
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 25
Daniel Gottesman

Administrative

This class is being recorded

Problem set #10 is out and is due next Thursday.

Course evaluations are now available to fill out.

Man-in-the-Middle Attack

This class is being recorded

Alice Eve Bob

In a man-in-the-middle attack, Eve intercepts all communications
between Alice and Bob and replaces them with messages of her
choice. In Diffie-Hellman without any authentication, Alice and
Bob have no way to fight this attack and Eve can read all their
messages.

Man-in-the-Middle Attack

This class is being recorded

Alice Eve Bob

In a man-in-the-middle attack, Eve intercepts all communications
between Alice and Bob and replaces them with messages of her
choice. In Diffie-Hellman without any authentication, Alice and
Bob have no way to fight this attack and Eve can read all their
messages.

If Alice and Bob digitally sign their messages, then Eve can’t
replace them.

Man-in-the-Middle Attack

This class is being recorded

Alice Eve Bob

In a man-in-the-middle attack, Eve intercepts all communications
between Alice and Bob and replaces them with messages of her
choice. In Diffie-Hellman without any authentication, Alice and
Bob have no way to fight this attack and Eve can read all their
messages.

If Alice and Bob digitally sign their messages, then Eve can’t
replace them.

But this requires that each has the other’s public key, and how
did they get those in the first place?

In-Person Public Key Distribution

This class is being recorded

The first way to get someone’s public key is to meet them in
person. Either they need to be someone you know or you
should verify their identity (e.g., by checking their ID).

Once this is done, you can get their public key. You should
also give them yours.

In-Person Public Key Distribution

This class is being recorded

The first way to get someone’s public key is to meet them in
person. Either they need to be someone you know or you
should verify their identity (e.g., by checking their ID).

Once this is done, you can get their public key. You should
also give them yours.

The important thing is to exchange signature keys. You can
then use those signature keys to sign encryption public keys
to each other at some later time.

In-Person Public Key Distribution

This class is being recorded

The first way to get someone’s public key is to meet them in
person. Either they need to be someone you know or you
should verify their identity (e.g., by checking their ID).

Once this is done, you can get their public key. You should
also give them yours.

The important thing is to exchange signature keys. You can
then use those signature keys to sign encryption public keys
to each other at some later time.

You should also consider signing the other person’s public
signature key and giving them a copy of the signature.

That is, if is Alice’s key and is Bob’s key,
produce and give it to Bob. Also produce

 and give it to Alice.

(dA, eA) (dB, eB)
Sign(dA, eB)

Sign(dB, eA)

Why Sign Someone Else’s Key?

This class is being recorded

Alice

Bob

Charlie

Transferability means that they can then pass on that key to
someone else.

Sign(dA, eB)

eA

Signing a key means that you certify
the key belongs to the right person.

Why Sign Someone Else’s Key?

This class is being recorded

Alice

Bob

Charlie

Transferability means that they can then pass on that key to
someone else.

Sign(dA, eB)

Are you really Bob?

eA

Signing a key means that you certify
the key belongs to the right person.

Why Sign Someone Else’s Key?

This class is being recorded

Alice

Bob

Charlie

Transferability means that they can then pass on that key to
someone else.

Sign(dA, eB)

Are you really Bob?

Alice has verified
my identity.

eA

Signing a key means that you certify
the key belongs to the right person.

Why Sign Someone Else’s Key?

This class is being recorded

Alice

Bob

Charlie

Transferability means that they can then pass on that key to
someone else.

Sign(dA, eB)

Are you really Bob?

Alice has verified
my identity.

eA

Sign(dA, eB)
eB

Signing a key means that you certify
the key belongs to the right person.

Why Sign Someone Else’s Key?

This class is being recorded

Alice

Bob

Charlie

Transferability means that they can then pass on that key to
someone else.

Sign(dA, eB)

Are you really Bob?

Alice has verified
my identity.

eA

Sign(dA, eB)
eB

Vrfy OK
Signing a key means that you certify
the key belongs to the right person.

Why Sign Someone Else’s Key?

This class is being recorded

Alice

Bob

Charlie

Transferability means that they can then pass on that key to
someone else.

Sign(dA, eB)

Are you really Bob?

Alice has verified
my identity.

eA

Sign(dA, eB)
eB

Vrfy OK
Signing a key means that you certify
the key belongs to the right person.

In this example, Charlie could then also sign Bob’s public key.

Web of Trust

This class is being recorded

Diane

Bob

CharlieAlice

Elaine

Frank

You can create a web of trust: Frank doesn’t know Alice, but he
trusts Diane, and she trusts Charlie, who does know Alice.

This is the way PGP works.

Limitation of Web of Trust

Diane

Bob

Alice

Elaine

Frank

Eve

The longer the chain, the more likely someone in it has made an
error in judgement and trusted the wrong person.

This class is being recorded

Certificate Authorities

This class is being recorded

Certificate
Authority

Another solution is to have organizations, certificate authorities
(CAs), that verify everyone’s identities and sign their keys.

Alice Bob

eA

Sign(dCA, eA)

The CA issues a certificate signing a public key indicating that the
owner’s identity has been checked.

Certificate Authorities

This class is being recorded

Certificate
Authority

Another solution is to have organizations, certificate authorities
(CAs), that verify everyone’s identities and sign their keys.

Alice Bob

eA

Sign(dCA, eA)

, eA Sign(dCA, eA)

The CA issues a certificate signing a public key indicating that the
owner’s identity has been checked.

Certificate Authorities

This class is being recorded

Certificate
Authority

Another solution is to have organizations, certificate authorities
(CAs), that verify everyone’s identities and sign their keys.

Alice Bob

eA

Sign(dCA, eA)

, eA Sign(dCA, eA)

Vrfy

OK

eCA

The CA issues a certificate signing a public key indicating that the
owner’s identity has been checked.

CAs and the Web

This class is being recorded

Authentication on the web using https uses certificate
authorities.

Browsers have built-in public keys for a number of major
certificate authorities. These allow the browser to verify
certificates issued by any of these CAs.

Only the websites get the certificates usually. When you visit a
website, you check its certificate to verify that it is the correct
website.

If the certificate doesn’t check out, your browser will give
you a warning message.

You may also prove your identity to the website, e.g., through
entering a password. That part is not handled by the CA, but
only by any prior information the website might have on you.

Expiring and Revoking Certificates

This class is being recorded

CAs are not perfect, of course. They can be

Expiring and Revoking Certificates

This class is being recorded

CAs are not perfect, of course. They can be

• Fooled, and issue a certificate to an imposter.

Expiring and Revoking Certificates

This class is being recorded

CAs are not perfect, of course. They can be

• Fooled, and issue a certificate to an imposter.
• Hacked. A hacker that steals a CA’s private key can create

“valid” certificates for anyone.

Expiring and Revoking Certificates

This class is being recorded

CAs are not perfect, of course. They can be

• Fooled, and issue a certificate to an imposter.
• Hacked. A hacker that steals a CA’s private key can create

“valid” certificates for anyone.
• Co-opted, for instance by the government of the CA’s

home country.

Expiring and Revoking Certificates

This class is being recorded

CAs are not perfect, of course. They can be

• Fooled, and issue a certificate to an imposter.
• Hacked. A hacker that steals a CA’s private key can create

“valid” certificates for anyone.
• Co-opted, for instance by the government of the CA’s

home country.

This is a real problem. The first two have definitely happened,
and quite possibly the third as well.

Expiring and Revoking Certificates

This class is being recorded

CAs are not perfect, of course. They can be

• Fooled, and issue a certificate to an imposter.
• Hacked. A hacker that steals a CA’s private key can create

“valid” certificates for anyone.
• Co-opted, for instance by the government of the CA’s

home country.

This is a real problem. The first two have definitely happened,
and quite possibly the third as well.

As a partial solution, certificates are designed to

• Expire after a certain amount of time.
• Be revoked if discovered to be fraudulent.

TLS

This class is being recorded

Certificate authorities (if not corrupted) make connecting on the
web secure against a man-in-the-middle attack, but making a truly
secure connection requires many different steps.

The current protocol for https is called TLS (transport
layer security).

TLS has two phases:

• A handshake protocol, which establishes the shared keys
needed to communicate securely.

• A record-layer protocol, in which the actual
communication takes place.

TLS Handshake Overview

This class is being recorded

The current version (1.3) of the TLS handshake consists of three
messages:

• ClientHello: The client (i.e., browser) indicates desire to
make a connection to the website and begins to set up the
parameters and keys needed to do so securely.

• ServerHello: The server (i.e. website) replies with its
certificate, and the remaining key and protocol parameter
information.

• After verifying the certificate and deriving the necessary
key information, the client confirms that the handshake
was successful.

It needs to do the following:

• Verify the server’s certificate
• Establish a shared session key
• Determine the cryptographic protocols to be used

Encryption Strategy
TLS begins with a Diffie-Hellman key exchange. The group can
be either a prime subgroup of or an elliptic curve group.ℤ*p

This class is being recorded

The key generated via Diffie-Hellman is then used as the key
for a private key protocol for authenticated encryption.

Precisely which private key protocol (cipher suite) is used is
decided during the handshake.

TLS 1.3 uses authenticated encryption on the later parts of the
handshake protocol and then uses a separate key for the record-
layer protocol.

The key generated is generally used for only one session. (It
is a session key.) A new session must go through the
handshake again and generate a new session key.

(TLS also does support pre-shared keys to resume a
previous session.)

TLS Cipher Suites

This class is being recorded

TLS 1.3 supports the following cipher suites for the
authenticated encryption (with associated data, AEAD):

• GCM: AES w/128 or 256 bit keys, GMAC for the MAC, and
SHA256 or SHA384 for the hash function.

• CCM: AES w/ 128 bit keys, CBC-MAC for the MAC (with
16 or 8-byte tags), and SHA256 for the hash function.

• ChaCha20-Poly1305: These are a stream cipher and a MAC
we didn’t discuss; this uses SHA256 for the hash function.

For key exchange, TLS 1.3 supports only Diffie-Hellman with a
limited set of modular groups or elliptic curves.

For digital signatures, TLS 1.3 accepts:

• RSA (secure variants).
• ECDSA: discrete-log signatures with elliptic curves.
• EdDSA: another discrete-log-based signature protocol.

ClientHello

This class is being recorded

The first message is from the client. It includes the following:

• Information about which cipher suites (and TLS version)
the client supports.

• (G, q, g): The group, group order, and generator that the
client wants to use for Diffie-Hellman, chosen from a list
of standard values.

• : This is the first step in Diffie-Hellman, half of what is
needed to establish the key.

• A random bit string, a “nonce”. A nonce is a value used
only one time.

gx

At this point, the client has only one piece of secret information:

• x: The exponent used by the client in DH.

ServerHello

This class is being recorded

The server responds with the following:

• Confirmation of the cipher suite.
• : The second message in Diffie-Hellman, establishing the

shared key.
• A new nonce
• An authenticated & encrypted message containing:

• : The server’s public signature key
• : The certificate for the server’s public

key
• : A signature (created using the

server’s private signature key) for the previous messages
in the handshake

gy

eserver
Sign(dCA, eserver)

Sign(dserver, handshake)

The server now has the following secret information:

• : The key created via Diffie-Hellman, split into four
keys for authenticated encryption. The first is used here.
H(gxy)

Client Verification

At this point, the client has to perform the following checks and
computations:

This class is being recorded

• : The Diffie-Hellman key, again split into four private
keys.

• Decrypt and verify and using the
first private key.

• Decrypt and verify using the first
private key.

H(gxy)

eserver Sign(dCA, eserver)

Sign(dserver, handshake)

The client then uses the second private key and a MAC to send:

• Authentication of all handshake messages.

The client and server now share two remaining private keys, to
be used for the record-layer protocol.

Handshake Analysis

This class is being recorded

The point of signing and authenticating the handshake transcript
in both directions is to make sure the handshake is with the
correct entity. That is, it proves the server whose certificate is
presented matches the one in the handshake; and it proves that
the client sending the final message of the handshake is the same
as the one that sent the first one.

The nonces are needed to prevent Eve from simply
repeating messages from a previous session to masquerade
as one or the other of the participants.

The security of the Diffie-Hellman protocol means they generate
secure private keys to be used in the record-layer protocol.

Record-Layer Protocol

In the record-layer protocol, the client and server send back and
forth messages protected via the chosen authenticated
encryption scheme. The client uses one of the two keys derived
during the handshake and the server uses the other.

This class is being recorded

Using separate keys prevents reflection attacks, where Eve
repeats back to one of the two sides their own messages.

These keys are used as master keys from which subkeys are
derived for additional security.

Each message should also include a nonce and counter to
prevent replay or reordering attacks, where Eve repeats
previous messages or changes the order in which they
received.

Forward Secrecy

This class is being recorded

TLS 1.3 only allows Diffie-Hellman for key exchange.

TLS 1.2 and earlier also allowed RSA. This option was removed
to ensure forward secrecy:

If the session key is encrypted using an RSA public key, but
the corresponding private key is later compromised, Eve
learns the session key and can read any encrypted messages
she happens to have recorded.

With Diffie-Hellman, the derived private key is only used
for one session, so it is erased after that session is done. That
key can no longer be leaked, so the messages of the session
remain secure.

H(gxy)

Note that this does not protect against a computational
breakthrough which allows Eve to defeat Diffie-Hellman, only
against a leak of the key.

Signcryption

This class is being recorded

Signcryption is the public key analog of authenticated encryption.
Now, to encrypt we need the receiver’s public key and to sign
we need the sender’s private key.

Therefore, all senders and receivers need their own public
key-private key pairs. (And they should have two such pairs
if sometimes they are sending and sometimes receiving.)

Vote: Does encrypt-then-authenticate work in this context
(given secure public key encryption and digital signatures)? (Yes/
No/Unknown)

We could use .(c = Enc(ereceiver, m), Sign(dsender, c))

Signcryption

This class is being recorded

Signcryption is the public key analog of authenticated encryption.
Now, to encrypt we need the receiver’s public key and to sign
we need the sender’s private key.

Therefore, all senders and receivers need their own public
key-private key pairs. (And they should have two such pairs
if sometimes they are sending and sometimes receiving.)

Vote: Does encrypt-then-authenticate work in this context
(given secure public key encryption and digital signatures)? (Yes/
No/Unknown)

Answer: No, there is a reattribution attack.

We could use .(c = Enc(ereceiver, m), Sign(dsender, c))

Reattribution

This class is being recorded

Alice

Bob

Charlie

dB
dA

dC

eA
eB

eC

Reattribution

This class is being recorded

Alice

Bob

Charlie

dB
dA

dC

eA
eB

eC

message m

Reattribution

This class is being recorded

Alice

Bob

Charlie

dB
dA

dC

eA
eB

eC

message m

c = Enc(eB, m)

Reattribution

This class is being recorded

Alice

Bob

Charlie

dB
dA

dC

eA
eB

eC

message m

(c, Sign(dA, c))

c = Enc(eB, m)

Reattribution

This class is being recorded

Alice

Bob

Eve

dB
dA

dC

eA
eB

eC

message m

(c, Sign(dA, c))

c = Enc(eB, m)

Reattribution

This class is being recorded

Alice

Bob

Eve

dB
dA

dC

eA
eB

eC

message m

(c, Sign(dA, c))

c = Enc(eB, m)

(c, Sign(dC, c))

Reattribution

This class is being recorded

Alice

Bob

Eve

dB
dA

dC

eA
eB

eC

message m

(c, Sign(dA, c))

c = Enc(eB, m)

(c, Sign(dC, c))

Charlie
sent me
message m

Reattribution Solution

This class is being recorded

Solution: Make sure to include From: and To: lines in your
message.

“From:” should be encrypted using a CCA-secure (and
therefore non-malleable) encryption scheme.

“To:” should be signed using a strongly secure signature
scheme.

You can use either encrypt-then-authenticate or authenticate-
then-encrypt (with the usual cautions about making different
kinds of errors indistinguishable).

Note that doing this does not conceal the sender or receiver:
That can be achieved via other anonymizing cryptographic
protocols.

