
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 21
Daniel Gottesman

Administrative

This class is being recorded

Problem set #8 (a programming assignment) is out, due next
Thursday at noon. Problem set #7 was due earlier today.

Hash Functions

This class is being recorded

A hash function H(x) maps the input x to a shorter string. The
main cryptographic property of hash functions is collision
resistance: it is hard to find a pair x, x’ such that H(x) = H(x’).

But sometimes we also want to consider weaker or
stronger properties of hash functions. One such property
is that sometimes we abstract a hash function into a
random oracle.

A random oracle is just a random function to which we have
only black-box access.

When we say a hash function can be modeled as a random
oracle, we are saying that it has no exploitable structure.

Hash Functions for MACs

This class is being recorded

Given a hash function H(x) and a fixed-size MAC Mac(k,m), we
can make a new MAC:

Mac′￼(k, m) = Mac(k, H(m))

This lets us efficiently authenticate long messages with short tags
and keys.

If Eve can’t find a collision, to forge a new message she will
have to produce a new value of H(m), which in turn
requires a new tag.

Uses the property of collision resistance:

Hash Functions for Key Derivation

Uses random oracle model:

This class is being recorded

Suppose Alice and Bob do a public key protocol or have some
other method to derive a key k which is not uniformly
distributed. Or perhaps Eve has learned partial information
about the key k (so from Eve’s point of view, k is no longer
uniformly random).

If H is a random oracle, then H(k) is close to uniformly
random as long as k has a significant random element to its
distribution.

Each possible value of k gives an uncorrelated value of
H(k). We can measure randomness via entropy (in this
case, min-entropy). The random oracle preserves the
entropy but concentrates it into fewer bits.

Hash Functions for Fingerprinting

This class is being recorded

We have a long list of files. How can we determine if two of
them are the same?

Hash Functions for Fingerprinting

This class is being recorded

Suppose we have n files each of length L. Find (i,j)
such that or determine that there is no such
pairs.

Ai
Ai = Aj

We have a long list of files. How can we determine if two of
them are the same?

Hash Functions for Fingerprinting

This class is being recorded

Suppose we have n files each of length L. Find (i,j)
such that or determine that there is no such
pairs.

Ai
Ai = Aj

We have a long list of files. How can we determine if two of
them are the same?

Comparing a single pair of files directly, character
by character, takes time 2L.

Hash Functions for Fingerprinting

This class is being recorded

Suppose we have n files each of length L. Find (i,j)
such that or determine that there is no such
pairs.

Ai
Ai = Aj

We have a long list of files. How can we determine if two of
them are the same?

Comparing a single pair of files directly, character
by character, takes time 2L.

There are pairs of files to check.O(n2)

Hash Functions for Fingerprinting

This class is being recorded

Suppose we have n files each of length L. Find (i,j)
such that or determine that there is no such
pairs.

Ai
Ai = Aj

Thus, directly comparing every character between
each pair of files takes time .O(n2L)

We have a long list of files. How can we determine if two of
them are the same?

Comparing a single pair of files directly, character
by character, takes time 2L.

There are pairs of files to check.O(n2)

Hash Functions for Fingerprinting

This class is being recorded

We can do better using hash functions because of the collision
resistance property:

Hash Functions for Fingerprinting

This class is being recorded

We can do better using hash functions because of the collision
resistance property:

Suppose we first calculate a hash of each file.
Each hash value has length .

hi = H(Ai)
hi s < L

Hash Functions for Fingerprinting

This class is being recorded

We can do better using hash functions because of the collision
resistance property:

Suppose we first calculate a hash of each file.
Each hash value has length .

hi = H(Ai)
hi s < L

Comparing two hash values takes only time 2s.

Hash Functions for Fingerprinting

This class is being recorded

We can do better using hash functions because of the collision
resistance property:

Suppose we first calculate a hash of each file.
Each hash value has length .

hi = H(Ai)
hi s < L

Comparing two hash values takes only time 2s.

Computing the hash values takes time (or
possibly if the hash is not very fast to compute).

O(nL)
O(nLa)

Hash Functions for Fingerprinting

This class is being recorded

The total time is then , which is less than
 when n is large.

O(n2s + nL)
O(n2L)

We can do better using hash functions because of the collision
resistance property:

Suppose we first calculate a hash of each file.
Each hash value has length .

hi = H(Ai)
hi s < L

Comparing two hash values takes only time 2s.

Computing the hash values takes time (or
possibly if the hash is not very fast to compute).

O(nL)
O(nLa)

Hash Functions for Fingerprinting

This class is being recorded

The total time is then , which is less than
 when n is large.

O(n2s + nL)
O(n2L)

This algorithm fails if two different documents and
have the same hash value — which would
be a collision in the hash function. A collision is
automatic if .

Ai Aj
H(Ai) = H(Aj)

s < log n

We can do better using hash functions because of the collision
resistance property:

Suppose we first calculate a hash of each file.
Each hash value has length .

hi = H(Ai)
hi s < L

Comparing two hash values takes only time 2s.

Computing the hash values takes time (or
possibly if the hash is not very fast to compute).

O(nL)
O(nLa)

Applications of Fingerprinting

This class is being recorded

File fingerprinting has many applications:

• Data deduplication: Identify extra copies of a file already
stored in the system.

• Virus scanning: Identify if newly received files exactly match
any known malware.

• Detect copyright violation or plagiarism: Identify an exact
copy of anything from a list of works.

• Track sensitive information: Keep track of files containing
sensitive information such as medical records to be sure
they aren’t accidentally sent somewhere insecure.

But it is not very good for the virus scanning or copyright
violation applications: any change in the file will produce a
different hash.

These applications don’t usually require cryptographic strength
hash functions.

Hash Functions for Password Files

This class is being recorded

When you enter a password into a computer, how does the
computer know if the password is correct or not?

Uses random oracle model:

Hash Functions for Password Files

This class is being recorded

When you enter a password into a computer, how does the
computer know if the password is correct or not?

The computer stores a list of everyone’s passwords.

Uses random oracle model:

Hash Functions for Password Files

This class is being recorded

When you enter a password into a computer, how does the
computer know if the password is correct or not?

The computer stores a list of everyone’s passwords.

Uses random oracle model:

But if a hacker gets access to this list, everyone’s
password is compromised.

Password files are a prime hacker target.

Hash Functions for Password Files

This class is being recorded

When you enter a password into a computer, how does the
computer know if the password is correct or not?

The computer stores a list of everyone’s passwords.

Uses random oracle model:

But if a hacker gets access to this list, everyone’s
password is compromised.

Password files are a prime hacker target.

Instead, store hashes of the passwords. This:

• Is more efficient
• Conceals the file contents unless the attacker can invert

the hash function

So what we need is for the hash function to be a one-way
function (easy to compute, hard to invert).

Salt for Password Files

This class is being recorded

Since the hash function itself is known, one attack is to
preprocess by making a list of hashes of common passwords.

Unfortunately, many people’s passwords are somewhat weak.
With pre-computed hashes, the hacker can compare each
hash to every password in the file.

Salt for Password Files

This class is being recorded

Since the hash function itself is known, one attack is to
preprocess by making a list of hashes of common passwords.

Unfortunately, many people’s passwords are somewhat weak.
With pre-computed hashes, the hacker can compare each
hash to every password in the file.

To foil this attack, passwords are normally hashed with a unique
random salt:

Password x

Password file stores (username, salt, H(salt || x))

Salt for Password Files

This class is being recorded

Since the hash function itself is known, one attack is to
preprocess by making a list of hashes of common passwords.

Unfortunately, many people’s passwords are somewhat weak.
With pre-computed hashes, the hacker can compare each
hash to every password in the file.

To foil this attack, passwords are normally hashed with a unique
random salt:

Password x

Password file stores (username, salt, H(salt || x))

When the user types in their password, the system retrieves the
salt for this specific user and computes the hash H(salt || x) to
compare with the password file.

Salt for Password Files

This class is being recorded

Since the hash function itself is known, one attack is to
preprocess by making a list of hashes of common passwords.

Unfortunately, many people’s passwords are somewhat weak.
With pre-computed hashes, the hacker can compare each
hash to every password in the file.

To foil this attack, passwords are normally hashed with a unique
random salt:

Password x

Password file stores (username, salt, H(salt || x))

When the user types in their password, the system retrieves the
salt for this specific user and computes the hash H(salt || x) to
compare with the password file.

An attacker can do the same thing for common passwords, but
has to do so separately for each user since their salts are different.

Hash Functions for Verifying Files

This class is being recorded

Suppose you want to store some files on a cloud server but you
want to be able to verify that the files haven’t been corrupted
when you retrieve them.

Alice

Storing the original file would remove the point of using the
cloud storage. (Saving space, for instance.)

File f

H(f)

But Alice can locally store a fingerprint H(f), which is much
shorter, and verify the file easily once it is retrieved.

Storing Many Files

This class is being recorded

Alice
H(f1), H(f2), …

Files f1, f2, …

But what if Alice wants to store many files on the cloud and have
the ability to check any of them?

She could store the fingerprint of each file, but that starts to get
large. If there are n files, she would be storing O(n) bits.

Storing Two Files

This class is being recorded

Alice

Files f1, f2
fi, H(f1), H(f2)

H(H(f1), H(f2))

If Alice wants to store just 2 files on the cloud, she can save
space by keeping just . When she retrieves a file
, she can also ask the cloud for hashes , and

whichever file she wanted.

H(H(f1), H(f2))
fi H(f1) H(f2)

To verify, Alice computes and verifies the hash value.
Then she also computes .

H(fi)
H(H(f1), H(f2))

Storing Many Files Efficiently

This class is being recorded

Now suppose Alice is storing n files on the cloud.

h1 h2 h3 h4 h5 h6 h7 h8

h12 = H(h1, h2) h34 = H(h3, h4) h56 = H(h5, h6) h78 = H(h7, h8)

h1234 = H(h12, h34) h5678 = H(h56, h78)

h1…8 = H(h1234, h5678)

hi = H(fi)

She can initially compute hashes in a tree structure and store
only a single hash, the root of the tree (in the example).h1…8

Retrieving One of Many Files

This class is being recorded

h3 h4

h12 = H(h1, h2) h34 = H(h3, h4)

h1234 = H(h12, h34) h5678 = H(h56, h78)

h1…8 = H(h1234, h5678)

When Alice wishes to retrieve a file, she asks for the file and
the cloud server returns it, along with , and all of the
hashes above it in the tree. For each of those hashes, the cloud
server also returns the other child so that Alice can verify all the
needed hashes.

fi
hi = h(fi)

Retrieving One of Many Files

This class is being recorded

h3 h4

h12 = H(h1, h2) h34 = H(h3, h4)

h1234 = H(h12, h34) h5678 = H(h56, h78)

h1…8 = H(h1234, h5678)

That is, in this example, Alice asks for the file , and the server
returns

f3

(f3, h4, h12, h5678)

Alice can then compute , , , and then , which
she compares with her stored value for .

h3 h34 h1234 h1…8
h1…8

Security of File Storage

This class is being recorded

Alice’s concern is that the file she retrieves is identical to the
one she originally stored.

If the cloud server wants to change the file , it will need to find
a collision for one of the hash values , , , or .
Otherwise, the only way to match is to send the correct

 and to return values consistent with the correct .

f3
h3 h34 h1234 h1…8

h1…8
h5678 h1234

h3 h4

h12 = H(h1, h2) h34 = H(h3, h4)

h1234 = H(h12, h34) h5678 = H(h56, h78)

h1…8 = H(h1234, h5678)

Security of File Storage

This class is being recorded

Alice’s concern is that the file she retrieves is identical to the
one she originally stored.

But if is going to have the correct value and there is no
collision, and both must be correct also, which means
that and must also have the correct values …

h1234
h12 h34

h3 h4

h3 h4

h12 = H(h1, h2) h34 = H(h3, h4)

h1234 = H(h12, h34) h5678 = H(h56, h78)

h1…8 = H(h1234, h5678)

Security of File Storage

This class is being recorded

Alice’s concern is that the file she retrieves is identical to the
one she originally stored.

But if is going to have the correct value and there is no
collision, and both must be correct also, which means
that and must also have the correct values …

h1234
h12 h34

h3 h4

h3 h4

h12 = H(h1, h2) h34 = H(h3, h4)

h1234 = H(h12, h34) h5678 = H(h56, h78)

h1…8 = H(h1234, h5678)

and if is correct and there is no collision, must be correct.h3 f3

File Storage Summary

This class is being recorded

This method is known as a Merkle tree.

Alice only needs to store one hash value.

When she retrieves a single file, she receives an additional
 hash values.O(log n)

This compares to stored hash values if she tries to
store them all.

O(n)

Note that this is a different problem from a MAC in two ways:

• Alice doesn’t have to worry above the authenticity of the
hash that she keeps, so she doesn’t need to authenticate it.

• Alice is only concerned about verifying part of the full set
of stored files rather than the whole set.

Multiparty Computation

A different type of cryptographic protocol is a secure multiparty
computation, in which two or more people are trying to perform
some computational task but don’t trust each other.

This class is being recorded

This differs from the situation in the communication
protocols we have seen so far in that the adversary
controls one (or more) of the expected users of the
protocol.

There are a wide variety of multiparty computation protocols.
An example includes zero-knowledge proofs, a method by which
it is possible to convince someone of a fact without revealing any
information about the proof itself.

Bit Commitment

This class is being recorded

A useful cryptographic primitive for multiparty computations is
bit commitment.

Alice Bob

bit b

Commit

Open

b

In the Commit phase, Alice sends Bob a bit b encoded in some
way, in a virtual lockbox which Bob cannot open to learn b.

In the Open phase, Alice sends Bob the virtual key to open the
lockbox, revealing b. Alice should not be able to change b from
the value she originally put in the lockbox.

Why Bit Commitment?

This class is being recorded

The main application of bit commitment is as a cryptographic
primitive useful for building more complicated multiparty
computation protocols.

However, it can occasionally be useful by itself.

Example: Suppose I have a good algorithm to predict the stock
market. I want to convince you that I can do this but I don’t
want to reveal what will happen since you haven’t paid me.

Solution: I commit to a prediction about what the stock
market will do today. You won’t be able to see it until the
opening phase, which happens after the day ends. But I
can’t change the value which I committed to before the day
started, so once the commitment is opened, you can see
that I predicted correctly.

Hash Functions for Commitment

This class is being recorded

Commit Phase: Alice chooses random r and then sends Bob
 to commit to the bit b.H(b∥r)

Open Phase: Alice sends to Bob b and r. Then Bob computes
 to verify the commitment.H(b∥r)

The security requires that Bob not be able to determine b
before the open phase. (The protocol is hiding or
concealing.) Note that it is possible that the commitment is
never opened, and it should continue to be binding
indefinitely.

Security also requires that Alice not be able to open the
commitment to more than one possible value. (The
protocol is binding.)

Security of Commitment with Hash

This class is being recorded

Alice Bob

bit b

Commit

Open

b
H(b∥r)

b, r

The hiding property follows if Bob is unable to invert the hash
function to learn b. This is certainly true if the hash function is
modeled as a random oracle. (But you only need it to be a one-
way function.)

The binding property follows from the collision resistance of the
hash function: To open the commitment with a different b, Alice
would need to find (b’, r’) with .H(b, r) = H(b′￼, r′￼)

