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Administrative

This class is being recorded

Problem set #9 is due Thursday at noon.  There will be one more 
problem set assigned on Thursday.
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Digital Signature Definition

This class is being recorded

Definition: A digital signature is a set of three probabilistic 
polynomial-time algorithms (Gen, Sign, Vrfy):

Gen is the key generation algorithm.  It takes as input s, the 
security parameter, and outputs a public key, private key pair 

.(e, d) ∈ {0,1}* × {0,1}*
Sign is the signing algorithm.  It takes as input the private key 
d and a message  and outputs a signature 

.
m ∈ {0,1}*

σ ∈ {0,1}*
Vrfy is the verification algorithm.  It takes as input the public 
key e and  and outputs “valid” or “invalid.” (m, σ)

The digital signature scheme is correct if

Vrfy(e, m, Sign(d, m)) = valid
Note: Unlike a MAC, Vrfy cannot just generate a new signature, 
since that would require the private key.
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created using her private key.
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Digital Signature Security Definition
Definition: A digital signature (Gen, Sign, Vrfy) with security 
parameter s is secure (against an adaptive chosen-message 
attack) if, for any polynomial-time attack  with the public key e 
and oracle access to , where  outputs  such 
that  never queried the oracle for ,

𝒜
Sign(d, m) 𝒜 (m̂, ̂σ)

𝒜 m = m̂

This class is being recorded

Alice Eve

𝒜

s
Sign?Vrfy(e, m̂, ̂σ)

Pr(Vrfy(e, m̂, ̂σ) = valid) ≤ ϵ(s)
where  is a negligible function and the probability is averaged 
over (e,d) generated by Gen and the randomness used in any of 
the functions.

ϵ(s)

Sign

(m̂, ̂σ), m̂ ≠ mi

σimi



RSA Digital Signatures
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Gen: Generate two random primes p and q which are s bits long.  
Let N = pq.  Choose  such that .  
The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*N ed = 1 mod φ(N)

Sign: Given message m and private key (N, d).  The signature is 
.σ = md mod N

Vrfy: Given (message, signature) pair  and public key (N, e).  
The message is accepted as valid if .

(m, σ)
m = σe mod N

Vote: Is this secure (yes/no/unknown)?

(If RSA assumption is true.)
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Vrfy: Given (message, signature) pair  and public key (N, e).  
The message is accepted as valid if .

(m, σ)
m = σe mod N

Vote: Is this secure (yes/no/unknown)?

(If RSA assumption is true.)

Answer: No.
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What if we come up with the signature  first?σ

We then need to find a message m such that 
.σ = md mod N

How can we do this?

Let !
m decrypts to , so  encrypts to m.

m = σe mod N
σ σ

In this case, Eve picks a random  and therefore gets a random 
m.  This is maybe of limited practical use, but it is definitely a 
violation of the security definition.

σ

And notice that this attack doesn’t even require Eve to see 
any valid signatures.
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Suppose we want to forge a specific message m.

Notice: Given signatures for two messages  and ,m1 m2

σ1 = md
1 mod N

σ2 = md
2 mod N

Then

σ1σ2 = md
1 md

2 = (m1m2)d mod N

That is, the signature of the message  is .m1m2 σ1σ2

Therefore, to forge the message , all we need are the 
signatures of the two messages  and .

m1m2
m1 m2
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(If RSA assumption is true.)

New Idea: Put m through a hash function H first.
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Gen: Generate two random primes p and q which are s bits long.  
Let N = pq.  Choose  such that .  
The public key is (N, e) and the private key is (N, d).

e, d ∈ ℤ*N ed = 1 mod φ(N)

Sign: Given message m and private key (N, d).  The signature is 
.σ = H(m)d mod N

Vrfy: Given (message, signature) pair  and public key (N, e).  
The message is accepted as valid if .

(m, σ)
H(m) = σe mod N

Vote: Is this secure (yes/no/unknown)?

(If RSA assumption is true.)

New Idea: Put m through a hash function H first.

Answer: Yes, if H is a random oracle.  The standards pad the 
output of a standard hash function instead, in which case the 
answer is unknown.



Security Discussion

This class is being recorded

With the revised definition, the first attack fails because finding 
m given  requires inverting H(m).  σ

But it is hard to invert a random oracle.

Since , , and  are random, they have no 
relationship to each other and in particular, 

.
This foils the second attack.

H(m1) H(m2) H(m1m2)

H(m1m2) ≠ H(m1)H(m2)

However, we do need to be careful that we can’t find 
multiplicative relations among the outputs of the .H(mi)

Padding H helps to achieve this in practice, but there is no 
proof that the particular schemes which are widely used 
actually work — but no attacks are known despite having 
been used for many years.



Same Key for Encryption & Signature

This class is being recorded

What if Bob decides to use the same N and the same (private 
key, public key) pair (e,d) for encryption and signatures?

Suppose Bob is using plain RSA encryption and signatures.  
They are already insecure, but this makes an even more 
powerful attack possible:

Alice sends Bob a ciphertext .  Eve intercepts it 
and convinces Bob to sign the “message” c.  Bob then produces 
the signature !  Bob’s signature is a 
decryption of Alice’s message, revealing the message to Eve.

c = me mod N

σ = cd = med = m mod N

When correctly using the hash function with the signature, 
this particular attack doesn’t work since c won’t be correctly 
padded and it will be hard to find a message x to sign that 
gives H(x) = c, but this still seems like a vulnerability.

There are also good key management reasons not to do this.



Identification Schemes

This class is being recorded

Suppose Bob has Alice’s public key.  Bob is talking to someone 
who claims to be Alice and wants proof.  Alice doesn’t want to 
reveal information that would let Bob impersonate her.

Alice Bob

Prove you 
are Alice

private key d public key e

This is a “proof of knowledge.”
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This class is being recorded

Suppose Bob has Alice’s public key.  Bob is talking to someone 
who claims to be Alice and wants proof.  Alice doesn’t want to 
reveal information that would let Bob impersonate her.

Alice Bob

Prove you 
are Alice

private key d public key e

Initial message I

Challenge r

rResponse s

s V(e,r,s) = I

Yes!

This is a “proof of knowledge.”
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y = gx mod p
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Alice Bob

Prove you 
are Alice

private key x e=(p, q, g, y)

Initial message  I = gk mod p

Challenge (α, r)
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Suppose Alice uses a El Gamal-like public key: Prime p with large 
prime order q subgroup of , base g (in the order q subgroup), 
and y, with .  Here x is the private key.

ℤ*p
y = gx mod p

random k

s = k−1(α + xr) mod q V(e, α, r, s) = I

Yes!

V(e, α, r, s) = gαs−1yrs−1
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1. Alice chooses (p, q, g) for prime p with large prime order q 
subgroup of , base g (in the order q subgroup).ℤ*p

2. Alice chooses random x in  and computes .ℤq y = gx mod p
3. Alice distributes (p, q, g, y) as her public key and keeps x as her 

private key.

Setup:

Identification Protocol:

1. Alice chooses random , computes , and 
sends I to Bob.  Alice keeps k and does not send it to Bob.

k ∈ ℤ*q I = gk mod p

2. Bob chooses random  and r in  and sends  to Alice.α ℤq (α, r)
3. Alice computes  using her two secrets k 

and x (along with public ) and sends s to Bob.
s = k−1(α + xr) mod q

(α, r, q)
4. Bob computes  and accepts if 

 and .
V(e, α, r, s) = gαs−1yrs−1 mod p

V(e, α, r, s) = I s ≠ 0
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When Alice is actually present she can pass this test:

V(e, α, r, s) = gαs−1yrs−1 mod p

s = k−1(α + xr) mod q

y = gx mod p= (gα+rx)s−1 mod p
= (gαyr)s−1 mod p

= g(α+rx)s−1 mod p
= gk mod p
= I

This is the condition which 
causes Bob to accept.

Bob checks for 1 more thing: that .  But this happens only if
, which happens with probability only 1/q. 

s ≠ 0
α + xr = 0 mod q



Security of Identification
An identification protocol is secure if Eve can’t masquerade as 
Alice even after seeing transcripts of previous identification 
sessions (all public information of the session).

This class is being recorded

Identification security game:

Bob

Prove you 
are Alice

public key e public key e

Initial message I

Challenge r

rResponse s

s V(e,r,s) = I

?

Eve

Trans

Eve has access to an oracle 
to generate transcripts.
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Suppose Eve can break the identification protocol.  Then she can 
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Fake Transcript
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Claim: Eve can generate fake transcripts which don’t use any 
knowledge of x but look the same as real transcripts.

How?

Generate the transcript out of order:

1. Choose random  and r in  and random s in .
2. Let .

α ℤq ℤ*q
I = gαs−1yrs−1

This choice of I corresponds to a uniform choice of k with 
 (but the distribution of s is not quite the same 

since it is guaranteed that ).
I = gk mod p

s ≠ 0

I will pass Bob’s test:

 automatically equals I.V(e, α, r, s) = gαs−1yrs−1 mod p
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Reduction from Discrete Log

This class is being recorded

Thus,

yr2s−1
2 −r1s−1

1 = gα(s−1
1 −s−1

2 ) mod p

Since g and y have order q, if we let

x = α(s−1
1 − s−1

2 )(r2s−1
2 − r1s−1

1 )−1 mod q
then

y = gx mod p

Claim: Eve can solve discrete log if she can give correct 
responses to two pairs  and  for the same I.(α, r1) (α, r2)

Suppose the responses are  and .s1 s2

gαs−1
1 yr1s−1

1 = I = gαs−1
2 yr2s−1

2 mod p
Then
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DSA (Discrete-Log Signatures)

This class is being recorded

Gen: The primes p and q and base g have been pre-determined, 
along with hash function H.  Gen chooses a random , 
which becomes the private key.  I.e., d = x.  The public key is 

.

x ∈ ℤq

y = gx mod p
Sign: Given message m and private key x.  Choose random 

 and let .  The signature is , where 
.

k ∈ ℤ*q r = gk mod p σ = (r, s)
s = k−1(H(m) + xr) mod q

Vrfy: Given m, , and y.  Vrfy checks if .σ r = gH(m)s−1yrs−1 mod p

Correctness: Same as identification scheme.

Security: Unproven, even when H is a random oracle.

DSA is like a transcript of the identification protocol 
where  and .α = H(m) r = I
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This class is being recorded

k must be new each time and kept hidden from Eve.

If k is repeated:

Then r repeats and  and  are known with:(m1, s1) (m2, s2)

Now k is known.  Then:

s = k−1(H(m) + xr) mod q

s1 = k−1(H(m1) + xr) mod q

s2 = k−1(H(m2) + xr) mod q

s1 − s2 = k−1(H(m1) − H(m2)) mod q

k = (s1 − s2)−1(H(m1) − H(m2)) mod q

and Eve learns the private key x.

x = r−1(ks − H(m)) mod q

Everything but 
r known




