Problem set #8 (a programming assignment) is due Thursday at noon. There will be a new problem set assigned on Thursday, due Nov. 30.

As announced yesterday, there will be no classes next Tuesday (Nov. 21).
Recall that for message authentication, Eve is able to change messages sent between Alice and Bob. How does this threat model affect encryption?

Now Eve has the ability not only to read Alice’s transmissions, but also to alter them.
One thing we have to worry about: **Malleability.** Eve can still change the message in predictable ways even if she can’t read it.

One-time pad:

<table>
<thead>
<tr>
<th>Key:</th>
<th>00101000101110101010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message:</td>
<td>10111110010011001100</td>
</tr>
<tr>
<td>Ciphertext:</td>
<td>10010110111101100110</td>
</tr>
</tbody>
</table>

Alteration:

| 10010110111100100110 |

Decryption:

| 10111110010010001100 |

Changing the ciphertext produces a predictable change in the decrypted plaintext.
Plain RSA and Padded RSA are also malleable:

Suppose Alice sends Bob the ciphertext $c = \tilde{m}^e \mod N$.

Eve can easily create $c' = 2^e c = (2\tilde{m})^e \mod N$.

Bob then decrypts the message $2\tilde{m}$ instead of \tilde{m}.

Eve can multiply the message by any constant factor in this way.
Malleability of RSA

Plain RSA and Padded RSA are also malleable:

Suppose Alice sends Bob the ciphertext \(c = \tilde{m}^e \mod N \).

Eve can easily create \(c' = 2^e c = (2\tilde{m})^e \mod N \).

Bob then decrypts the message \(2\tilde{m} \) instead of \(\tilde{m} \).

Eve can multiply the message by any constant factor in this way.

This is the padded message \(\tilde{m} \) — but if the first bit of padding is 0, once the padding is stripped off, the message is also changed to \(2m \) (losing the high bit). If the first bit of padding is 1, our new padded message is \(2\tilde{m} \mod N = 2\tilde{m} - N \). This is still a predictable change to \(m \).
Why do we care about malleability if Eve doesn’t learn the secret?

For the same reasons we care about authenticity: Bob might take incorrect and damaging actions if he acts on an altered message.
Malleability is a Threat

Why do we care about malleability if Eve doesn’t learn the secret?

For the same reasons we care about authenticity: Bob might take incorrect and damaging actions if he acts on an altered message.

• Changing the URL in an email message might direct you to website with malware.
Malleability is a Threat

Why do we care about malleability if Eve doesn’t learn the secret?

For the same reasons we care about authenticity: Bob might take incorrect and damaging actions if he acts on an altered message.

• Changing the URL in an email message might direct you to website with malware.
• Changing the votes in an encrypted ballot.
Malleability is a Threat

Why do we care about malleability if Eve doesn’t learn the secret?

For the same reasons we care about authenticity: Bob might take incorrect and damaging actions if he acts on an altered message.

• Changing the URL in an email message might direct you to a website with malware.
• Changing the votes in an encrypted ballot.
• Changing the dollar amount or account number in a message to a bank might result in too much money being sent or the money being sent to Eve.
Malleability is a Threat

Why do we care about malleability if Eve doesn’t learn the secret?

For the same reasons we care about authenticity: Bob might take incorrect and damaging actions if he acts on an altered message.

• Changing the URL in an email message might direct you to a website with malware.
• Changing the votes in an encrypted ballot.
• Changing the dollar amount or account number in a message to a bank might result in too much money being sent or the money being sent to Eve.
• Changing orders to a military unit might result in the unit being out of position.
If Bob reacts differently to different messages, malleability can also result in loss of secrecy!
If Bob reacts differently to different messages, malleability can also result in loss of secrecy!

Example:

Alice sends a message to Bob using AES with CBC-mode. Since the message might not be an exact multiple of the block size, it must be **padded** to reach the right size.
Padding Oracle Attack

If Bob reacts differently to different messages, malleability can also result in loss of secrecy!

Example:

Alice sends a message to Bob using AES with CBC-mode. Since the message might not be an exact multiple of the block size, it must be padded to reach the right size.

Suppose we pad in this way (which is standard, PKCS #7):

If \(b \) bytes are needed to reach the block size, fill those \(b \) blocks all with the number \(b \). Always add at least 1 byte. (This is then easy for the receiver to strip off.)

If Bob receives a message which is not correctly padded, he returns an error message: “Please resend.”
This example will be written using hexadecimal, base 16

\(A=10, B=11, C=12, D=13, E=14, F=15 \)

2 hexadecimal numbers = 1 byte (8 bits, 0-255)

Example message:

Blocks of size 3 bytes

\[
\begin{array}{c}
D3 \quad 53 \quad 52 \\
\hline
D3 \quad 4C \quad CC \quad D3
\end{array}
\]
This example will be written using hexadecimal, base 16

(A=10, B=11, C=12, D=13, E=14, F=15)

2 hexadecimal numbers = 1 byte (8 bits, 0-255)

Example message:

Blocks of size 3 bytes

```
D3 53 52  D3 4C  CC  D3
```

We need 2 more bytes, so we pad with 02 02:

```
D3 53 52  D3 4C  CC  D3  02  02
```
This example will be written using hexadecimal, base 16

(A=10, B=11, C=12, D=13, E=14, F=15)

2 hexadecimal numbers = 1 byte (8 bits, 0-255)

Example message:

Blocks of size 3 bytes

\[
\begin{array}{cccc}
D3 & 53 & 52 & \\
\end{array}
\begin{array}{cccc}
D3 & 4C & CC & D3
\end{array}
\]

We need 2 more bytes, so we pad with 02 02:

\[
\begin{array}{cccc}
D3 & 53 & 52 & \\
\end{array}
\begin{array}{cccc}
D3 & 4C & CC & D3 & 02 & 02
\end{array}
\]

To remove padding, Bob looks at last byte of last block. He sees 02, so he knows to remove the last two bytes.
CBC Mode

Recall CBC mode. Decryption runs this backwards.

Ciphertext: c_1, c_2, c_3

IV $\rightarrow F_k \rightarrow m_1$

IV $\rightarrow F_k \rightarrow m_2$

IV $\rightarrow F_k \rightarrow m_3$

This class is being recorded
Recall CBC mode. Decryption runs this backwards.

CBC Mode

This class is being recorded
Recall CBC mode. Decryption runs this backwards.

Ciphertext: c_1, c_2, c_3

Eve

This class is being recorded
CBC Mode

Recall CBC mode. Decryption runs this backwards.

Ciphertext: $c_1 \oplus d$

This class is being recorded
CBC Mode

Recall CBC mode. Decryption runs this backwards.

Ciphertext: $c_1 \oplus m_1$, $c_2 \oplus m_2$, $c_3 \oplus m_3 \oplus d$

This class is being recorded
CBC Mode

Recall CBC mode. Decryption runs this backwards.

Malleable: Eve can add desired values to message.
If Eve can alter sent messages, she can learn the padding length.
If Eve can alter sent messages, she can learn the padding length.
If Eve can alter sent messages, she can learn the padding length.
If Eve can alter sent messages, she can learn the padding length.
If Eve can alter sent messages, she can learn the padding length.

Ciphertext: A1 3F 6A EE 15 66 58 0D 35 D3 53 52 D3 4C CC D3 02 02

No error returned: Padding < 3 bytes
If Eve can alter sent messages, she can learn the padding length.

This class is being recorded
If Eve can alter sent messages, she can learn the padding length.
If Eve can alter sent messages, she can learn the padding length.
If Eve can alter sent messages, she can learn the padding length.

Error returned:
Padding = 2 bytes
Moreover, Eve can break the encryption.
Moreover, Eve can break the encryption.

Ciphertext: A1 3F 6A EE 15 66 58 0D 35 D3 53 52 D3 4C CC D3 02 02

This class is being recorded
Moreover, Eve can break the encryption.

This class is being recorded
Moreover, Eve can break the encryption.

Error returned:
Last message byte is not 02
(If it were, the message would now be padded correctly.)
Moreover, Eve can break the encryption.
Moreover, Eve can break the encryption.
Moreover, Eve can break the encryption.

This class is being recorded
Moreover, Eve can break the encryption.

Error returned:
Last message byte is not 01
Moreover, Eve can break the encryption.

No error:
Last message byte is D3
Eve can continue onto the next block:
Eve can continue onto the next block:

\[
\begin{align*}
\text{Ciphertext:} & \quad 58 \quad 0D \quad 35 \quad EE \quad 15 \quad 66 \\
\text{IV} & \quad 36
\end{align*}
\]
Eve can continue onto the next block:

Error returned:
Previous message byte is not 00
If the block contains N bytes, Eve needs at most N attempts to learn the amount of padding.
Learning the Full Message

If the block contains N bytes, Eve needs at most N attempts to learn the amount of padding.

After that, it takes at most 256 attempts for Eve to learn one byte of the message.
Learning the Full Message

If the block contains N bytes, Eve needs at most N attempts to learn the amount of padding.

After that, it takes at most 256 attempts for Eve to learn one byte of the message.

If the message consists of L bytes, Eve learns the whole message after sending at most $N + 256L$ trial messages.
If the block contains N bytes, Eve needs at most N attempts to learn the amount of padding.

After that, it takes at most 256 attempts for Eve to learn one byte of the message.

If the message consists of L bytes, Eve learns the whole message after sending at most $N + 256L$ trial messages.

Compare this to trying every possible key for a 128-bit key.
Learning the Full Message

If the block contains \(N \) bytes, Eve needs at most \(N \) attempts to learn the amount of padding.

After that, it takes at most 256 attempts for Eve to learn one byte of the message.

If the message consists of \(L \) bytes, Eve learns the whole message after sending at most \(N + 256 \) \(L \) trial messages.

Compare this to trying every possible key for a 128-bit key.

This kind of attack has been demonstrated in real systems.

Not returning an error message can help, but you have to be sure that the error information is not available through a side-channel attack (e.g., timing attack).
What Threat Model to Use?

Bob’s behavior may well reveal partial information about the messages he decrypts. How can we define the types of information that Eve might learn?
What Threat Model to Use?

Bob’s behavior may well reveal partial information about the messages he decrypts. How can we define the types of information that Eve might learn?

Recall: When defining threat models, we want to be conservative and give Eve as much power as we can. Otherwise, something we have overlooked might form the basis for an attack.
What Threat Model to Use?

Bob’s behavior may well reveal partial information about the messages he decrypts. How can we define the types of information that Eve might learn?

Recall: When defining threat models, we want to be conservative and give Eve as much power as we can. Otherwise, something we have overlooked might form the basis for an attack.

Therefore: We will give Eve access to *decryptions of any ciphertext except the one we are trying to hide.*
What Threat Model to Use?

Bob’s behavior may well reveal partial information about the messages he decrypts. How can we define the types of information that Eve might learn?

Recall: When defining threat models, we want to be conservative and give Eve as much power as we can. Otherwise, something we have overlooked might form the basis for an attack.

Therefore: We will give Eve access to decryptions of any ciphertext except the one we are trying to hide.

In particular, Eve will get access to a Dec oracle, but she is not allowed to query it on the particular ciphertext she is trying to decode.

This is a chosen ciphertext attack (CCA).
An Example of the Threat Model

We are giving Eve access to a Dec oracle to be conservative, but occasionally it might be close to realistic.
We are giving Eve access to a Dec oracle to be conservative, but occasionally it might be close to realistic.

Example: Suppose we have a malleable public key protocol. Eve intercepts an encrypted email with ciphertext c sent from Alice. The *From:* line is in a known location and format; Eve knows the message is from Alice. She may therefore be able to alter that part of the message to give the ciphertext c' corresponding to Alice’s message but sent from Eve.
An Example of the Threat Model

We are giving Eve access to a Dec oracle to be conservative, but occasionally it might be close to realistic.

Example: Suppose we have a malleable public key protocol. Eve intercepts an encrypted email with ciphertext c sent from Alice. The **From:** line is in a known location and format; Eve knows the message is from Alice. She may therefore be able to alter that part of the message to give the ciphertext c' corresponding to Alice’s message but sent from Eve.

Bob decrypts c' and reads the message. Bob has no way of knowing that Eve wasn’t the original sender. Then suppose Bob replies to Eve and his reply email automatically includes the original message. Bob has unwittingly decrypted the ciphertext c' for Eve.
The game to define security is very similar to CPA security except now we allow Eve to have access to the Dec oracle.
Definition: \((\text{Enc}, \text{Dec})\) with security parameter \(s\) is CCA-secure if, for any pair of messages \(m_0\) and \(m_1\) chosen by the adversary (using \(\mathcal{B}(s)\) and oracle access to \(\text{Enc}(k,x)\) and \(\text{Dec}(k,x)\)) and for any efficient attack \(\mathcal{A}(c)\) (also with oracle access to \(\text{Enc}(k,x)\) and \(\text{Dec}(k,x)\) except that \(\mathcal{A}(c)\) may not query \(\text{Dec}(k,c)\) on input \(c\))

\[
|\Pr_k(\mathcal{A}(\text{Enc}(k, m_0)) = 1) - \Pr_k(\mathcal{A}(\text{Enc}(k, m_1)) = 1)| \leq \epsilon(s)
\]

for negligible \(\epsilon(s)\) and probability taken over \(k\) and randomness of the attack and encryptions.

This is the private key definition. For a public key protocol, we give Eve access to the public key so she does not need an \(\text{Enc}(k,x)\) oracle. She still has access to the \(\text{Dec}(k,x)\) oracle.
Non-malleability and CCA security are distinct but related notions.

CCA security implies non-malleability: With a CCA attack, given ciphertext c, Eve can alter it to c' and query the decryption oracle to get the decryption m'. If the protocol is malleable, then Eve knows $m' = f(m)$ and can deduce partial or full information about m.

But CCA security is stronger: Even if the encryption is non-malleable, Eve might have ways to decrypt that don’t involve malleability.
One way we might hope to achieve CCA security is to make sure we can detect any alteration to the ciphertext.

We might expect to achieve this using MACs.

If we achieve this, then Dec can simply reply “invalid” to any ciphertext Eve submits to it and she gets no information from Dec.

This is actually a separate notion from CCA security called unforgeability.

Then unforgeability plus CCA security gives authenticated encryption, which is stronger than either in principle. However, in practice, the most straightforward way to achieve CCA security is via authenticated encryption.
Definition: A encryption protocol \((\text{Gen}, \text{Enc}, \text{Dec})\) with security parameter \(s\) is **unforgeable** if, for any polynomial-time attack \(\mathcal{A}\) with oracle access to \(\text{Enc}(k, m)\), where \(\mathcal{A}\) outputs \(\hat{c}\) with \(\hat{m} = \text{Dec}(\hat{c})\) such that \(\mathcal{A}\) never queried the oracle for \(m = \hat{m}\),

\[
\Pr(\hat{c} \text{ is valid}) \leq \epsilon(s)
\]

where \(\epsilon(s)\) is a negligible function and the probability is averaged over \(k\) generated by \(\text{Gen}\) and the randomness used in any of the functions.
Definition: A private-key encryption scheme provides authenticated encryption if it is CCA-secure and unforgeable.
Authenticated Encryption

Definition: A private-key encryption scheme provides **authenticated encryption** if it is CCA-secure and unforgeable.

To achieve this, we will want to combine an encryption protocol with a MAC protocol.
Authenticated Encryption

Definition: A private-key encryption scheme provides **authenticated encryption** if it is CCA-secure and unforgeable.

To achieve this, we will want to combine an encryption protocol with a MAC protocol.

The MAC will provide the unforgeability. Since Eve cannot successfully find ciphertexts that correspond to messages other than ones she got from the **Enc** oracle or the challenge, the **Dec** oracle does her little good and if the original encryption protocol is CPA secure, we would expect to get CCA security from the combination encryption + MAC.
Definition: A private-key encryption scheme provides **authenticated encryption** if it is CCA-secure and unforgeable.

To achieve this, we will want to combine an encryption protocol with a MAC protocol.

The MAC will provide the unforgeability. Since Eve cannot successfully find ciphertexts that correspond to messages other than ones she got from the *Enc* oracle or the challenge, the *Dec* oracle does her little good and if the original encryption protocol is CPA secure, we would expect to get CCA security from the combination encryption + MAC.

We will still need to be careful. There are a few possibilities for how to do this and not all of them work.
Encrypt and Authenticate

Let \((\text{Enc}, \text{Dec})\) be a CPA-secure encryption scheme and \((\text{Mac}, \text{Vrfy})\) be a secure MAC. Consider the following encryption protocol:

\textbf{Enc’}: Given message \(m\) and keys \(k\) and \(k’\), the ciphertext is \((\text{Enc}(k,m), \text{Mac}(k’,m))\).

\textbf{Dec’}: Given ciphertext \((c,t)\) and keys \((k,k’)\), decrypt to \(m = \text{Dec}(k,c)\) but output \text{Invalid} if \(\text{Vrfy}(k’, m, t)\) is invalid. Otherwise output \(m\).

Vote: Does this always work? (Yes/No/Unknown)
Encrypt and Authenticate

Let \((\text{Enc}, \text{Dec})\) be a CPA-secure encryption scheme and \((\text{Mac}, \text{Vrfy})\) be a secure MAC. Consider the following encryption protocol:

\textbf{Enc’}: Given message \(m\) and keys \(k\) and \(k'\), the ciphertext is \((\text{Enc}(k,m), \text{Mac}(k',m))\).

\textbf{Dec’}: Given ciphertext \((c,t)\) and keys \((k,k')\), decrypt to \(m = \text{Dec}(k,c)\) but output Invalid if \(\text{Vrfy}(k', m, t)\) is invalid. Otherwise output \(m\).

Vote: Does this always work? (Yes/No/Unknown)

Answer: No.

The tag \(\text{Mac}(k',m)\) could contain information about \(m\). If \(\text{Mac}(k',m)\) is deterministic, then it is easy to tell if the same message is repeated twice.
Let \((\text{Enc}, \text{Dec})\) be a CPA-secure encryption scheme and \((\text{Mac}, \text{Vrfy})\) be a secure MAC. Consider the following encryption protocol:

Enc’: Given message \(m\) and keys \(k\) and \(k'\), the ciphertext is \(\text{Enc}(k,(m, \text{Mac}(k',m)))\).

Dec’: Given ciphertext \(c\) and keys \((k,k')\), decrypt to \((m,t) = \text{Dec}(k,c)\) and output \text{Invalid} if \(\text{Vrfy}(k', m, t)\) is invalid. Otherwise output \(m\).

Vote: Does this always work? (Yes/No/Unknown)
Let \((Enc, Dec)\) be a CPA-secure encryption scheme and \((Mac, Vrfy)\) be a secure MAC. Consider the following encryption protocol:

\begin{align*}
Enc': & \text{ Given message } m \text{ and keys } k \text{ and } k', \text{ the ciphertext is } Enc(k, (m, Mac(k', m))). \\
Dec': & \text{ Given ciphertext } c \text{ and keys } (k, k'), \text{ decrypt to } (m, t) = Dec(k, c) \text{ and output Invalid if } Vrfy(k', m, t) \text{ is invalid. Otherwise output } m.
\end{align*}

Vote: Does this always work? (Yes/No/Unknown)

Answer: No, not reliably.

For instance, the padding is analyzed first and if the system returns an error for bad padding (deliberately or through a side channel), the padding oracle attack works still.
Let \((\text{Enc}, \text{Dec})\) be a CPA-secure encryption scheme and \((\text{Mac}, \text{Vrfy})\) be a secure MAC. Consider the following encryption protocol:

\[
\text{Enc'}: \text{Given message } m \text{ and keys } k \text{ and } k', \text{ the ciphertext is } (\text{Enc}(k,m), \text{Mac}(k',\text{Enc}(k,m))).
\]

\[
\text{Dec'}: \text{Given ciphertext } (c,t) \text{ and keys } (k,k'), \text{ output } \text{Invalid} \text{ if } \text{Vrfy}(k',c,t) \text{ is invalid. Otherwise decrypt } c \text{ to } m = \text{Dec}(k,c) \text{ and output } m.
\]

Vote: Does this always work? (Yes/No/Unknown)
Let \((\text{Enc}, \text{Dec})\) be a CPA-secure encryption scheme and \((\text{Mac}, \text{Vrfy})\) be a secure MAC. Consider the following encryption protocol:

\[
\text{Enc'}: \text{Given message } m \text{ and keys } k \text{ and } k', \text{ the ciphertext is } (\text{Enc}(k,m), \text{Mac}(k',\text{Enc}(k,m))).
\]

\[
\text{Dec'}: \text{Given ciphertext } (c,t) \text{ and keys } (k,k'), \text{ output Invalid if } \text{Vrfy}(k', c, t) \text{ is invalid. Otherwise decrypt } c \text{ to } m = \text{Dec}(k,c) \text{ and output } m.
\]

Vote: Does this always work? (Yes/No/Unknown)

Answer: Yes, provided the MAC satisfies an additional property. This combination finally achieves what we wanted: That Eve cannot successfully submit a new ciphertext to the oracle.
Definition: A MAC is **strongly secure** if Eve cannot generate (except with negligible probability) a valid message tag pair \((m, t)\) such that if \(m\) was queried to the MAC oracle, it did not return the tag \(t\).

That is, Eve cannot forge a new message and also cannot forge a new tag on a message she has seen.

Question: Why is this needed to get authenticated encryption?
Definition: A MAC is strongly secure if Eve cannot generate (except with negligible probability) a valid message tag pair \((m, t)\) such that if \(m\) was queried to the MAC oracle, it did not return the tag \(t\).

That is, Eve cannot forge a new message and also cannot forge a new tag on a message she has seen.

Question: Why is this needed to get authenticated encryption?

Otherwise Eve can see the ciphertext \((c, t)\) and forge a new tag \(t’\). Then \((c, t’)\) is a new ciphertext, so Eve can query the decryption oracle and receive the message being encrypted. The protocol would then not be CCA-secure.
Theorem: If \((\text{Enc}, \text{Dec})\) is a CPA-secure encryption scheme and \((\text{Mac}, \text{Vrfy})\) is a strongly secure MAC, then the following encryption scheme is an authenticated encryption protocol:

\[
\text{Enc'}: \text{Given message } m \text{ and keys } k \text{ and } k', \text{ the ciphertext is } (\text{Enc}(k,m), \text{Mac}(k',\text{Enc}(k,m))).
\]

\[
\text{Dec'}: \text{Given ciphertext } (c,t) \text{ and keys } (k,k'), \text{ output Invalid if } \text{Vrfy}(k',c,t) \text{ is invalid. Otherwise decrypt } c \text{ to } m = \text{Dec}(k,c) \text{ and output } m.
\]

There are standardized authenticated encryption protocols that don’t follow exactly this template but use specific properties of the construction and component protocols to achieve security.