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Administrative

This class is being recorded

Reminder: Problem Set 2 due on Thursday (Sep. 14) at noon, 
again on Gradescope.



Pseudorandom Generators
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Definition: Let  be a deterministic efficient 
function with  for all s.  Then G(y) is a pseudorandom 
generator if, for any attack , a probabilistic 
polynomial time algorithm, it holds that

G : {0,1}s → {0,1}ℓ(s)

ℓ(s) > s
𝒜 : {0,1}ℓ(s) → {0,1}

|Pry(𝒜(G(y)) = 1) − Prx(𝒜(x) = 1) | ≤ ϵ(s)

with  a negligible function and probabilities averaged over 
randomness of , as well as over seeds y (left probability) drawn 
uniformly from  and truly random strings x (right 
probability) drawn uniformly from .

ϵ(s)
𝒜
{0,1}s

{0,1}ℓ(s)

Alice Eve

x

𝒜(x)
non-random if 
random if 

𝒜(x) = 1
𝒜(x) = 0



EAV Security

Alice Eve

c

𝒜(c)

i

mi key k

c

Definition: (Enc, Dec) with security parameter s has 
indistinguishable encryptions in the presence of an eavesdropper 
(is EAV-secure) if, for any pair of messages  and  chosen by 
the adversary (using ) and for any efficient attack ,

m0 m1
ℬ(s) 𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1)) = 1) | ≤ ϵ(s)

for negligible  and probability taken over k and randomness 
of Enc.

ϵ(s)

This class is being recorded

:  and .ℬ(s) m0 m1
, m0 m1

i



Security of Pseudo One-Time Pad
Theorem: The pseudo one-time pad is EAV-secure if it uses a 
secure pseudorandom generator.

Proof plan:

Given an attack ( , ) on the pseudo one-time pad, 
we will construct an attack  on the pseudorandom 
generator.

ℬ(s) 𝒜(c)
𝒜′ (x)

 will succeed in distinguishing the pseudorandom 
numbers from random with probability  if ( , ) 
succeeds in distinguishing messages with probability .  If 
the pseudorandom generator is secure,  will be negligible, 
which will imply that  is also negligible.  Therefore this 
particular attack on the pseudo one-time pad doesn’t 
succeed.

𝒜′ (x)
ϵ′ (s) ℬ(s) 𝒜(c)

ϵ(s)
ϵ′ (s)

ϵ(s)

But the attack was arbitrary, so the pseudo one-time pad is 
EAV-secure.
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Basic Concept of a Reduction
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At its heart, a reduction is a statement of the form “If you can do 
A, then you can do B.”

Examples:
• If you can boil water, then you can cook an egg.  
• If you can roller blade, then you can ice skate.
• If you can ice skate, then you can roller blade.
• If you can breathe water, then you can visit sunken ships.
• If you can go faster than light, you can travel back in time.

But this doesn’t really work:

• If you can breathe water, then you can fly to the moon.

because it is non-constructive.

A reduction is supposed to tell you how doing A lets you do B.



Contrapositive of a Reduction

This class is being recorded

If you can do A, then you can do B.

If you can’t do B, then you can’t do A.

We most often prove the “A implies B” statement of a reduction 
but most often use the “not B implies not A” contrapositive.

E.g.: 
• If you can’t roller blade, then you must not be able to ice skate.
• If you can’t break the pseudorandom generator, then you can’t 

break the pseudo one-time pad.



The Reduction

The idea is that the attack  will use x as the key in a virtual 
pseudo one-time pad protocol, in which a virtual Eve will run the 
attack ( , ) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

Virtual pseudo OTP



The Reduction

The idea is that the attack  will use x as the key in a virtual 
pseudo one-time pad protocol, in which a virtual Eve will run the 
attack ( , ) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP



The Reduction

The idea is that the attack  will use x as the key in a virtual 
pseudo one-time pad protocol, in which a virtual Eve will run the 
attack ( , ) on the pseudo one-time pad.

𝒜′ (x)

ℬ(s) 𝒜(c)

Alice Eve

x

𝒜′ (x)
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Virtual Alice

key k=x

Virtual Eve

𝒜(c)

ℬ(s)

c

𝒜(c)

, m0 m1
mi

c

i

Virtual pseudo OTP

Did ?  If 
so, .  
Else, .

𝒜(c) = i
𝒜′ (x) = 1

𝒜′ (x) = 0

If Virtual Eve’s attack 
succeeds, Eve 
guesses x was 
pseudorandom.  
Otherwise, she 
guesses x is random.



Proof Steps
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1. First, we will give a formula for the chance that  
for key k.

2. Next, compute the probability that the attack  
succeeds in the case where x was random.

3. Then we compute the probability that the attack 
succeeds in the case where x was pseudorandom and 
compare with the case where x was random.

4. Finally, apply the definition of pseudorandomness to show 
that the two are close, which then implies that the attack 
has a low chance of success against the pseudo one-time 
pad.

5. We also analyze the reduction to show that the derived 
attack is efficient.

𝒜′ (k) = 1

𝒜′ (x)

𝒜′ (x)

To prove the result, we will need analyze the reduction carefully.



Probability Distribution for 𝒜′ (k)
Let calculate the probability for  when the key passed 
to the simulation is k drawn from one of the two distributions 

 (random or pseudorandom):

𝒜′ (k) = 1

𝒦

Pr(𝒜′ (k) = 1) =
1
2 [Pr(𝒜(Enc(k, m1)) = 1) + Pr(𝒜(Enc(k, m0)) = 0)]

=
1
2 [Pr(𝒜(Enc(k, m1)) = 1) + 1 − Pr(𝒜(Enc(k, m0)) = 1)]

=
1
2 (1 + δ𝒦)

(Actually this should be averaged over pairs ( , ) chosen by 
, but we can specialize to  with deterministic output.)

m0 m1
ℬ(s) ℬ(s)
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with probabilities averaged over  and randomness in Enc 
and

k ∈ 𝒦

δ𝒦 = Pr(𝒜(Enc(x, m1)) = 1) − Pr(𝒜(Enc(x, m0)) = 1)



Success Probability for Random x

In the case where x was actually a uniform random string chosen 
by Alice, then the virtual protocol run was actually a virtual one-
time pad.  This means that it has perfect secrecy, and whatever 
pair of messages ( , ) was chosen by  and whichever 
ciphertext c ended up being used,

m0 m1 ℬ(s)

Pr(Enc(x, m0) = c) = Pr(Enc(x, m1) = c) = pc
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Success Probability for Random x

In the case where x was actually a uniform random string chosen 
by Alice, then the virtual protocol run was actually a virtual one-
time pad.  This means that it has perfect secrecy, and whatever 
pair of messages ( , ) was chosen by  and whichever 
ciphertext c ended up being used,

m0 m1 ℬ(s)

Pr(Enc(x, m0) = c) = Pr(Enc(x, m1) = c) = pc
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Now,

Pr(𝒜(Enc(x, mi)) = 1) = ∑
c

Pr(Enc(x, mi) = c)Pr(𝒜(c) = 1)

= ∑
c

pcPr(𝒜(c) = 1)

which doesn’t depend on i.  In particular,

δrand = Pr(𝒜(Enc(x, m1)) = 1) − Pr(𝒜(Enc(x, m0)) = 1) = 0

and .Pr(𝒜′ (x) = 1) = 1/2



Pseudorandom vs. Random

In the case that  is pseudorandom, recall thatx = G(y)

δPRG(y) = Pr(𝒜(Enc(G(y), m1)) = 1) − Pr(𝒜(Enc(G(y), m0)) = 1)
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Pr(𝒜′ (G(y)) = 1) = 1/2 (1 + δPRG)



Pseudorandom vs. Random

In the case that  is pseudorandom, recall thatx = G(y)

δPRG(y) = Pr(𝒜(Enc(G(y), m1)) = 1) − Pr(𝒜(Enc(G(y), m0)) = 1)

Now compare the random and pseudorandom cases:

Pry(𝒜′ (G(y)) = 1) − Prx(𝒜′ (x) = 1) =
1
2

(1 + δPRG) −
1
2

=
1
2

δPRG
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Pr(𝒜′ (G(y)) = 1) = 1/2 (1 + δPRG)



Bound on Attack Success

for negligible .  Thus,ϵ(s)

|δPRG | ≤ 2ϵ(s)

This class is being recorded

|Pry(𝒜′ (G(y)) = 1) − Prx(𝒜′ (x) = 1) | ≤ ϵ(s)

The security definition for the pseudorandom generator says



Bound on Attack Success

for negligible .  Thus,ϵ(s)

|δPRG | ≤ 2ϵ(s)
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|Pry(𝒜′ (G(y)) = 1) − Prx(𝒜′ (x) = 1) | ≤ ϵ(s)

The security definition for the pseudorandom generator says

This is precisely the definition of EAV security for the pseudo 
one-time pad since  is negligible if  is. 2ϵ(s) ϵ(s)

|Prk(𝒜(Enc(k, m1)) = 1) − Prk(𝒜(Enc(k, m0)) = 1) | ≤ 2ϵ(s)

or, expanding  and letting k = G(y),δPRG



Complexity of Reduction

One additional thing that needs to be checked is the complexity 
of the attack .𝒜′ (x)

• Running the Virtual Alice in the one-time pad simulation 
takes a time linear in the message length .

• Running Virtual Eve takes the time required to run the 
attack , which is polynomial in the message 
length.

• Translating the outcome of the simulated one-time pad 
into the attack  takes constant time.

O(ℓ(s))

(ℬ(s), 𝒜(c))

𝒜′ (x)

Therefore the whole attack takes time polynomial in , which 
is as it should be.

ℓ(s)

Note: “Polynomial time” mean polynomial in the size of the input 
to the algorithm,  which is here , not necessarily polynomial 
in s.

ℓ(s)
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Stream Ciphers
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Pseudorandom generators are a lot more efficient than using 
truly random bits, but are still a bit clunky in that they can only 
output big chunks of bits.  You need to know how many bits  
you are going to need when you pick s (and therefore when you 
establish your key if you are doing the pseudo one-time pad.

ℓ(s)

Stream ciphers are a solution: given a seed, they generate a 
stream of pseudorandom bits as you desire.

Init Next Next Next

y

IV 
(sometimes)

st0 st1 st2 st3 …

x0 x1 x2



Stream Cipher Definition
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Init Next Next Next

y

IV 
(sometimes)

st0 st1 st2 st3 …

x0 x1 x2

A stream cipher is a pair of deterministic efficient algorithms (Init, 
Next).  
• Init is the initialization algorithm; it takes a seed y as input and 

sometimes an initial value IV and outputs an initial state . 
• Next is the algorithm that produces bits; it takes as input a 

current state  and outputs a bit  and a new state .

st0

sti xi sti+1

When there is no IV, the stream cipher is secure if the function 
 is a pseudorandom generator for any n 

which is polynomial in .
Gn(y) = x0x1x2…xn

|y | = s



RC4 Overview

Invented by Ron Rivest, RC4 was widely used for many years, for 
instance as part of the first wi-fi protocol, WEP.

…S[00] S[01] S[02] S[03] S[FE] S[FF]

i j

RC4 is a stream cipher.  The state passed between steps consists 
of a permutation of the numbers 0…255 (realized as an array of 
256 bytes, each containing a distinct number), plus two additional 
bytes i and j, which are pointers into the array.

It works by performing swaps between locations in the array in a 
somewhat complicated way.  One entry is then returned as the 
next output in the stream. 

This class is being recorded



RC4 Init
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…

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)



RC4 Init
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…00 01 02 03 FE FF

• First, initialize S[i] := i for all a=0, …, 255.

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)



RC4 Init
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…00 01 02 03 FE FF

j

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)



RC4 Init
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…00 01 02 03 FE FF

ij

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)



RC4 Init
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…00 01 02 03 FE FF

ij

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)



RC4 Init
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…00 01 02 03 FE FF

i

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

j
k = (03,FA, …)



RC4 Init
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…00 01 02 03 FE FF

i

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256
‣ Swap S[i] and S[j].

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

j
k = (03,FA, …)



RC4 Init
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…01 02 FE FF

i

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256
‣ Swap S[i] and S[j].

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

j
k = (03,FA, …)

03 00



RC4 Init
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…01 02 FE FF

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256
‣ Swap S[i] and S[j].

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

j
k = (03,FA, …)

03 00

i



RC4 Init
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…01 02 FE FF

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256
‣ Swap S[i] and S[j].

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)

03 00

i j



RC4 Init
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…01 02 FE FF

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256
‣ Swap S[i] and S[j].

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)

03 00

i j



RC4 Init
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…02 FF

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256
‣ Swap S[i] and S[j].

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)

03 00

i j

01FE



RC4 Init
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…02 FF

• First, initialize S[i] := i for all a=0, …, 255.
• Start with j := 0.
• For i = 0 to 255:
‣ j := j + S[i] + ki mod 256
‣ Swap S[i] and S[j].

• Reset i := 0, j := 0.

RC4 takes no IV, and the key k can have a variable length s 
up to 255 bytes.  Let  be the ith byte of k if , or the 
( )th byte of k when .

ki i < s
i mod s i ≥ s

k = (03,FA, …)

03 00 01FE



RC4 Next

…1A FC 03 EA D7 60

i j
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The Next algorithm has the following steps:



RC4 Next

…1A FC 03 EA D7 60

i j

• i := i + 1
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The Next algorithm has the following steps:



RC4 Next

…1A FC 03 EA D7 60

ji

• i := i + 1
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The Next algorithm has the following steps:



RC4 Next

…1A FC 03 EA D7 60

ji

• i := i + 1
• j := j + S[i]
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The Next algorithm has the following steps:



RC4 Next

…1A FC 03 EA D7 60

i

• i := i + 1
• j := j + S[i]
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The Next algorithm has the following steps:

j



RC4 Next

…1A FC 03 EA D7 60

i

• i := i + 1
• j := j + S[i]
• Swap S[i] and S[j]
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The Next algorithm has the following steps:

j



RC4 Next

…1A EA D7 60

i

• i := i + 1
• j := j + S[i]
• Swap S[i] and S[j]
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The Next algorithm has the following steps:

j

FC03



RC4 Next

…1A EA D7 60

i

• i := i + 1
• j := j + S[i]
• Swap S[i] and S[j]
• t := S[i] + S[j]
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The Next algorithm has the following steps:

j

FC03

t



RC4 Next

…1A EA D7 60

i

• i := i + 1
• j := j + S[i]
• Swap S[i] and S[j]
• t := S[i] + S[j]
• y := S[t]
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The Next algorithm has the following steps:

j

FC03

t

y



RC4 Next

…1A EA D7 60

i

• i := i + 1
• j := j + S[i]
• Swap S[i] and S[j]
• t := S[i] + S[j]
• y := S[t]
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The Next algorithm has the following steps:

Then y is the output byte and the state is passed to the 
following Next call.

j

FC03

t

y

The idea here is that if the entries S[i] are essentially 
random, then t is random too and y is the output of a 
location with no clear relation to i and j.



RC4 Security

Vote: Can we prove RC4 is secure? (Yes/No)
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Because it relies only on swaps and simple arithmetic, RC4 has 
simple fast implementations.  But is it secure?



RC4 Security

Vote: Can we prove RC4 is secure? (Yes/No)

No, it would be hard to prove security because of how 
complicated it is, and we wouldn’t in any case be able to prove 
security more than conditionally.  But more importantly, this is a 
fixed-size protocol.  The limit on key size is 256 bytes, so the 
time to attack it is a constant, at most about .256256

Instead security here means that, in practice, there is no known 
attack that is much better than brute force.

This class is being recorded

Because it relies only on swaps and simple arithmetic, RC4 has 
simple fast implementations.  But is it secure?



RC4 Security

Vote: Can we prove RC4 is secure? (Yes/No)

No, it would be hard to prove security because of how 
complicated it is, and we wouldn’t in any case be able to prove 
security more than conditionally.  But more importantly, this is a 
fixed-size protocol.  The limit on key size is 256 bytes, so the 
time to attack it is a constant, at most about .256256

Instead security here means that, in practice, there is no known 
attack that is much better than brute force.

Vote: Is RC4 secure in this sense? (Yes/No)
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Because it relies only on swaps and simple arithmetic, RC4 has 
simple fast implementations.  But is it secure?



An Attack on RC4

…S[00] X 00 S[03] S[X] S[X+1]

i j

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

…

This class is being recorded



An Attack on RC4

…S[00] X 00 S[03] S[X] S[X+1]

i j

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].

…

This class is being recorded



An Attack on RC4

…S[00] X 00 S[03] S[X] S[X+1]

j

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

i

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].

…
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An Attack on RC4

…S[00] X 00 S[03] S[X] S[X+1]

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

i j

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].

…
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An Attack on RC4

…S[00] 00 S[03] S[X+1]

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

i j

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].

…XS[X]
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An Attack on RC4

…S[00] 00 S[03] S[X+1]

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

i j

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].
• The 2nd step sends i to 02, leaves j as X, and swaps S[02] 

and S[X].  Then t := S[i] + S[j] = X and y := S[t] = S[X] = 00.

…XS[X]
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An Attack on RC4

…S[00] 00 S[03] S[X+1]

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

j

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].
• The 2nd step sends i to 02, leaves j as X, and swaps S[02] 

and S[X].  Then t := S[i] + S[j] = X and y := S[t] = S[X] = 00.

…XS[X]

i

This class is being recorded



An Attack on RC4

…S[00] S[03] S[X+1]

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

j

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].
• The 2nd step sends i to 02, leaves j as X, and swaps S[02] 

and S[X].  Then t := S[i] + S[j] = X and y := S[t] = S[X] = 00.

…S[X] X 00

i

This class is being recorded



An Attack on RC4

…S[00] S[03] S[X+1]

Suppose that after the Init algorithm, we can imagine the state of 
the array to be essentially a random permutation.  With 
probability about 1/256, S[02] = 00 and S[01] = X ≠ 02.  In this 
case, 

j

• The 1st step sends i to 01, j to X, and swaps S[01] and S[X].
• The 2nd step sends i to 02, leaves j as X, and swaps S[02] 

and S[X].  Then t := S[i] + S[j] = X and y := S[t] = S[X] = 00.

…S[X] X 00

i

If S[02] ≠ 00, t is essentially random, which leads to a 1/256 
chance that y = 00.  The output 00 is twice as likely as random!

This class is being recorded




