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Administrative

This class is being recorded

Problem set #4 is out and problem set #3 was due at noon 
today.

Problem set #2 grades are available, as is the solution set for #2 
(on ELMS).



Goals of Block Cipher Design

• Must be invertible to use with CBC mode (i.e., pseudorandom 
permutation rather than pseudorandom function).

• Even when the inputs are related, the outputs should be very 
different.

In particular, the change of even a 
single bit of the input should result 
in a totally different output.  This is 
known as the “avalanche effect.”  It 
is often achieved by having multiple 
rounds, each of which magnifies 
small changes.

This class is being recorded



Substitution-Permutation Networks
AES is basically a substitution-permutation network, which was 
also essentially the design for the DES mangler function.
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with round key.
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using small invertible 
S-boxes.
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3. Permute bits.



Confusion-Diffusion

The S-boxes introduce confusion: They change their inputs into 
totally different strings and magnify single-bit changes.  However, 
the S-box is small and acts on only a few bits, so the confusion is 
only local.
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Then the permutation step causes diffusion: whatever local 
confusion was introduced by the S-boxes spreads out to many 
different locations.

Multiple rounds of substitution and permutation cause the 
confusion to be magnified further and continue to spread 
around.

We need both to get an avalanche effect.

You also need key mixing: This is a permutation, and without the 
key, Eve can just trace the permutation backwards to get the 
input.



AES Key Schedule and Key Mixing

master key k

subkey k1

subkey k2

…

AES is standardized for 3 key lengths: 128 
bits, 192 bits, and 256 bits.

Each subkey is 128 bits and is derived from 
the master key by more complex 
transformations than in DES.  In particular, 
the later subkeys are derived using the AES 
S-box.

The number of rounds also depends on the key 
length (longer key = more rounds = more 
secure):
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• 128-bit key: 10 rounds
• 192-bit key: 12 rounds
• 256-bit key: 14 rounds

The 128-bit subkey is then XORed with the 128 bits of the 
state at the key mixing stages.



Applying AES S-Boxes
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S S S S The AES S-box takes a 1-byte (8 
bit) input and 1-byte output.  It is 
invertible and again invoked via a 
table lookup.

S S S S

S S S S

S S S S

The same S-box is applied to each 
entry of the matrix.

Again, the S-box is chosen to introduce confusion by magnifying 
small changes in the input.



Shifting Rows in AES
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The diffusion step in AES consists of two pieces.  In the first part, 
the rows are shifted independently.

In the ShiftRows step, 
the ith row is shifted 
cyclically by i spaces.



Column Mixing in AES
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The MixColumns deviates 
from a substitution-
permutation network by 
using a linear transformation 
on each column instead of 
permuting the bits.  But it has 
a similar effect.  (Linear 
transformations are also easy 
to invert, like permutations.)

There would not be much point in ending with ShiftRows and 
MixColumns steps, since by themselves they can be easily 
inverted by Eve.  Instead, the last round replaces MixColumns 
with another key mixing step (requiring an extra subkey).



Breaking AES
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Vote: Is there a known way to break AES?  (Yes/No/Other)



Breaking AES
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Vote: Is there a known way to break AES?  (Yes/No/Other)

All three answers are correct in a sense.

There is no (publicly) known practical attack against AES in 
its ideal implementation.

But … if it is not implemented properly, the 
encryption algorithm can sometimes leak additional 
information that can help narrow down the key.

This is known as a side-channel attack.

This seems like cheating — but yes, Eve cheats.  If she can’t 
win playing by your rules, she will try to change the rules.



Side Channel Attacks
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There are a wide variety of known side-channel attacks.  E.g.:

Timing Attacks: Some computations take longer than others. If 
we’re not very careful, different keys or messages will lead to 
quicker or slower computations, and Eve can detect that. 

Power Analysis Attacks: Similarly, some computations may draw 
more power (or produce more heat) than others.  This can also 
be used by Eve to narrow down the key or message.

Cache Attacks: By monitoring cache use, an attacker may be able 
to determine information about what computation the 
encryption process is using.

Electromagnetic or Acoustic Attacks: EM radiation or sounds may 
leak from the computer, revealing some information about the 
encryption process.



How to Access a Side Channel
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In some cases, it is possible to perform a side channel attack 
over a network.  For instance, in a timing attack, Eve can interact 
with a server (or monitor Bob’s interaction with the server) and 
measure the length of time it takes for the server to respond to 
each query.  This reveals something about the encryption time.

In other cases, it may be necessary for Eve to monitor the 
physical vicinity of Alice.  For instance, in an electromagnetic 
attack, Eve needs some way of seeing the leaked radiation.

In other cases, Eve may need a process on the same computer as 
Alice.  For instance, Eve may manage to get some low-privilege 
malware on the machine which is unable to read Alice’s message 
but can see how its own cache usage depends on the encryption.  
Or perhaps Eve’s program is simply running on the same cloud 
server as Alice.



Side Channel Attacks on AES
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AES’s S-boxes and column mixing operations are defined via 
operations on finite fields.  These can be computed, but to 
optimize speed, they are usually pre-computed into lookup 
tables, which are cached during an encryption.

This enables a cache side-channel attack.

These attacks seem doable in practice given a poor 
implementation and a process running on the same device (e.g., 
same cloud server) as Alice.

But there are also countermeasures, so in most cases, AES 
should be considered secure.



How Do We Use Symmetric Crypto?

Alice Bob

Eve

key k
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The symmetric cryptosystems we have seen so far require Alice 
and Bob to share a key unknown to Eve.  This is fine if they 
occasionally meet in person and communicate regularly, but what 
if Alice and Bob have not met before?

How can they establish their first key remotely?



Public Key Cryptography
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The solution is to use public key cryptography.  Public key 
encryption is an asymmetric encryption protocol where the 
encryption key is different from the decryption key.

Alice Bob

Eve

e

encryption key e

decryption 
key d

Public key encryption and key agreement protocols allow Alice and Bob 
to communicate securely without having a previously agreed secret key.



Modular Arithmetic
To discuss public key cryptography, we need to know a lot more 
about modular arithmetic.

Modular arithmetic involves number systems that are cyclic, like 
a clock.
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It’s best to think of modular 
arithmetic as a new type of number, 
with different operations.

We can do a type conversion from 
integers to numbers mod N by 
dividing by N and keeping only the 
remainder.

Numbers mod N form a new type 
for each different value of N.



Modular Arithmetic Operations
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The basic arithmetic operations in modular arithmetic have the 
same names as for integer arithmetic and mostly inherit the 
same properties through the type conversion:

Addition:



Modular Arithmetic Operations
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The basic arithmetic operations in modular arithmetic have the 
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same properties through the type conversion:

Addition: Works the same.  E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
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The basic arithmetic operations in modular arithmetic have the 
same names as for integer arithmetic and mostly inherit the 
same properties through the type conversion:

Addition: Works the same.  E.g.:
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for whole 
equation



Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the 
same names as for integer arithmetic and mostly inherit the 
same properties through the type conversion:

Addition: Works the same.  E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same.  E.g.:
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same properties through the type conversion:

Addition: Works the same.  E.g.:
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Modular Arithmetic Operations
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The basic arithmetic operations in modular arithmetic have the 
same names as for integer arithmetic and mostly inherit the 
same properties through the type conversion:

Addition: Works the same.  E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
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Modular Arithmetic Operations
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The basic arithmetic operations in modular arithmetic have the 
same names as for integer arithmetic and mostly inherit the 
same properties through the type conversion:

Addition: Works the same.  E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same.  E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same.  E.g.:

36 ⋅ 58 mod 71 = 29 = 58 ⋅ 36 mod 71
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for whole 
equation



Modular Arithmetic Operations
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The basic arithmetic operations in modular arithmetic have the 
same names as for integer arithmetic and mostly inherit the 
same properties through the type conversion:

Addition: Works the same.  E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same.  E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same.  E.g.:

36 ⋅ 58 mod 71 = 29 = 58 ⋅ 36 mod 71
Division: There are some issues.  E.g.:

35/58 mod 60 = ?

indicates 
mod 71 type 
for whole 
equation



Modular Division Definition
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What does division mod N mean?

Division is supposed to be the inverse of multiplication.  That is, if

ab = c mod N then c/a = b mod N

In particular, the definition of  is a number b (mod N) 
with the property that

c/a mod N

ab = c mod N

has no answer.  /∃x s . t . 58 ⋅ x = 35 mod 60

This means that the question 35/58 mod 60 = ?



Modular Divison

But  is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30
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Modular Divison

But  is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30
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How do we determine if division is allowed or not?



Modular Divison

But  is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30
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How do we determine if division is allowed or not?

c/a = b mod N c = ab + kN

Convert 
back to 
integer type 



Modular Divison

But  is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30
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How do we determine if division is allowed or not?

c/a = b mod N c = ab + kN

Suppose there is some p such that  and .  Then the right-
hand side of the equation on the right is also a multiple of p.  
Thus, division by a is only possible if c is a multiple of p as well.

p |a p |N

Convert 
back to 
integer type 

This shows  is undefined: 58 and 60 are both even.35/58 mod 60



Modular Divison

But  is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30
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How do we determine if division is allowed or not?

c/a = b mod N c = ab + kN

Suppose there is some p such that  and .  Then the right-
hand side of the equation on the right is also a multiple of p.  
Thus, division by a is only possible if c is a multiple of p as well.

p |a p |N

What about if a and N are relatively prime?  (I.e., they have no 
common factors.)

Convert 
back to 
integer type 

This shows  is undefined: 58 and 60 are both even.35/58 mod 60



Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive 
integers a and b: namely, the largest integer c such that  and 

.  Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a

c |b
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Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive 
integers a and b: namely, the largest integer c such that  and 

.  Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a
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Theorem: For any two positive integers a and b, there exists a 
polynomial-time algorithm to find X and Y such that 

aX + bY = gcd(a, b)

Note: If , then  for any integers X, Y.d < gcd(a, b) aX + bY ≠ d
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Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive 
integers a and b: namely, the largest integer c such that  and 

.  Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a

c |b

Theorem: For any two positive integers a and b, there exists a 
polynomial-time algorithm to find X and Y such that 

aX + bY = gcd(a, b)

Note: If , then  for any integers X, Y.d < gcd(a, b) aX + bY ≠ d
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Proof: The proof is an analysis of the algorithm to find X and Y.  
This is Euclid’s algorithm.

Euclid’s algorithm appeared in Euclid’s Elements in around 300 
BCE.  That makes it one of the world’s oldest algorithms!



Modular Division

If , then we can always divide by a in mod N 
arithmetic:

gcd(a, N) = 1

Using Euclid’s algorithm, find X, Y such that

aX + NY = 1

Then .aX = 1 mod N

X is then the multiplicative inverse of a. Let . Thenb = cX mod N
ab = a(cX) = c(Xa) = c mod N

This class is being recorded

so .c/a = b = cX mod N

And moreover, we can divide in polynomial time.

Example: 1 = − 5 ⋅ 57 + 13 ⋅ 22
Thus, .  E.g., .c/22 mod 57 = 13c mod 57 5/22 = 8 mod 57



Dos and Don’ts of Division
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When a and N are relatively prime, it is OK to cancel a from an 
equation:

ab = ac mod N b = c mod N

But this is not OK in general if .gcd(a, N) ≠ 1

Examples:

 but .2 ⋅ 4 = 2 ⋅ 9 mod 10 4 ≠ 9 mod 10

3 ⋅ 4 + 3 ⋅ 4 = 4 mod 10 = 3 ⋅ 8 mod 10
4 + 4 = 8 mod 10



Euclid’s Algorithm Concept
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Suppose we want to find c = gcd(a,b). Example:

We know  and .  Can we 
find another smaller number that 
is also a multiple of c?

c |a c |b a = 58
b = 36
c = 2 (but we don’t 
know that yet)

If , then a’ = a-b is smaller 
than a and must still be a multiple 
of c.

a > b
a-b = 22
(still a multiple of c)

If we keep subtracting one number 
from the other, our pair of 
numbers will get steadily smaller 
until eventually we get down to c.

36 - 22 = 14

22 - 14 = 8
14 - 8 = 6
8 - 6 = 2

6 is a multiple of 2, 
so we are done.



Euclid’s Algorithm Refinements
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When we subtract off b from a, the result might still be bigger 
than b.  Instead we should take , which means subtract 
off as many b’s as we can.  This will give us a number a’ which is 
less than b, so next time we reduce b instead. 

a mod b



Euclid’s Algorithm Refinements
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When we subtract off b from a, the result might still be bigger 
than b.  Instead we should take , which means subtract 
off as many b’s as we can.  This will give us a number a’ which is 
less than b, so next time we reduce b instead. 

a mod b

To get the coefficients X and Y, we should also keep track of 
how many b’s we subtracted:

a′￼= a − Y0b
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a mod b

To get the coefficients X and Y, we should also keep track of 
how many b’s we subtracted:

a′￼= a − Y0b
At each step, this will allow us to write our current replacements 
for a and b in the form .aXi + bYi
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When we subtract off b from a, the result might still be bigger 
than b.  Instead we should take , which means subtract 
off as many b’s as we can.  This will give us a number a’ which is 
less than b, so next time we reduce b instead. 

a mod b

To get the coefficients X and Y, we should also keep track of 
how many b’s we subtracted:

a′￼= a − Y0b
At each step, this will allow us to write our current replacements 
for a and b in the form .aXi + bYi
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Euclid’s Algorithm Refinements
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When we subtract off b from a, the result might still be bigger 
than b.  Instead we should take , which means subtract 
off as many b’s as we can.  This will give us a number a’ which is 
less than b, so next time we reduce b instead. 

a mod b

To get the coefficients X and Y, we should also keep track of 
how many b’s we subtracted:

a′￼= a − Y0b
At each step, this will allow us to write our current replacements 
for a and b in the form .aXi + bYi

In particular, if our current pair is  and 
, and we subtract  copies of , then

ai = aXi + bYi
bi = aX′￼i + bY′￼i mi bi

ai+1 = ai − mibi = a(Xi − miX′￼i) + b(Yi − miY′￼i)

We don’t need to keep  and  separate: We can combine them 
into a single sequence .

ai bi
ri



Euclid’s Algorithm

Let  and .  Assume .r0 = a r1 = b a > b
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Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 57 r1 = 22

, 
, 

r2 = 13
X2 = 1 Y2 = − 2

, 
, 

r3 = 9
X3 = − 1 Y3 = 3

, 
, 

r4 = 4
X4 = 2 Y4 = − 5

, 
, 

r5 = 1
X5 = − 5 Y5 = 13

r6 = 0

,gcd(57,22) = 1
1 = − 5 ⋅ 57 + 13 ⋅ 22



Euclid’s Algorithm Analysis
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At every iteration of the algorithm, the following statements are 
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true 
for i+1 (by the arguments before).  They are true for i=0 and 
thus we prove by induction that the statements are true for all i.
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Euclid’s Algorithm Analysis
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At every iteration of the algorithm, the following statements are 
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true 
for i+1 (by the arguments before).  They are true for i=0 and 
thus we prove by induction that the statements are true for all i.

Since  strictly decreases, the algorithm must eventually 
reach , at which point it terminates with .  At 
that point, .  But that means  

and so on.  By induction, we also have  for all j.

ri
ri = 0 i − 1 = if

rif |rif−1 rif |rif−2 = mif−1rif−1 + rif
rif |rj

In particular,  and .  But , sorif |a rif |b gcd(a, b) |rif
rif = gcd(a, b)



Efficiency of Euclid’s Algorithm
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How quickly does  decrease in Euclid’s algorithm?ri

If , then .ri ≥ ri−1/2 ri+1 ≤ ri−1/2
If , then .ri ≤ ri−1/2 ri+1 ≤ ri ≤ ri−1/2

Either way, .ri+1 ≤ ri−1/2

Since  is at least halved every 2 steps, the algorithm can run at 
most  steps before halting.

ri
2 log2 a



Meaning of Efficient
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It’s important to remember that efficient (or polynomial time) 
means polynomial time as a function of the input size.

When doing arithmetic or finding the gcd, the input size is 
the length (i.e., number of bits) of the numbers being 
computed with.

Not polynomial in the numbers themselves!

Integer addition, subtraction, multiplication, division (with 
remainder) are all efficient in this sense using standard grade 
school algorithms.  Still true for modular +, -, *.

 is the input size, so Euclid’s algorithm has a polynomial 
number of steps, each of which is efficient.  Therefore it is 
efficient overall.

log2 a




