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Administrative

This class is being recorded

First problem set is out.  Due on Thursday, Sep. 7, noon (i.e., 
before the start of class) on Gradescope.

Reminder: Extensions need prior approval and valid reason.

This one should not be too challenging, but the problem sets 
will get harder.

If you are reading the slides before we get to a point in the 
lecture and see a Vote, stop and think about your answer 
before reading further.

The textbook is on reserve with the library and can be 
checked out for 4 hours at a time.



Definition of Encryption

Definition: A private-key encryption protocol is a set of three 
probabilistic algorithms (Gen, Enc, Dec).

Gen is the key generation algorithm.  It takes as input s, the 
security parameter, and outputs a key .k ∈ {0,1}*
Enc is the encryption algorithm.  It takes as input k and a 
plaintext or message  and outputs a ciphertext 

.
m ∈ {0,1}*

c ∈ {0,1}*
Dec is the decryption algorithm.  It takes as input k and c and 
outputs some . m′ ∈ {0,1}*

An encryption protocol is correct if

Dec(k, Enc(k, m)) = m

Unless otherwise stated, assume that Gen(n) chooses a random 
bit string of length s.  Note that there may be some restrictions 
on the allowed space of messages (e.g., length).
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One-Time Pad

The one-time pad is defined as follows:

Gen: Choose uniformly random bit string k of length s.

The security parameter s should be chosen to be equal to 
the message length to be used.

Enc: Acts on message m of length s as .Enc(k, m) = m ⊕ k

Dec: Acts on ciphertext c of length s as .Dec(k, c) = c ⊕ k



Definition of Perfect Secrecy

Definition A: An encryption protocol (Enc, Dec) provides perfect 
secrecy if for any distribution M of valid messages and any 

, ciphertext c such that , m ∈ M Pr(Enc(k, m) = c) ≠ 0

Pr(M = m |C = c) = Pr(M = m)

averaged over keys k and randomness in Enc and Dec.

Alternatively,

Definition B: An encryption protocol (Enc, Dec) provides perfect 
secrecy if for any pair of valid messages , and any 
ciphertext c,

m1, m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)
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with probability averaged over keys k and randomness in Enc and 
Dec.

These are known as soundness conditions.



Meaning of Definitions

Definition A, , says that Eve’s 
best guess about the message after seeing the ciphertext is the 
same as her best guess before: She hasn’t learned any 
information.

Pr(M = m |C = c) = Pr(M = m)

Definition B, , says that 
any given ciphertext is equally likely to result whether the 
message is  or .  This definition is often easier to work with, 
but it might be less obvious what it has to do with secrecy.

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)

m1 m2

Definition B basically says that if Eve is trying to choose 
between the two messages, seeing the ciphertext doesn’t 
help her.

Should we choose definition A or definition B?  Vote.
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Equivalence of Definitions

Definition A Definition B

Proof: Relies on Bayes’ theorem
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Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)
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Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)
A B: Consider a distribution of messages that contains both 

 and  as possibilities.  Then definition A says thatm1 m2
Pr(M = mi |C = c) = Pr(M = mi)

(unless ). By Bayes’ theorem, this implies thatPr(C = c) = 0
Pr(C = c |M = m1) = Pr(C = c) = Pr(C = c |M = m2)
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Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)
A B: Consider a distribution of messages that contains both 

 and  as possibilities.  Then definition A says thatm1 m2
Pr(M = mi |C = c) = Pr(M = mi)

(unless ). By Bayes’ theorem, this implies thatPr(C = c) = 0
Pr(C = c |M = m1) = Pr(C = c) = Pr(C = c |M = m2)

But  by the definition of 
Enc, so we get definition B.

Pr(C = c |M = mi) = Pr(Enc(k, mi) = c)

If , then  for both i.Pr(C = c) = 0 Pr(Enc(k, mi) = c) = 0



Equivalence of Definitions, cont.
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B A: For any two messages  and , we havem1 m2

Pr(C = c |M = m1) = Pr(Enc(k, m1) = c)
= Pr(Enc(k, m2) = c) = Pr(C = c |M = m2)



Equivalence of Definitions, cont.
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B A: For any two messages  and , we havem1 m2

Pr(C = c |M = m1) = Pr(Enc(k, m1) = c)
= Pr(Enc(k, m2) = c) = Pr(C = c |M = m2)

This implies that , with P a constant 
independent of m.  Then

Pr(C = c |M = m) = P

Pr(C = c) = ∑
m∈M

Pr(C = c |M = m)Pr(M = m) = P ∑
m∈M

Pr(M = m) = P

using the fact that probabilities sum to 1. 



Equivalence of Definitions, cont.
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B A: For any two messages  and , we havem1 m2

Pr(C = c |M = m1) = Pr(Enc(k, m1) = c)
= Pr(Enc(k, m2) = c) = Pr(C = c |M = m2)

This implies that , with P a constant 
independent of m.  Then

Pr(C = c |M = m) = P

Pr(C = c) = ∑
m∈M

Pr(C = c |M = m)Pr(M = m) = P ∑
m∈M

Pr(M = m) = P

using the fact that probabilities sum to 1. 

Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)

We get , and if we plug this 
into Bayes’ theorem, we get definition A:

Pr(C = c) = Pr(C = c |M = m)



Perfect Secrecy of One-Time Pad

Theorem: The one-time pad has perfect secrecy.

Proof: We will use definition B.

Let us calculate  for some m and c, 
averaged over keys k.

Pr(Enc(k, m) = c)
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Perfect Secrecy of One-Time Pad

Theorem: The one-time pad has perfect secrecy.

Proof: We will use definition B.

Let us calculate  for some m and c, 
averaged over keys k.

Pr(Enc(k, m) = c)

Given any m and c, then  iff .  
Therefore, there is exactly one value of k for which 

.  Thus,

Enc(k, m) = c k = m ⊕ c

Enc(k, m) = c

Pr(Enc(k, m) = c) =
1
2s

This is true regardless of m, so in particular, for any ,m1, m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c) =
1
2s
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What Does Perfect Security Imply?
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are done with encryption.
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The one-time pad has a key as long as the message.  That can 
be inconvenient.  And why is it called the one-time pad?

What if we use the same key twice for different messages?



What Does Perfect Security Imply?
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Now we have proven the one-time pad is perfectly secure, so we 
are done with encryption.

Well, maybe not quite …

The one-time pad has a key as long as the message.  That can 
be inconvenient.  And why is it called the one-time pad?

What if we use the same key twice for different messages?

c1 = m1 ⊕ k
c2 = m2 ⊕ k

Add these:
c1 ⊕ c2 = (m1 ⊕ k) ⊕ (m2 ⊕ k) = m1 ⊕ m2

This gives us a new ciphertext  which is effectively one 
message encrypted using the other.  This is like using a book with 
the Vigenère cipher: It is vulnerable to frequency analysis.

c1 ⊕ c2



Limits of Security Definitions

The definition of perfect secrecy assumes only one message.  If 
you are going beyond it, e.g. by sending two messages, then it 
does not provide any security guarantee.

This matters: For instance, during the Cold War, Soviet spies in 
the U.S. were using the one-time pad to communicate, but they 
had some duplicated pages in their codebooks, causing them to 
use some keys twice.  The U.S. was able to break some of their 
messages (the Venona project), helping to uncover many spies.
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But security definitions and proofs help to delineate exactly 
what a cryptographic protocol can do and what it can’t do.

The need to replace the key after each message is extremely 
inconvenient and limits the one-time pad to the applications 
needing highest security.



Other Limits of the One-Time Pad

Perhaps we should think carefully about the one-time pad to see 
if there are any other hidden limitations.
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if there are any other hidden limitations.

Perfect secrecy says Eve cannot gain any information about 
the distribution of messages of the same length.  It says 
nothing about messages of different lengths.

Sometimes this doesn’t matter.  Sometimes it does.  (Can 
pad messages to make them the same length.)
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If the key happens to be k = 000…0, the messages are being sent 
unencrypted!  Maybe we should exclude this key from Gen?

Vote: If we do, is the result stronger/weaker/the same?
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Other Limits of the One-Time Pad

Perhaps we should think carefully about the one-time pad to see 
if there are any other hidden limitations.

Perfect secrecy says Eve cannot gain any information about 
the distribution of messages of the same length.  It says 
nothing about messages of different lengths.

Sometimes this doesn’t matter.  Sometimes it does.  (Can 
pad messages to make them the same length.)

If the key happens to be k = 000…0, the messages are being sent 
unencrypted!  Maybe we should exclude this key from Gen?

Vote: If we do, is the result stronger/weaker/the same?

Answer: Weaker!  Why?  The scheme is no longer perfectly 
secret: If Eve sees ciphertext c, she now knows , which she 
might not have known before.

m ≠ c
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Shorter Key Lengths?

We would like to make the one-time pad more convenient to 
use.  One way to do this would be to find an encryption 
protocol with perfect secrecy and a shorter key.

Theorem: Any protocol with perfect secrecy must have as many 
possible keys as possible messages.
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Shorter Key Lengths?

We would like to make the one-time pad more convenient to 
use.  One way to do this would be to find an encryption 
protocol with perfect secrecy and a shorter key.

Theorem: Any protocol with perfect secrecy must have as many 
possible keys as possible messages.

Proof: Consider a fixed ciphertext c. For all  and ,m1 m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)

In particular, there must be some key  and choice of 
randomness such that  and some key  and 
randomness such that .  By correctness,

k1
Enc(k1, m1) = c k2
Enc(k2, m2) = c

Dec(ki, c) = mi

which implies that .  But this is true for all pairs  and 
, so there must be at least one key for each message.

k1 ≠ k2 m1
m2
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Beyond Perfect Secrecy

To do better, we must give up some of the conditions of perfect 
secrecy.  We don’t need that Eve’s gain of information is 0, 
provided it is very small.  Unfortunately, by itself, this is not 
enough for much improvement.

One idea is to work on the key.  In the Vigenère cipher with a 
book as a key, Alice and Bob’s short key gave them a recipe 
for how to generate a much longer sequence of shifts for the 
encryption algorithm by looking at the book.  Unfortunately, 
that approach was still vulnerable to frequency analysis.

But what if we used some other source of bits that looks more 
random than a book even though it is not?

What counts as looking random, and how can we be sure Eve 
doesn’t have a way of analyzing our source of bits that reveals 
patterns that can be used to decrypt?
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Threat Model
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We need to precisely define Eve’s capabilities and what she is 
trying to.  We shouldn’t assume how she will attack our protocol, 
since she might think of a different approach.

• Be precise: Define Eve’s capabilities precisely, so that we can 
evaluate if our assumption about them is satisfied or not.

• Be conservative: It is safer to assume Eve has more power 
than she actually has rather than to assume she has less 
power than she actually has.

• Make (only) necessary assumptions: There may be some 
assumptions we need to make in order to have any security 
at all.  Minimize these, but since they are critical, try to 
make sure they are true.

This analysis will give us the threat model.



Eve’s Capabilities

Eve has the following capabilities and limits:

• Eve cannot access Alice’s or Bob’s computer.  (Necessary; 
otherwise the encryption won’t help.)

• Eve does not know the key.
• Eve does know the protocol being used. (Kerckhoff’s Pr.)
• Eve has large but limited computational power.
• Eve can read the ciphertext of the transmitted message.
✦ Or the ciphertext of multiple messages.
✦ Or knows both the ciphertext and plaintext of multiple 

messages before this one.
✦ Or chooses the plaintext of multiple messages and sees 

the resulting ciphertexts. (Chosen plaintext attack)
✦ Or …
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What Is “Limited” Computation?

We need a precise definition of what it means for Eve to have 
limited computational power.  
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What Is “Limited” Computation?

We need a precise definition of what it means for Eve to have 
limited computational power.  

• Limit Eve’s computational time, e.g.: at most 106 years.

This is what we are most interested in in practice; but it is 
very vulnerable to improvements in computer technology.
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• Limit Eve’s computational steps.  

This is more robust against improvements in computers, 
but different architectures can still require a different 
number of steps; and what if we increase the security 
parameter?
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What Is “Limited” Computation?

We need a precise definition of what it means for Eve to have 
limited computational power.  

• Limit Eve’s computational time, e.g.: at most 106 years.

This is what we are most interested in in practice; but it is 
very vulnerable to improvements in computer technology.

• Limit Eve’s computational steps.  

This is more robust against improvements in computers, 
but different architectures can still require a different 
number of steps; and what if we increase the security 
parameter?

• Limit the rate of asymptotic scaling of Eve’s number of 
computational steps as we increase the security parameter.
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Big-O Notation
We quantify asymptotic number of steps by big-O notation, e.g.

. O(s2), O(2s)

Definition: We say a function  if there exist 
constants C,  such that  for all .

f(s) = O(g(s))
s0 f(s) ≤ Cg(s) s > s0
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. O(s2), O(2s)

Why?  This expresses the leading-order behavior up to a 
constant factor.   For large s, the leading order behavior always 
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.  The rate of growth of larger functions rapidly overcomes 
even large constants.
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In particular, for large enough s,  is always bigger than  
for any constants A and c.  For instance,

2s Asc

, :  when .A = 1000 c = 10 2s > 1000s10 s ≥ 72

Exponential wins out over polynomial even for modest size s.



Polynomial Time
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In complexity theory, we like to categorize functions as 
polynomial time vs. exponential time.

• Different models of computation can give different 
numbers of computational steps to compute the same 
function, but they only seem to differ by polynomial 
factors (excepting quantum computation).

• The set of polynomial functions is closed under most 
operations: addition, multiplication, composition.  This 
means that the property of being ``polynomial’’ is robust 
under a variety of different transformations.  For instance, 
a polynomial number of calls to a subroutine that itself 
takes polynomial time is also polynomial.

We say that a computation that can be completed in polynomial 
time as a function of the size of the input is efficient.  In this 
course, I will generally allow probabilistic algorithms.



Negligible Probabilities
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We also need to consider how much information we will allow 
Eve to learn.  Usually this manifests as a probability, for instance 
as an increase in the probability that Eve can correctly guess the 
message.

If we choose polynomial time as the measure of efficiency 
and assume everything that Eve does should be in 
polynomial time, then what probability  should we accept 
for Eve to do something she is not supposed to?

ϵ

If Eve achieves her goal with probability  in one attempt and she 
can try f(s) times, then we need that  is small.  Therefore, we 
call a function g(s) negligible if

ϵ
f(s)ϵ

f(s)g(s) < 1

for all polynomials f(s) (and  for some constant ).s > s0 s0

Example:  and  are both negligible functions.2− s s−log s



Drawbacks of Big-O
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This approach to characterizing efficient attacks and protocols 
and negligible probabilities allows a clean and well-defined theory.  
However, it does have some drawbacks:

• It is not really possible in this approach to quantify the 
security of protocols of fixed size, only of protocols 
where there is an adjustable security parameter s.

• While any exponential will always beat any polynomial 
eventually, for large enough parameters, any real protocol 
has specific numerical values assigned and the polynomial 
might be bigger for those specific values.

Therefore, to evaluate any protocol for real-world use, you must 
plug in real numbers to see if the security is sufficiently good in 
practice.  




