
CMSC/Math 456:
Cryptography (Fall 2023)

Lecture 8
Daniel Gottesman

Administrative

This class is being recorded

Problem set #4 is out and problem set #3 was due at noon
today.

Problem set #2 grades are available, as is the solution set for #2
(on ELMS).

Goals of Block Cipher Design

• Must be invertible to use with CBC mode (i.e., pseudorandom
permutation rather than pseudorandom function).

• Even when the inputs are related, the outputs should be very
different.

In particular, the change of even a
single bit of the input should result
in a totally different output. This is
known as the “avalanche effect.” It
is often achieved by having multiple
rounds, each of which magnifies
small changes.

This class is being recorded

Substitution-Permutation Networks
AES is basically a substitution-permutation network, which was
also essentially the design for the DES mangler function.

This class is being recorded

round key ki

S S S S S S S S

xi+1

1. State is mixed
with round key.

2. Substitution step
using small invertible
S-boxes.

No expansionxi

3. Permute bits.

Confusion-Diffusion

The S-boxes introduce confusion: They change their inputs into
totally different strings and magnify single-bit changes. However,
the S-box is small and acts on only a few bits, so the confusion is
only local.

This class is being recorded

Then the permutation step causes diffusion: whatever local
confusion was introduced by the S-boxes spreads out to many
different locations.

Multiple rounds of substitution and permutation cause the
confusion to be magnified further and continue to spread
around.

We need both to get an avalanche effect.

You also need key mixing: This is a permutation, and without the
key, Eve can just trace the permutation backwards to get the
input.

AES Key Schedule and Key Mixing

master key k

subkey k1

subkey k2

…

AES is standardized for 3 key lengths: 128
bits, 192 bits, and 256 bits.

Each subkey is 128 bits and is derived from
the master key by more complex
transformations than in DES. In particular,
the later subkeys are derived using the AES
S-box.

The number of rounds also depends on the key
length (longer key = more rounds = more
secure):

This class is being recorded

• 128-bit key: 10 rounds
• 192-bit key: 12 rounds
• 256-bit key: 14 rounds

The 128-bit subkey is then XORed with the 128 bits of the
state at the key mixing stages.

Applying AES S-Boxes

This class is being recorded

S S S S The AES S-box takes a 1-byte (8
bit) input and 1-byte output. It is
invertible and again invoked via a
table lookup.

S S S S

S S S S

S S S S

The same S-box is applied to each
entry of the matrix.

Again, the S-box is chosen to introduce confusion by magnifying
small changes in the input.

Shifting Rows in AES

This class is being recorded

The diffusion step in AES consists of two pieces. In the first part,
the rows are shifted independently.

In the ShiftRows step,
the ith row is shifted
cyclically by i spaces.

Column Mixing in AES

This class is being recorded

The MixColumns deviates
from a substitution-
permutation network by
using a linear transformation
on each column instead of
permuting the bits. But it has
a similar effect. (Linear
transformations are also easy
to invert, like permutations.)

There would not be much point in ending with ShiftRows and
MixColumns steps, since by themselves they can be easily
inverted by Eve. Instead, the last round replaces MixColumns
with another key mixing step (requiring an extra subkey).

Breaking AES

This class is being recorded

Vote: Is there a known way to break AES? (Yes/No/Other)

Breaking AES

This class is being recorded

Vote: Is there a known way to break AES? (Yes/No/Other)

All three answers are correct in a sense.

There is no (publicly) known practical attack against AES in
its ideal implementation.

But … if it is not implemented properly, the
encryption algorithm can sometimes leak additional
information that can help narrow down the key.

This is known as a side-channel attack.

This seems like cheating — but yes, Eve cheats. If she can’t
win playing by your rules, she will try to change the rules.

Side Channel Attacks

This class is being recorded

There are a wide variety of known side-channel attacks. E.g.:

Timing Attacks: Some computations take longer than others. If
we’re not very careful, different keys or messages will lead to
quicker or slower computations, and Eve can detect that.

Power Analysis Attacks: Similarly, some computations may draw
more power (or produce more heat) than others. This can also
be used by Eve to narrow down the key or message.

Cache Attacks: By monitoring cache use, an attacker may be able
to determine information about what computation the
encryption process is using.

Electromagnetic or Acoustic Attacks: EM radiation or sounds may
leak from the computer, revealing some information about the
encryption process.

How to Access a Side Channel

This class is being recorded

In some cases, it is possible to perform a side channel attack
over a network. For instance, in a timing attack, Eve can interact
with a server (or monitor Bob’s interaction with the server) and
measure the length of time it takes for the server to respond to
each query. This reveals something about the encryption time.

In other cases, it may be necessary for Eve to monitor the
physical vicinity of Alice. For instance, in an electromagnetic
attack, Eve needs some way of seeing the leaked radiation.

In other cases, Eve may need a process on the same computer as
Alice. For instance, Eve may manage to get some low-privilege
malware on the machine which is unable to read Alice’s message
but can see how its own cache usage depends on the encryption.
Or perhaps Eve’s program is simply running on the same cloud
server as Alice.

Side Channel Attacks on AES

This class is being recorded

AES’s S-boxes and column mixing operations are defined via
operations on finite fields. These can be computed, but to
optimize speed, they are usually pre-computed into lookup
tables, which are cached during an encryption.

This enables a cache side-channel attack.

These attacks seem doable in practice given a poor
implementation and a process running on the same device (e.g.,
same cloud server) as Alice.

But there are also countermeasures, so in most cases, AES
should be considered secure.

How Do We Use Symmetric Crypto?

Alice Bob

Eve

key k

This class is being recorded

The symmetric cryptosystems we have seen so far require Alice
and Bob to share a key unknown to Eve. This is fine if they
occasionally meet in person and communicate regularly, but what
if Alice and Bob have not met before?

How can they establish their first key remotely?

Public Key Cryptography

This class is being recorded

The solution is to use public key cryptography. Public key
encryption is an asymmetric encryption protocol where the
encryption key is different from the decryption key.

Alice Bob

Eve

e

encryption key e

decryption
key d

Public key encryption and key agreement protocols allow Alice and Bob
to communicate securely without having a previously agreed secret key.

Modular Arithmetic
To discuss public key cryptography, we need to know a lot more
about modular arithmetic.

Modular arithmetic involves number systems that are cyclic, like
a clock.

This class is being recorded

0 1

2

3

4

567

8

9

10
11

It’s best to think of modular
arithmetic as a new type of number,
with different operations.

We can do a type conversion from
integers to numbers mod N by
dividing by N and keeping only the
remainder.

Numbers mod N form a new type
for each different value of N.

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition:

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71

indicates
mod 71 type
for whole
equation

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction:

indicates
mod 71 type
for whole
equation

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71 indicates
mod 71 type
for whole
equation

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication:
indicates
mod 71 type
for whole
equation

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same. E.g.:

36 ⋅ 58 mod 71 = 29 = 58 ⋅ 36 mod 71

indicates
mod 71 type
for whole
equation

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same. E.g.:

36 ⋅ 58 mod 71 = 29 = 58 ⋅ 36 mod 71
Division:

indicates
mod 71 type
for whole
equation

Modular Arithmetic Operations

This class is being recorded

The basic arithmetic operations in modular arithmetic have the
same names as for integer arithmetic and mostly inherit the
same properties through the type conversion:

Addition: Works the same. E.g.:

(36 + 58) + 15 mod 71 = 38 = 36 + (58 + 15) mod 71
Subtraction: Works the same. E.g.:

36 − 58 = 49 mod 71

Multiplication: Works the same. E.g.:

36 ⋅ 58 mod 71 = 29 = 58 ⋅ 36 mod 71
Division: There are some issues. E.g.:

35/58 mod 60 = ?

indicates
mod 71 type
for whole
equation

Modular Division Definition

This class is being recorded

What does division mod N mean?

Division is supposed to be the inverse of multiplication. That is, if

ab = c mod N then c/a = b mod N

In particular, the definition of is a number b (mod N)
with the property that

c/a mod N

ab = c mod N

has no answer. /∃x s . t . 58 ⋅ x = 35 mod 60

This means that the question 35/58 mod 60 = ?

Modular Divison

But is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30

This class is being recorded

Modular Divison

But is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30

This class is being recorded

How do we determine if division is allowed or not?

Modular Divison

But is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30

This class is being recorded

How do we determine if division is allowed or not?

c/a = b mod N c = ab + kN

Convert
back to
integer type

Modular Divison

But is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30

This class is being recorded

How do we determine if division is allowed or not?

c/a = b mod N c = ab + kN

Suppose there is some p such that and . Then the right-
hand side of the equation on the right is also a multiple of p.
Thus, division by a is only possible if c is a multiple of p as well.

p |a p |N

Convert
back to
integer type

This shows is undefined: 58 and 60 are both even.35/58 mod 60

Modular Divison

But is well-defined:36/58 mod 71

58 ⋅ 30 = 36 mod 71

Thus,

36/58 mod 71 = 30

This class is being recorded

How do we determine if division is allowed or not?

c/a = b mod N c = ab + kN

Suppose there is some p such that and . Then the right-
hand side of the equation on the right is also a multiple of p.
Thus, division by a is only possible if c is a multiple of p as well.

p |a p |N

What about if a and N are relatively prime? (I.e., they have no
common factors.)

Convert
back to
integer type

This shows is undefined: 58 and 60 are both even.35/58 mod 60

Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive
integers a and b: namely, the largest integer c such that and

. Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a

c |b

This class is being recorded

Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive
integers a and b: namely, the largest integer c such that and

. Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a

c |b

Theorem: For any two positive integers a and b, there exists a
polynomial-time algorithm to find X and Y such that

aX + bY = gcd(a, b)

Note: If , then for any integers X, Y.d < gcd(a, b) aX + bY ≠ d

This class is being recorded

Finding GCDs

Definition: Let gcd(a,b) be greatest common divisor of positive
integers a and b: namely, the largest integer c such that and

. Note that if a and b are relatively prime, gcd(a,b) = 1.
c |a

c |b

Theorem: For any two positive integers a and b, there exists a
polynomial-time algorithm to find X and Y such that

aX + bY = gcd(a, b)

Note: If , then for any integers X, Y.d < gcd(a, b) aX + bY ≠ d

This class is being recorded

Proof: The proof is an analysis of the algorithm to find X and Y.
This is Euclid’s algorithm.

Euclid’s algorithm appeared in Euclid’s Elements in around 300
BCE. That makes it one of the world’s oldest algorithms!

Modular Division

If , then we can always divide by a in mod N
arithmetic:

gcd(a, N) = 1

Using Euclid’s algorithm, find X, Y such that

aX + NY = 1

Then .aX = 1 mod N

X is then the multiplicative inverse of a. Let . Thenb = cX mod N
ab = a(cX) = c(Xa) = c mod N

This class is being recorded

so .c/a = b = cX mod N

And moreover, we can divide in polynomial time.

Example: 1 = − 5 ⋅ 57 + 13 ⋅ 22
Thus, . E.g., .c/22 mod 57 = 13c mod 57 5/22 = 8 mod 57

Dos and Don’ts of Division

This class is being recorded

When a and N are relatively prime, it is OK to cancel a from an
equation:

ab = ac mod N b = c mod N

But this is not OK in general if .gcd(a, N) ≠ 1

Examples:

 but .2 ⋅ 4 = 2 ⋅ 9 mod 10 4 ≠ 9 mod 10

3 ⋅ 4 + 3 ⋅ 4 = 4 mod 10 = 3 ⋅ 8 mod 10
4 + 4 = 8 mod 10

Euclid’s Algorithm Concept

This class is being recorded

Suppose we want to find c = gcd(a,b). Example:

We know and . Can we
find another smaller number that
is also a multiple of c?

c |a c |b a = 58
b = 36
c = 2 (but we don’t
know that yet)

If , then a’ = a-b is smaller
than a and must still be a multiple
of c.

a > b
a-b = 22
(still a multiple of c)

If we keep subtracting one number
from the other, our pair of
numbers will get steadily smaller
until eventually we get down to c.

36 - 22 = 14

22 - 14 = 8
14 - 8 = 6
8 - 6 = 2

6 is a multiple of 2,
so we are done.

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′￼= a − Y0b

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′￼= a − Y0b
At each step, this will allow us to write our current replacements
for a and b in the form .aXi + bYi

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′￼= a − Y0b
At each step, this will allow us to write our current replacements
for a and b in the form .aXi + bYi

In particular, if our current pair is and
, and we subtract copies of , then

ai = aXi + bYi
bi = aX′￼i + bY′￼i mi bi

ai+1 = ai − mibi = a(Xi − miX′￼i) + b(Yi − miY′￼i)

Euclid’s Algorithm Refinements

This class is being recorded

When we subtract off b from a, the result might still be bigger
than b. Instead we should take , which means subtract
off as many b’s as we can. This will give us a number a’ which is
less than b, so next time we reduce b instead.

a mod b

To get the coefficients X and Y, we should also keep track of
how many b’s we subtracted:

a′￼= a − Y0b
At each step, this will allow us to write our current replacements
for a and b in the form .aXi + bYi

In particular, if our current pair is and
, and we subtract copies of , then

ai = aXi + bYi
bi = aX′￼i + bY′￼i mi bi

ai+1 = ai − mibi = a(Xi − miX′￼i) + b(Yi − miY′￼i)

We don’t need to keep and separate: We can combine them
into a single sequence .

ai bi
ri

Euclid’s Algorithm

Let and . Assume .r0 = a r1 = b a > b

This class is being recorded

Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 57 r1 = 22

,
,

r2 = 13
X2 = 1 Y2 = − 2

,
,

r3 = 9
X3 = − 1 Y3 = 3

,
,

r4 = 4
X4 = 2 Y4 = − 5

,
,

r5 = 1
X5 = − 5 Y5 = 13

r6 = 0

,gcd(57,22) = 1
1 = − 5 ⋅ 57 + 13 ⋅ 22

Euclid’s Algorithm Analysis

This class is being recorded

At every iteration of the algorithm, the following statements are
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true
for i+1 (by the arguments before). They are true for i=0 and
thus we prove by induction that the statements are true for all i.

Euclid’s Algorithm Analysis

This class is being recorded

At every iteration of the algorithm, the following statements are
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true
for i+1 (by the arguments before). They are true for i=0 and
thus we prove by induction that the statements are true for all i.

Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with . At
that point, . But that means

and so on. By induction, we also have for all j.

ri
ri = 0 i − 1 = if

rif |rif−1 rif |rif−2 = mif−1rif−1 + rif
rif |rj

Euclid’s Algorithm Analysis

This class is being recorded

At every iteration of the algorithm, the following statements are
true:

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

If these statements are true for i, the statements also hold true
for i+1 (by the arguments before). They are true for i=0 and
thus we prove by induction that the statements are true for all i.

Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with . At
that point, . But that means

and so on. By induction, we also have for all j.

ri
ri = 0 i − 1 = if

rif |rif−1 rif |rif−2 = mif−1rif−1 + rif
rif |rj

In particular, and . But , sorif |a rif |b gcd(a, b) |rif
rif = gcd(a, b)

Efficiency of Euclid’s Algorithm

This class is being recorded

How quickly does decrease in Euclid’s algorithm?ri

If , then .ri ≥ ri−1/2 ri+1 ≤ ri−1/2
If , then .ri ≤ ri−1/2 ri+1 ≤ ri ≤ ri−1/2

Either way, .ri+1 ≤ ri−1/2

Since is at least halved every 2 steps, the algorithm can run at
most steps before halting.

ri
2 log2 a

Meaning of Efficient

This class is being recorded

It’s important to remember that efficient (or polynomial time)
means polynomial time as a function of the input size.

When doing arithmetic or finding the gcd, the input size is
the length (i.e., number of bits) of the numbers being
computed with.

Not polynomial in the numbers themselves!

Integer addition, subtraction, multiplication, division (with
remainder) are all efficient in this sense using standard grade
school algorithms. Still true for modular +, -, *.

 is the input size, so Euclid’s algorithm has a polynomial
number of steps, each of which is efficient. Therefore it is
efficient overall.

log2 a

