as a
black box. That is, we count complexity by how many times the
function is evaluated.

If H(x) is a random oracle, knowing the value of for
any set doesn’t help you predict H(y) if .

H(xi)
{xi} y ∉ {xi}

A random oracle is automatically collision resistant:

Hash Functions as Random Oracles

This class is being recorded

A random oracle is a random function which is implemented as a
black box. That is, we count complexity by how many times the
function is evaluated.

If H(x) is a random oracle, knowing the value of for
any set doesn’t help you predict H(y) if .

H(xi)
{xi} y ∉ {xi}

A random oracle is automatically collision resistant:

For any pair H(x), H(y) (), the probability that
 is exactly , where H has an s-bit output.

This is precisely the limit on collisions set by birthday
attacks.

x ≠ y
H(x) = H(y) 2−s

Hash Functions as Random Oracles

This class is being recorded

A random oracle is a random function which is implemented as a
black box. That is, we count complexity by how many times the
function is evaluated.

If H(x) is a random oracle, knowing the value of for
any set doesn’t help you predict H(y) if .

H(xi)
{xi} y ∉ {xi}

A random oracle is automatically collision resistant:

For any pair H(x), H(y) (), the probability that
 is exactly , where H has an s-bit output.

This is precisely the limit on collisions set by birthday
attacks.

x ≠ y
H(x) = H(y) 2−s

But collision resistance doesn’t necessarily imply that the
hash function is a good random oracle.

Random Oracle vs. Pseudorandom

This class is being recorded

A random oracle can be used to make a pseudorandom
generator or function, but they are not the same.

Random Oracle Pseudorandom Function

• No key
• Can be evaluated by

everyone
• Outputs always look

random

• Keyed
• Evaluated only using the

key
• Outputs look random

only if key is unknown.

Both are things that look like random functions, but in different
contexts.

What Does it Mean to be RO?

This class is being recorded

When we say a hash function is “well-modeled as a random
oracle,” we mean that it has no useful structure for an attacker
to exploit.

It means

• The output strings have no special properties and no
discernible correlations.

• Birthday attacks are the best or only way to find collisions.
• Computing intermediate values (i.e., stopping the evaluation

partway through) is not useful for speeding up searches.
• In general, brute force attacks are the best or only attacks

that will work.

Any real function must fail to match a random oracle to some
degree, but some functions seem to be close enough in practice
for security proofs based on random oracles to be useful.

Key Derivation and Random Oracle

This class is being recorded

Public key
output

Actual
key

k H(k)

If H(k) is well-approximated as a random oracle, then it is a
good key derivation function:

• All output strings are equally likely, averaged over H.
• If Eve has narrowed k down to N possibilities, there are

still N possibilities for H(k), but they are completely
unrelated to each other. E.g., even if Eve knows the first
few bits of k, she does not know any bits of H(k).

