
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 7
Daniel Gottesman

Administrative

This class is being recorded

Problem Set #3 is due on Thursday Sep. 21 at noon.

Definition of CPA Security

Alice Eve

c

𝒜(c)
i

mi key k

c

Definition: (Enc, Dec) with security parameter s is CPA-secure if,
for any pair of messages and chosen by the adversary
(using and oracle access to Enc(k,x)) and for any efficient
attack (also with oracle access to Enc(k,x))

m0 m1
ℬ(s)
𝒜(c)

|Prk(𝒜(Enc(k, m0)) = 1) − Prk(𝒜(Enc(k, m1)) = 1) | ≤ ϵ(s)

for negligible and probability taken over k and randomness
of Enc.

ϵ(s)

This class is being recorded

: and .ℬ(s) m0 m1
, m0 m1

i

Enc(k,x)

CPA Security With Stream Ciphers

This class is being recorded

Suppose we have a stream cipher that takes an IV. Suppose on
initial value IV and key k, the stream cipher outputs the string

x0, x1, x2, x3, x4, …

Then if we have the message , we encrypt
with the ciphertext .

(m0, m1, m2, m3, …)
(IV, m0 ⊕ x0, m1 ⊕ x1, m2 ⊕ x2, …)

Since Bob gets IV as part of the ciphertext and knows k, he can
also generate the bit stream x and decrypt.

But this is CPA-secure: because the IV is very unlikely
to repeat (assuming it is long enough), there will be a
new stream each time and Eve has no way to predict it
without knowing the key.

Enc takes as input k and m. It generates a random IV, uses IV
and k to generate the x string, and then encrypts as above.

Pseudorandom Functions

This class is being recorded

Definition: Let be a deterministic
efficiently computable function with and

. Then is a pseudorandom function if, for
any efficient attack that accesses an oracle and outputs a bit,

F : {0,1}* × {0,1}* → {0,1}*
|Fk(r) | = |r | = n

|k | = s = poly(n) Fk(r)
𝒜n

|Prk(𝒜
Fk(r)
n = 1) − Prf(𝒜f

n = 1) | ≤ ϵ(s)
with a negligible function and probabilities averaged over
randomness of , as well as over uniformly random keys k (left
probability) and truly random functions f (right probability).

ϵ(s)
𝒜

Alice Eve

𝒜n

non-random if
random if

𝒜𝒪
n = 1

𝒜𝒪
n = 0

n
𝒪O = Fk(r) or f(r) 𝒪

Block Ciphers

Fk Fk Fk

m1 m2 m3
IV

c1IVCiphertext: c2 c3

To decrypt, Bob must invert on block i and XOR with .Fk ci−1

This class is being recorded

Recall that we were discussing block ciphers that can be secure
against a chosen plaintext attack. For example, CBC mode builds
on smaller units, each of which is based on a pseudorandom
permutation. DES and AES are examples of pseudorandom
permutations.

Block Cipher vs. Random Function

This class is being recorded

Let’s play the game from the definition of pseudorandom
function. I will have a function which is either a random
permutation or a candidate pseudorandom permutation, using
the following rule:

Key: A pair of numbers k = (A,B) (non-negative integers less
than 32).
Function:

Fk(x) = (Ax + B) mod 32

(When we study modular arithmetic, you will see that this is a
permutation when A is relatively prime to 32.)

Try it: Ask me queries and try to determine which it is, using a
limited number of queries.

Failure of Test Case

This class is being recorded

Fk(x) = (Ax + B) mod 32

Why is this a bad candidate for pseudorandom permutation?

Another problem is that a change in the input produces a very
predictable change in the output:

Fk(x + 1) = (Fk(x) + A) mod 32

One problem is that certain inputs directly expose part of the
key:

Fk(0) = B

We want to avoid by designing the functions so that related
inputs have very different outputs.

Goals of Block Cipher Design

• Must be invertible to use with CBC mode (i.e., pseudorandom
permutation rather than pseudorandom function).

• Even when the inputs are related, the outputs should be very
different.

In particular, the change of even a
single bit of the input should result
in a totally different output. This is
known as the “avalanche effect.” It
is often achieved by having multiple
rounds, each of which magnifies
small changes.

This class is being recorded

Avalanche Effect vs. Breaking Cipher
Why does the avalanche effect contribute to making a cipher
secure against chosen plaintext attacks?

This class is being recorded

However, if there is no avalanche
effect and Eve gets two (plaintext,
ciphertext) pairs that differ in a small
fraction of bits of the plaintext, the
ciphertexts will also only differ in a
limited set of places.

Because we are focusing on permutations, Eve can try to trace a
ciphertext backwards to the input. Because she doesn’t know
the key, she has limited ability to do this.

She can then focus on deducing the segment of the key that is
relevant to those locations. This is a much smaller search than
searching over all possible key values.

DES Overview

This class is being recorded

64-bit input (permuted)

f

master key k

subkey k1

f

subkey k2

…

64-bit output (permuted)

16 rounds

…

L0 R0

R1 = L0 ⊕ f(k1, R0)
L1 = R0

…
L2 = R1

R2 = L1 ⊕ f(k2, R1)

DES is a
Feistel
network.

Feistel Network

f

subkey k1

f

subkey k2

L0 R0

R1 = L0 ⊕ f(k1, R0)
L1 = R0

L2 = R1
R2 = L1 ⊕ f(k2, R1)

This class is being recorded

A Feistel network consists of a sequence of rounds sequentially
acting on the message, which is split into a left and right half.

In each round, the current right half is fed into a round function f
with a key for the round and then XORed with the left half. The
modified left half and old right half are then switched.

Inverse of Feistal Network

This class is being recorded

A Feistal network is automatically a permutation. (Permutation
here means we are permuting the strings and not just the bits.)
In particular, it has a straightforward inverse for someone with
access to the key: Simply run the network backwards.

Li−1 = Ri ⊕ f(ki−1, Ri−1)

which gives us and . We can then work our back to the
beginning.

Ri−1 Li−1

Suppose we know and . Since , we can always
determine what the input to the f function in round i was. Then
we can calculate

Ri Li Li = Ri−1

Notice that f does not have to be invertible itself.

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1110

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

11

1110

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

1110

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

1110

1110

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

11 01

1110

1110

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

11 01

1110

1110

0101

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0)

1111

11 01

1110

1110

0101

1001

01 1101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110

11

11

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110

11

11

1110

Feistel Network Example

f

f

This class is being recorded

Let’s try an example, using
3 rounds on a 4-bit input
(2 bits on each side).

f

The round function f will
always be the same:
f(x, y) = (x AND y,1 ⊕ x)

Input Output

(0,0) (0,1)

(0,1) (0,1)

(1,0) (0,0)

(1,1) (1,0) 1001

01

0101
11

11
1110

11

11

1110

01

DES Subkeys

subkey k1

This class is being recorded

In DES, the master key k is 56 bits.

Each subkey is derived from k via a
key schedule:

ki
master key k

kL kR
The master key is then split into two
28-bit halves and .kL kR

subkey k2

Each subkey is then a permutation
of 24 bits from and 24 bits from .

ki
kL kR

The choice of key bits used is rotated
each round so that all key bits are
used about the same number of
times.

DES Mangler Function

This class is being recorded

Ri−1 1. Expansion (32
bits to 48 bits)

subkey ki2. XOR with
round key

S S S S S S S S

3. Break into 6-bit chunks

4. Put into S-boxes
5. Recombine 32-
bit output

f(k, Ri−1)

6. Permute bits

Substitution-Permutation Networks
The DES mangler function is a variant of a substitution-
permutation network, a design paradigm for pseudorandom
permutations.

This class is being recorded

round key ki

S S S S S S S S

xi+1

1. State is mixed
with round key.

2. Substitution step
using small invertible
S-boxes.

No expansionxi

3. Permute bits.

Confusion-Diffusion

The S-boxes introduce confusion: They change their inputs into
totally different strings and magnify single-bit changes. However,
the S-box is small and acts on only a few bits, so the confusion is
only local.

This class is being recorded

Then the permutation step causes diffusion: whatever local
confusion was introduced by the S-boxes spreads out to many
different locations.

Multiple rounds of substitution and permutation cause the
confusion to be magnified further and continue to spread
around.

We need both to get an avalanche effect.

You also need key mixing: This is a permutation, and without the
key, Eve can just trace the permutation backwards to get the
input.

Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading. It starts with one patient.

Confusion: The disease infects additional people in the same city
as someone who is sick.
Diffusion: Some people travel to different cities.

Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading. It starts with one patient.

Confusion: The disease infects additional people in the same city
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion

Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading. It starts with one patient.

Confusion: The disease infects additional people in the same city
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion

2. Diffusion

Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading. It starts with one patient.

Confusion: The disease infects additional people in the same city
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion

2. Diffusion

3. Confusion

Disease Confusion-Diffusion

This class is being recorded

Imagine you have a disease spreading. It starts with one patient.

Confusion: The disease infects additional people in the same city
as someone who is sick.
Diffusion: Some people travel to different cities.

1. Confusion

2. Diffusion

3. Confusion

4. Diffusion

Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00 00

11 01 00 10 00 11

00 11 00 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01

Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 10 00 11

00 11 00 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01

Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01

11

Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01

11

11

Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 00

round key k1

S S S S S S

10 00 11 11 10 01

01

11

11

00

Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 00

round key k1

S S S S S S

10 00 11 10 01

01

11

11

00

10

Substitution Only
Suppose we have S-boxes but no permutation.

round key k0

S S S S S S

This class is being recorded

00 00 00 00 00

11 01 00 00 11

00 11 00 01 10

10 01 10 11 00

round key k1

S S S S S S

10 00 11 10 01

01

11

11

00

10

No avalanche
effect!

Eve can focus on
the 2 bits of key
for just this S-box.

Permutation Only

round key k0

00 00 00 00 00 00

11 01 00 10 00 11

10 10 00 11 0110
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded

Permutation Only

round key k0

00 00 00 00 00

11 01 00 10 00 11

01

10 10 00 11 0110
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded

Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 00 11 0110
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded

Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 10 01 1101

00 01 10 01 1010

This class is being recorded

Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 01 110100

00 01 10 01 1010

This class is being recorded

Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 01 110100

00 10 01 1010

This class is being recorded

00

Permutation Only

round key k0

00 00 00 00 00

11 01 00 00 11

01

11

10 10 11 011010
round key k1

00 00 01 110100

00 10 01 1010

This class is being recorded

00

No avalanche
effect!

Eve can learn the
XOR of the bits of
key corresponding to
this path.

DES S-Boxes

This class is being recorded

Each of the 8 S-boxes in a single mangler function are different,
but the set of S-boxes is the same from round to round (as are
the expansion function and the final permutation).

S

The S-box takes 6 bits as inputs and outputs
4 bits, so the 8 S-boxes together reduce the
expanded 48-bit string back to the original
32 bits.

The S-boxes are carefully designed
complicated functions defined by lookup
tables.

They have the property that all possible outputs are equally likely
on a random input (so each possible output can be reached with
4 possible inputs) and that if two possible inputs and differ
in only one position, the outputs and differ in at least
two positions.

x1 x2
S(x1) S(x2)

Avalanche Effect for Mangler

This class is being recorded

The S-boxes have the property that they double the size of
single-bit disturbances. The expansion step may or may not
increase the size of disturbances. The permutation cannot
increase the size of a disturbance, but it is still important.

S

Any disturbance magnified in
one round will return to be
magnified more in future rounds,
but without the permutation, the
2 flipped bits will likely end up in
the same S-box and won’t be
further magnified. The
permutation makes sure they hit
different S-boxes, where each
can be magnified again.

S

S SS

Avalanche Effect for Feistel Network

This class is being recorded

The multiple rounds of a Feistal network facilitate the avalanche
effect provided the f functions magnify changes in their inputs.

f

f

L0 R0

Since f has the property
that a single bit flipped in
the input leads to 2 or
more bit flips in the
output, then a bit flip in

 leads to two bit flips
in , which in turn leads
to 4 bit flips in , and so
on. 16 rounds is plenty
to make sure a single bit
change in the input leads
to totally different
outputs.

R0
R1

R2

Breaking DES

This class is being recorded

DES was created in the 1970s, and at that time the key length of
56 bits was adequate (although still a bit short). However, by the
1990s, it was possible to break DES via a brute force attack on
specialized hardware.

(There are faster theoretical attacks but they use too many
chosen plaintexts to be practical.)

Since DES was widespread, this problem has been addressed
with 3DES, which simply runs DES 3 times with different keys.

There is a “meet-in-the-middle” attack against 3DES which
uses time more like rather than the brute force time of

. However, this is still secure in practice.
22*56

23*56

However, AES is a more modern encryption protocol and is
better.

