
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 3
Daniel Gottesman

Administrative

This class is being recorded

First problem set is out. Due on Thursday, Sep. 7, noon (i.e.,
before the start of class) on Gradescope.

Reminder: Extensions need prior approval and valid reason.

This one should not be too challenging, but the problem sets
will get harder.

If you are reading the slides before we get to a point in the
lecture and see a Vote, stop and think about your answer
before reading further.

The textbook is on reserve with the library and can be
checked out for 4 hours at a time.

Definition of Encryption

Definition: A private-key encryption protocol is a set of three
probabilistic algorithms (Gen, Enc, Dec).

Gen is the key generation algorithm. It takes as input s, the
security parameter, and outputs a key .k ∈ {0,1}*
Enc is the encryption algorithm. It takes as input k and a
plaintext or message and outputs a ciphertext

.
m ∈ {0,1}*

c ∈ {0,1}*
Dec is the decryption algorithm. It takes as input k and c and
outputs some . m′ ∈ {0,1}*

An encryption protocol is correct if

Dec(k, Enc(k, m)) = m

Unless otherwise stated, assume that Gen(n) chooses a random
bit string of length s. Note that there may be some restrictions
on the allowed space of messages (e.g., length).

This class is being recorded

One-Time Pad

The one-time pad is defined as follows:

Gen: Choose uniformly random bit string k of length s.

The security parameter s should be chosen to be equal to
the message length to be used.

Enc: Acts on message m of length s as .Enc(k, m) = m ⊕ k

Dec: Acts on ciphertext c of length s as .Dec(k, c) = c ⊕ k

Definition of Perfect Secrecy

Definition A: An encryption protocol (Enc, Dec) provides perfect
secrecy if for any distribution M of valid messages and any

, ciphertext c such that , m ∈ M Pr(Enc(k, m) = c) ≠ 0

Pr(M = m |C = c) = Pr(M = m)

averaged over keys k and randomness in Enc and Dec.

Alternatively,

Definition B: An encryption protocol (Enc, Dec) provides perfect
secrecy if for any pair of valid messages , and any
ciphertext c,

m1, m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)

This class is being recorded

with probability averaged over keys k and randomness in Enc and
Dec.

These are known as soundness conditions.

Meaning of Definitions

Definition A, , says that Eve’s
best guess about the message after seeing the ciphertext is the
same as her best guess before: She hasn’t learned any
information.

Pr(M = m |C = c) = Pr(M = m)

Definition B, , says that
any given ciphertext is equally likely to result whether the
message is or . This definition is often easier to work with,
but it might be less obvious what it has to do with secrecy.

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)

m1 m2

Definition B basically says that if Eve is trying to choose
between the two messages, seeing the ciphertext doesn’t
help her.

Should we choose definition A or definition B? Vote.

This class is being recorded

Equivalence of Definitions

Definition A Definition B

Proof: Relies on Bayes’ theorem

This class is being recorded

Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)

Equivalence of Definitions

Definition A Definition B

Proof: Relies on Bayes’ theorem

This class is being recorded

Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)
A B: Consider a distribution of messages that contains both

 and as possibilities. Then definition A says thatm1 m2
Pr(M = mi |C = c) = Pr(M = mi)

(unless). By Bayes’ theorem, this implies thatPr(C = c) = 0
Pr(C = c |M = m1) = Pr(C = c) = Pr(C = c |M = m2)

Equivalence of Definitions

Definition A Definition B

Proof: Relies on Bayes’ theorem

This class is being recorded

Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)
A B: Consider a distribution of messages that contains both

 and as possibilities. Then definition A says thatm1 m2
Pr(M = mi |C = c) = Pr(M = mi)

(unless). By Bayes’ theorem, this implies thatPr(C = c) = 0
Pr(C = c |M = m1) = Pr(C = c) = Pr(C = c |M = m2)

But by the definition of
Enc, so we get definition B.

Pr(C = c |M = mi) = Pr(Enc(k, mi) = c)

Equivalence of Definitions

Definition A Definition B

Proof: Relies on Bayes’ theorem

This class is being recorded

Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)
A B: Consider a distribution of messages that contains both

 and as possibilities. Then definition A says thatm1 m2
Pr(M = mi |C = c) = Pr(M = mi)

(unless). By Bayes’ theorem, this implies thatPr(C = c) = 0
Pr(C = c |M = m1) = Pr(C = c) = Pr(C = c |M = m2)

But by the definition of
Enc, so we get definition B.

Pr(C = c |M = mi) = Pr(Enc(k, mi) = c)

If , then for both i.Pr(C = c) = 0 Pr(Enc(k, mi) = c) = 0

Equivalence of Definitions, cont.

This class is being recorded

B A: For any two messages and , we havem1 m2

Pr(C = c |M = m1) = Pr(Enc(k, m1) = c)
= Pr(Enc(k, m2) = c) = Pr(C = c |M = m2)

Equivalence of Definitions, cont.

This class is being recorded

B A: For any two messages and , we havem1 m2

Pr(C = c |M = m1) = Pr(Enc(k, m1) = c)
= Pr(Enc(k, m2) = c) = Pr(C = c |M = m2)

This implies that , with P a constant
independent of m. Then

Pr(C = c |M = m) = P

Pr(C = c) = ∑
m∈M

Pr(C = c |M = m)Pr(M = m) = P ∑
m∈M

Pr(M = m) = P

using the fact that probabilities sum to 1.

Equivalence of Definitions, cont.

This class is being recorded

B A: For any two messages and , we havem1 m2

Pr(C = c |M = m1) = Pr(Enc(k, m1) = c)
= Pr(Enc(k, m2) = c) = Pr(C = c |M = m2)

This implies that , with P a constant
independent of m. Then

Pr(C = c |M = m) = P

Pr(C = c) = ∑
m∈M

Pr(C = c |M = m)Pr(M = m) = P ∑
m∈M

Pr(M = m) = P

using the fact that probabilities sum to 1.

Pr(M = m |C = c) =
Pr(C = c |M = m)Pr(M = m)

Pr(C = c)

We get , and if we plug this
into Bayes’ theorem, we get definition A:

Pr(C = c) = Pr(C = c |M = m)

Perfect Secrecy of One-Time Pad

Theorem: The one-time pad has perfect secrecy.

Proof: We will use definition B.

Let us calculate for some m and c,
averaged over keys k.

Pr(Enc(k, m) = c)

This class is being recorded

Perfect Secrecy of One-Time Pad

Theorem: The one-time pad has perfect secrecy.

Proof: We will use definition B.

Let us calculate for some m and c,
averaged over keys k.

Pr(Enc(k, m) = c)

Given any m and c, then iff .
Therefore, there is exactly one value of k for which

. Thus,

Enc(k, m) = c k = m ⊕ c

Enc(k, m) = c

Pr(Enc(k, m) = c) =
1
2s

This class is being recorded

Perfect Secrecy of One-Time Pad

Theorem: The one-time pad has perfect secrecy.

Proof: We will use definition B.

Let us calculate for some m and c,
averaged over keys k.

Pr(Enc(k, m) = c)

Given any m and c, then iff .
Therefore, there is exactly one value of k for which

. Thus,

Enc(k, m) = c k = m ⊕ c

Enc(k, m) = c

Pr(Enc(k, m) = c) =
1
2s

This is true regardless of m, so in particular, for any ,m1, m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c) =
1
2s

This class is being recorded

What Does Perfect Security Imply?

This class is being recorded

Now we have proven the one-time pad is perfectly secure, so we
are done with encryption.

What Does Perfect Security Imply?

This class is being recorded

Now we have proven the one-time pad is perfectly secure, so we
are done with encryption.

Well, maybe not quite …

The one-time pad has a key as long as the message. That can
be inconvenient. And why is it called the one-time pad?

What if we use the same key twice for different messages?

What Does Perfect Security Imply?

This class is being recorded

Now we have proven the one-time pad is perfectly secure, so we
are done with encryption.

Well, maybe not quite …

The one-time pad has a key as long as the message. That can
be inconvenient. And why is it called the one-time pad?

What if we use the same key twice for different messages?

c1 = m1 ⊕ k
c2 = m2 ⊕ k

Add these:
c1 ⊕ c2 = (m1 ⊕ k) ⊕ (m2 ⊕ k) = m1 ⊕ m2

This gives us a new ciphertext which is effectively one
message encrypted using the other. This is like using a book with
the Vigenère cipher: It is vulnerable to frequency analysis.

c1 ⊕ c2

Limits of Security Definitions

The definition of perfect secrecy assumes only one message. If
you are going beyond it, e.g. by sending two messages, then it
does not provide any security guarantee.

This matters: For instance, during the Cold War, Soviet spies in
the U.S. were using the one-time pad to communicate, but they
had some duplicated pages in their codebooks, causing them to
use some keys twice. The U.S. was able to break some of their
messages (the Venona project), helping to uncover many spies.

This class is being recorded

But security definitions and proofs help to delineate exactly
what a cryptographic protocol can do and what it can’t do.

The need to replace the key after each message is extremely
inconvenient and limits the one-time pad to the applications
needing highest security.

Other Limits of the One-Time Pad

Perhaps we should think carefully about the one-time pad to see
if there are any other hidden limitations.

This class is being recorded

Other Limits of the One-Time Pad

Perhaps we should think carefully about the one-time pad to see
if there are any other hidden limitations.

Perfect secrecy says Eve cannot gain any information about
the distribution of messages of the same length. It says
nothing about messages of different lengths.

Sometimes this doesn’t matter. Sometimes it does. (Can
pad messages to make them the same length.)

This class is being recorded

Other Limits of the One-Time Pad

Perhaps we should think carefully about the one-time pad to see
if there are any other hidden limitations.

Perfect secrecy says Eve cannot gain any information about
the distribution of messages of the same length. It says
nothing about messages of different lengths.

Sometimes this doesn’t matter. Sometimes it does. (Can
pad messages to make them the same length.)

If the key happens to be k = 000…0, the messages are being sent
unencrypted! Maybe we should exclude this key from Gen?

Vote: If we do, is the result stronger/weaker/the same?

This class is being recorded

Other Limits of the One-Time Pad

Perhaps we should think carefully about the one-time pad to see
if there are any other hidden limitations.

Perfect secrecy says Eve cannot gain any information about
the distribution of messages of the same length. It says
nothing about messages of different lengths.

Sometimes this doesn’t matter. Sometimes it does. (Can
pad messages to make them the same length.)

If the key happens to be k = 000…0, the messages are being sent
unencrypted! Maybe we should exclude this key from Gen?

Vote: If we do, is the result stronger/weaker/the same?

Answer: Weaker! Why? The scheme is no longer perfectly
secret: If Eve sees ciphertext c, she now knows , which she
might not have known before.

m ≠ c

This class is being recorded

Shorter Key Lengths?

We would like to make the one-time pad more convenient to
use. One way to do this would be to find an encryption
protocol with perfect secrecy and a shorter key.

Theorem: Any protocol with perfect secrecy must have as many
possible keys as possible messages.

This class is being recorded

Shorter Key Lengths?

We would like to make the one-time pad more convenient to
use. One way to do this would be to find an encryption
protocol with perfect secrecy and a shorter key.

Theorem: Any protocol with perfect secrecy must have as many
possible keys as possible messages.

Proof: Consider a fixed ciphertext c. For all and ,m1 m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)

This class is being recorded

Shorter Key Lengths?

We would like to make the one-time pad more convenient to
use. One way to do this would be to find an encryption
protocol with perfect secrecy and a shorter key.

Theorem: Any protocol with perfect secrecy must have as many
possible keys as possible messages.

Proof: Consider a fixed ciphertext c. For all and ,m1 m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)

In particular, there must be some key and choice of
randomness such that and some key and
randomness such that . By correctness,

k1
Enc(k1, m1) = c k2
Enc(k2, m2) = c

Dec(ki, c) = mi

This class is being recorded

Shorter Key Lengths?

We would like to make the one-time pad more convenient to
use. One way to do this would be to find an encryption
protocol with perfect secrecy and a shorter key.

Theorem: Any protocol with perfect secrecy must have as many
possible keys as possible messages.

Proof: Consider a fixed ciphertext c. For all and ,m1 m2

Pr(Enc(k, m1) = c) = Pr(Enc(k, m2) = c)

In particular, there must be some key and choice of
randomness such that and some key and
randomness such that . By correctness,

k1
Enc(k1, m1) = c k2
Enc(k2, m2) = c

Dec(ki, c) = mi

which implies that . But this is true for all pairs and
, so there must be at least one key for each message.

k1 ≠ k2 m1
m2

This class is being recorded

Beyond Perfect Secrecy

To do better, we must give up some of the conditions of perfect
secrecy. We don’t need that Eve’s gain of information is 0,
provided it is very small. Unfortunately, by itself, this is not
enough for much improvement.

One idea is to work on the key. In the Vigenère cipher with a
book as a key, Alice and Bob’s short key gave them a recipe
for how to generate a much longer sequence of shifts for the
encryption algorithm by looking at the book. Unfortunately,
that approach was still vulnerable to frequency analysis.

But what if we used some other source of bits that looks more
random than a book even though it is not?

What counts as looking random, and how can we be sure Eve
doesn’t have a way of analyzing our source of bits that reveals
patterns that can be used to decrypt?

This class is being recorded

Threat Model

This class is being recorded

We need to precisely define Eve’s capabilities and what she is
trying to. We shouldn’t assume how she will attack our protocol,
since she might think of a different approach.

• Be precise: Define Eve’s capabilities precisely, so that we can
evaluate if our assumption about them is satisfied or not.

• Be conservative: It is safer to assume Eve has more power
than she actually has rather than to assume she has less
power than she actually has.

• Make (only) necessary assumptions: There may be some
assumptions we need to make in order to have any security
at all. Minimize these, but since they are critical, try to
make sure they are true.

This analysis will give us the threat model.

Eve’s Capabilities

Eve has the following capabilities and limits:

• Eve cannot access Alice’s or Bob’s computer. (Necessary;
otherwise the encryption won’t help.)

• Eve does not know the key.
• Eve does know the protocol being used. (Kerckhoff’s Pr.)
• Eve has large but limited computational power.
• Eve can read the ciphertext of the transmitted message.
✦ Or the ciphertext of multiple messages.
✦ Or knows both the ciphertext and plaintext of multiple

messages before this one.
✦ Or chooses the plaintext of multiple messages and sees

the resulting ciphertexts. (Chosen plaintext attack)
✦ Or …

This class is being recorded

Eve’s Capabilities

Eve has the following capabilities and limits:

• Eve cannot access Alice’s or Bob’s computer. (Necessary;
otherwise the encryption won’t help.)

• Eve does not know the key.
• Eve does know the protocol being used. (Kerckhoff’s Pr.)
• Eve has large but limited computational power.
• Eve can read the ciphertext of the transmitted message.
✦ Or the ciphertext of multiple messages.
✦ Or knows both the ciphertext and plaintext of multiple

messages before this one.
✦ Or chooses the plaintext of multiple messages and sees

the resulting ciphertexts. (Chosen plaintext attack)
✦ Or …

This class is being recorded

What Is “Limited” Computation?

We need a precise definition of what it means for Eve to have
limited computational power.

This class is being recorded

What Is “Limited” Computation?

We need a precise definition of what it means for Eve to have
limited computational power.

• Limit Eve’s computational time, e.g.: at most 106 years.

This is what we are most interested in in practice; but it is
very vulnerable to improvements in computer technology.

This class is being recorded

What Is “Limited” Computation?

We need a precise definition of what it means for Eve to have
limited computational power.

• Limit Eve’s computational time, e.g.: at most 106 years.

This is what we are most interested in in practice; but it is
very vulnerable to improvements in computer technology.

• Limit Eve’s computational steps.

This is more robust against improvements in computers,
but different architectures can still require a different
number of steps; and what if we increase the security
parameter?

This class is being recorded

What Is “Limited” Computation?

We need a precise definition of what it means for Eve to have
limited computational power.

• Limit Eve’s computational time, e.g.: at most 106 years.

This is what we are most interested in in practice; but it is
very vulnerable to improvements in computer technology.

• Limit Eve’s computational steps.

This is more robust against improvements in computers,
but different architectures can still require a different
number of steps; and what if we increase the security
parameter?

• Limit the rate of asymptotic scaling of Eve’s number of
computational steps as we increase the security parameter.

This class is being recorded

Big-O Notation
We quantify asymptotic number of steps by big-O notation, e.g.

. O(s2), O(2s)

Definition: We say a function if there exist
constants C, such that for all .

f(s) = O(g(s))
s0 f(s) ≤ Cg(s) s > s0

This class is being recorded

Big-O Notation
We quantify asymptotic number of steps by big-O notation, e.g.

. O(s2), O(2s)

Why? This expresses the leading-order behavior up to a
constant factor. For large s, the leading order behavior always
dominates: . And whenever

. The rate of growth of larger functions rapidly overcomes
even large constants.

s5 + 100s3 = O(s5) s5 > 100s3

s > 10

Definition: We say a function if there exist
constants C, such that for all .

f(s) = O(g(s))
s0 f(s) ≤ Cg(s) s > s0

This class is being recorded

Big-O Notation
We quantify asymptotic number of steps by big-O notation, e.g.

. O(s2), O(2s)

Why? This expresses the leading-order behavior up to a
constant factor. For large s, the leading order behavior always
dominates: . And whenever

. The rate of growth of larger functions rapidly overcomes
even large constants.

s5 + 100s3 = O(s5) s5 > 100s3

s > 10

Definition: We say a function if there exist
constants C, such that for all .

f(s) = O(g(s))
s0 f(s) ≤ Cg(s) s > s0

This class is being recorded

In particular, for large enough s, is always bigger than
for any constants A and c. For instance,

2s Asc

, : when .A = 1000 c = 10 2s > 1000s10 s ≥ 72

Exponential wins out over polynomial even for modest size s.

Polynomial Time

This class is being recorded

In complexity theory, we like to categorize functions as
polynomial time vs. exponential time.

• Different models of computation can give different
numbers of computational steps to compute the same
function, but they only seem to differ by polynomial
factors (excepting quantum computation).

• The set of polynomial functions is closed under most
operations: addition, multiplication, composition. This
means that the property of being ``polynomial’’ is robust
under a variety of different transformations. For instance,
a polynomial number of calls to a subroutine that itself
takes polynomial time is also polynomial.

We say that a computation that can be completed in polynomial
time as a function of the size of the input is efficient. In this
course, I will generally allow probabilistic algorithms.

Negligible Probabilities

This class is being recorded

We also need to consider how much information we will allow
Eve to learn. Usually this manifests as a probability, for instance
as an increase in the probability that Eve can correctly guess the
message.

If we choose polynomial time as the measure of efficiency
and assume everything that Eve does should be in
polynomial time, then what probability should we accept
for Eve to do something she is not supposed to?

ϵ

If Eve achieves her goal with probability in one attempt and she
can try f(s) times, then we need that is small. Therefore, we
call a function g(s) negligible if

ϵ
f(s)ϵ

f(s)g(s) < 1

for all polynomials f(s) (and for some constant).s > s0 s0

Example: and are both negligible functions.2− s s−log s

Drawbacks of Big-O

This class is being recorded

This approach to characterizing efficient attacks and protocols
and negligible probabilities allows a clean and well-defined theory.
However, it does have some drawbacks:

• It is not really possible in this approach to quantify the
security of protocols of fixed size, only of protocols
where there is an adjustable security parameter s.

• While any exponential will always beat any polynomial
eventually, for large enough parameters, any real protocol
has specific numerical values assigned and the polynomial
might be bigger for those specific values.

Therefore, to evaluate any protocol for real-world use, you must
plug in real numbers to see if the security is sufficiently good in
practice.

