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Administrative

This class is being recorded

Problem Set #3 is due on Thursday Sep. 21 at noon.



Definition of CPA Security

Alice Eve

c

𝒜(c)
i

mi key k

c

Definition: (Enc, Dec) with security parameter s is CPA-secure if, 
for any pair of messages  and  chosen by the adversary 
(using  and oracle access to Enc(k,x)) and for any efficient 
attack  (also with oracle access to Enc(k,x))

m0 m1
ℬ(s)
𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1)) = 1) | ≤ ϵ(s)

for negligible  and probability taken over k and randomness 
of Enc.

ϵ(s)

This class is being recorded

:  and .ℬ(s) m0 m1
, m0 m1

i

Enc(k,x)



CPA Security With Stream Ciphers

This class is being recorded

Suppose we have a stream cipher that takes an IV.  Suppose on 
initial value IV and key k, the stream cipher outputs the string

x0, x1, x2, x3, x4, …

Then if we have the message , we encrypt 
with the ciphertext .

(m0, m1, m2, m3, …)
(IV, m0 ⊕ x0, m1 ⊕ x1, m2 ⊕ x2, …)

Since Bob gets IV as part of the ciphertext and knows k, he can 
also generate the bit stream x and decrypt.

But this is CPA-secure: because the IV is very unlikely 
to repeat (assuming it is long enough), there will be a 
new stream each time and Eve has no way to predict it 
without knowing the key.

Enc takes as input k and m.  It generates a random IV, uses IV 
and k to generate the x string, and then encrypts as above.



Pseudorandom Functions
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Definition: Let  be a deterministic 
efficiently computable function with  and

.  Then  is a pseudorandom function if, for 
any efficient attack  that accesses an oracle and outputs a bit,

F : {0,1}* × {0,1}* → {0,1}*
|Fk(r) | = |r | = n

|k | = s = poly(n) Fk(r)
𝒜n

|Prk(𝒜
Fk(r)
n = 1) − Prf(𝒜f

n = 1) | ≤ ϵ(s)
with  a negligible function and probabilities averaged over 
randomness of , as well as over uniformly random keys k (left 
probability) and truly random functions f (right probability).

ϵ(s)
𝒜

Alice Eve

𝒜n

non-random if 
random if 

𝒜𝒪
n = 1

𝒜𝒪
n = 0

n
𝒪O = Fk(r) or f(r) 𝒪



Block Ciphers

Fk Fk Fk

m1 m2 m3
IV

c1IVCiphertext: c2 c3

To decrypt, Bob must invert  on block i and XOR with .Fk ci−1

This class is being recorded

Recall that we were discussing block ciphers that can be secure 
against a chosen plaintext attack.  For example, CBC mode builds 
on smaller units, each of which is based on a pseudorandom 
permutation.  DES and AES are examples of pseudorandom 
permutations.



Block Cipher vs. Random Function
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Let’s play the game from the definition of pseudorandom 
function.  I will have a function which is either a random 
permutation or a candidate pseudorandom permutation, using 
the following rule:

Key: A pair of numbers k = (A,B) (non-negative integers less 
than 32).
Function:

Fk(x) = (Ax + B) mod 32

(When we study modular arithmetic, you will see that this is a 
permutation when A is relatively prime to 32.)

Try it: Ask me queries and try to determine which it is, using a 
limited number of queries.



Failure of Test Case
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Fk(x) = (Ax + B) mod 32

Why is this a bad candidate for pseudorandom permutation?

Another problem is that a change in the input produces a very 
predictable change in the output:

Fk(x + 1) = (Fk(x) + A) mod 32

One problem is that certain inputs directly expose part of the 
key:

Fk(0) = B

We want to avoid by designing the functions so that related 
inputs have very different outputs.



Goals of Block Cipher Design

• Must be invertible to use with CBC mode (i.e., pseudorandom 
permutation rather than pseudorandom function).

• Even when the inputs are related, the outputs should be very 
different.

In particular, the change of even a 
single bit of the input should result 
in a totally different output.  This is 
known as the “avalanche effect.”  It 
is often achieved by having multiple 
rounds, each of which magnifies 
small changes.

This class is being recorded



Avalanche Effect vs. Breaking Cipher
Why does the avalanche effect contribute to making a cipher 
secure against chosen plaintext attacks?

This class is being recorded

However, if there is no avalanche 
effect and Eve gets two (plaintext, 
ciphertext) pairs that differ in a small 
fraction of bits of the plaintext, the 
ciphertexts will also only differ in a 
limited set of places.

Because we are focusing on permutations, Eve can try to trace a 
ciphertext backwards to the input.  Because she doesn’t know 
the key, she has limited ability to do this.

She can then focus on deducing the segment of the key that is 
relevant to those locations.  This is a much smaller search than 
searching over all possible key values.



DES Overview

This class is being recorded

64-bit input (permuted)

f

master key k

subkey k1

f

subkey k2

…

64-bit output (permuted)

16 rounds

…

L0 R0

R1 = L0 ⊕ f(k1, R0)
L1 = R0

…
L2 = R1

R2 = L1 ⊕ f(k2, R1)

DES is a 
Feistel 
network.



Feistel Network

f

subkey k1

f

subkey k2

L0 R0

R1 = L0 ⊕ f(k1, R0)
L1 = R0

L2 = R1
R2 = L1 ⊕ f(k2, R1)
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A Feistel network consists of a sequence of rounds sequentially 
acting on the message, which is split into a left and right half.

In each round, the current right half is fed into a round function f 
with a key for the round and then XORed with the left half.  The 
modified left half and old right half are then switched.



Inverse of Feistal Network
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A Feistal network is automatically a permutation.  (Permutation 
here means we are permuting the strings and not just the bits.) 
In particular, it has a straightforward inverse for someone with 
access to the key: Simply run the network backwards. 

Li−1 = Ri ⊕ f(ki−1, Ri−1)

which gives us  and .  We can then work our back to the 
beginning.

Ri−1 Li−1

Suppose we know  and .  Since , we can always 
determine what the input to the f function in round i was.  Then 
we can calculate

Ri Li Li = Ri−1

Notice that f does not have to be invertible itself.



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

01 1101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1110

01 1101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

11

1110

01 1101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

1110

01 1101



Feistel Network Example

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

1110

1110

01 1101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

11 01

1110

1110

01 1101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

11 01

1110

1110

0101

01 1101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

11 01

1110

1110

0101

1001

01 1101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110

11

11



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110

11

11

1110



Feistel Network Example

f

f
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Let’s try an example, using 
3 rounds on a 4-bit input 
(2 bits on each side).    

f

The round function f will 
always be the same:  
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110

11

11

1110

01



DES Subkeys

subkey k1
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In DES, the master key k is 56 bits.

Each subkey  is derived from k via a 
key schedule:

ki
master key k

kL kR
The master key is then split into two 
28-bit halves  and .kL kR

subkey k2

Each subkey  is then a permutation 
of 24 bits from  and 24 bits from .

ki
kL kR

The choice of key bits used is rotated 
each round so that all key bits are 
used about the same number of 
times.



DES Mangler Function
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Ri−1 1. Expansion (32 
bits to 48 bits)

subkey ki2. XOR with 
round key

S S S S S S S S

3. Break into 6-bit chunks

4. Put into S-boxes
5. Recombine 32-
bit output

f(k, Ri−1)

6. Permute bits



Substitution-Permutation Networks
The DES mangler function is a variant of a substitution-
permutation network, a design paradigm for pseudorandom 
permutations.

This class is being recorded

round key ki

S S S S S S S S

xi+1

1. State is mixed 
with round key.

2. Substitution step 
using small invertible 
S-boxes.

No expansionxi

3. Permute bits.



Confusion-Diffusion

The S-boxes introduce confusion: They change their inputs into 
totally different strings and magnify single-bit changes.  However, 
the S-box is small and acts on only a few bits, so the confusion is 
only local.

This class is being recorded

Then the permutation step causes diffusion: whatever local 
confusion was introduced by the S-boxes spreads out to many 
different locations.

Multiple rounds of substitution and permutation cause the 
confusion to be magnified further and continue to spread 
around.

We need both to get an avalanche effect.

You also need key mixing: This is a permutation, and without the 
key, Eve can just trace the permutation backwards to get the 
input.



Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading.  It starts with one patient.

Confusion: The disease infects additional people in the same city 
as someone who is sick.
Diffusion: Some people travel to different cities.



Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading.  It starts with one patient.

Confusion: The disease infects additional people in the same city 
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion



Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading.  It starts with one patient.

Confusion: The disease infects additional people in the same city 
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion

2. Diffusion



Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading.  It starts with one patient.

Confusion: The disease infects additional people in the same city 
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion

2. Diffusion

3. Confusion



Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading.  It starts with one patient.

Confusion: The disease infects additional people in the same city 
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion

2. Diffusion

3. Confusion

4. Diffusion



Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00 00

11 01 00 10 00 11

00 11 00 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01



Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 10 00 11

00 11 00 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01



Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01

11



Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01

11

11



Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01

11

11

00



Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 00

round key k1

S S S S S S

10 00 11 10 01

01

11

11

00

10



Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 00

round key k1

S S S S S S

10 00 11 10 01

01

11

11

00

10

No avalanche 
effect!

Eve can focus on 
the 2 bits of key 
for just this S-box.



Permutation Only

round key k0

00 00 00 00 00 00

11 01 00 10 00 11

10 10 00 11 0110
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded



Permutation Only

round key k0

00 00 00 00 00

11 01 00 10 00 11

01

10 10 00 11 0110
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded



Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 00 11 0110
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded



Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded



Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 01 110100

00 01 10 01 1010

This class is being recorded



Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 01 110100

00 10 01 1010

This class is being recorded

00



Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 01 110100

00 10 01 1010

This class is being recorded

00

No avalanche 
effect!

Eve can learn the 
XOR of the bits of 
key corresponding to 
this path.



DES S-Boxes
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Each of the 8 S-boxes in a single mangler function are different, 
but the set of S-boxes is the same from round to round (as are 
the expansion function and the final permutation).

S

The S-box takes 6 bits as inputs and outputs 
4 bits, so the 8 S-boxes together reduce the 
expanded 48-bit string back to the original 
32 bits.

The S-boxes are carefully designed 
complicated functions defined by lookup 
tables.

They have the property that all possible outputs are equally likely 
on a random input (so each possible output can be reached with 
4 possible inputs) and that if two possible inputs  and  differ 
in only one position, the outputs  and  differ in at least 
two positions.

x1 x2
S(x1) S(x2)



Avalanche Effect for Mangler
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The S-boxes have the property that they double the size of 
single-bit disturbances.  The expansion step may or may not 
increase the size of disturbances.  The permutation cannot 
increase the size of a disturbance, but it is still important.

S

Any disturbance magnified in 
one round will return to be 
magnified more in future rounds, 
but without the permutation, the 
2 flipped bits will likely end up in 
the same S-box and won’t be 
further magnified.  The 
permutation makes sure they hit 
different S-boxes, where each 
can be magnified again. 

S

S SS



Avalanche Effect for Feistel Network

This class is being recorded

The multiple rounds of a Feistal network facilitate the avalanche 
effect provided the f functions magnify changes in their inputs.

f

f

L0 R0

Since f has the property 
that a single bit flipped in 
the input leads to 2 or 
more bit flips in the 
output, then a bit flip in 

 leads to two bit flips 
in , which in turn leads 
to 4 bit flips in , and so 
on.  16 rounds is plenty 
to make sure a single bit 
change in the input leads 
to totally different 
outputs.

R0
R1

R2



Breaking DES
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DES was created in the 1970s, and at that time the key length of 
56 bits was adequate (although still a bit short).  However, by the 
1990s, it was possible to break DES via a brute force attack on 
specialized hardware.

(There are faster theoretical attacks but they use too many 
chosen plaintexts to be practical.)

Since DES was widespread, this problem has been addressed 
with 3DES, which simply runs DES 3 times with different keys.

There is a “meet-in-the-middle” attack against 3DES which 
uses time more like  rather than the brute force time of 

.  However, this is still secure in practice.
22*56

23*56

However, AES is a more modern encryption protocol and is 
better.




