CMSC/Math 456: Cryptography (Fall 2022) Lecture 9 Daniel Gottesman

Administrative

Reminder: Problem Set #4 is due Thursday (Sep. 28) at noon. There was a typo in problem 2b (now fixed): $G_k(x)$ should be $F_k(x)$.

I apologize that I forgot to record the last lecture, but the slides are available on the public course website.

Modular Arithmetic

Modular arithmetic involves number systems that are cyclic, like a clock. Numbers mod N can be thought of as a new type of number, and type conversion between the integers and mod N arithmetic makes addition, subtraction, and multiplication obey the usual integers properties.

However, we saw that division by a is only well-defined in mod N arithmetic when gcd(a,N) = 1.

We can find the multiplicative inverse I/a mod N by using Euclid's algorithm to find X and Y such that

 $aX + NY = \gcd(a, N)$

Then $X = 1/a \mod N$.

This class is being recorded

Euclid's Algorithm

Given a and b, Euclid's algorithm finds X and Y such that

 $aX + bY = \gcd(a, b)$

- The basic idea of the algorithm is to keep a pair a_i and b_i which have the same gcd.
- At each step, we subtract off multiples of the smaller member of the pair in order to get a new pair.
- Each time we do this, we keep track of what multiple is subtracted in order to write $a_i = aX_i + bY_i$ and

 $b_i = aX'_i + bY'_i.$

• We combine the pair into even and odd elements of a single sequence r_i .

Euclid's Algorithm

Let $r_0 = a$ and $r_1 = b$. Assume a > b. $i = 1, X_0 = 1, Y_0 = 0, X_1 = 0, Y_1 = 1$ Repeat:

$$r_{i+1} = r_{i-1} \mod r_i$$
$$m_i = \lfloor r_{i-1}/r_i \rfloor$$
$$X_{i+1} = X_{i-1} - m_i X_i$$
$$Y_{i+1} = Y_{i-1} - m_i Y_i$$
$$i = i + 1$$
Until $r_i = 0$

Output:

 $gcd(a, b) = r_{i-1}$ $X = X_{i-1}, Y = Y_{i-1}$

This class is being recorded

Example: $r_0 = 57, r_1 = 22$ $\begin{vmatrix} r_2 = 13, \\ X_2 = 1, Y_2 = -2 \\ r_3 = 9, \\ X_3 = -1, Y_3 = 3 \\ r_4 = 4, \\ X_4 = 2, Y_4 = -5 \\ r_5 = 1, \\ X_5 = -5, Y_5 = 13 \end{vmatrix}$ $r_{6} = 0$ gcd(57,22) = 1, $1 = -5 \cdot 57 + 13 \cdot 22$

Claim: At every iteration of the algorithm, the following statements are true:

A. $0 \le r_i < r_{i-1}$ B. $r_i = aX_i + bY_i$ C. $gcd(a, b) | r_i$

We are going to prove this claim by induction.

We can first check the base cases i=0, I:

Claim: At every iteration of the algorithm, the following statements are true:

A. $0 \le r_i < r_{i-1}$ B. $r_i = aX_i + bY_i$ C. $gcd(a, b) | r_i$

We are going to prove this claim by induction.

We can first check the base cases i=0, I:

• A: $0 \le r_1 = b < r_0 = a$

Claim: At every iteration of the algorithm, the following statements are true:

A.
$$0 \le r_i < r_{i-1}$$

B. $r_i = aX_i + bY_i$
C. $gcd(a, b) | r_i$

We are going to prove this claim by induction.

We can first check the base cases i=0, I:

• A:
$$0 \le r_1 = b < r_0 = a$$

• **B**:
$$r_0 = aX_0 + bY_0 = a \cdot 1 + b \cdot 0$$

Claim: At every iteration of the algorithm, the following statements are true:

A.
$$0 \le r_i < r_{i-1}$$

B. $r_i = aX_i + bY_i$
C. $gcd(a, b) | r_i$

We are going to prove this claim by induction.

We can first check the base cases i=0, I:

• A:
$$0 \le r_1 = b < r_0 = a$$

• **B**:
$$r_0 = aX_0 + bY_0 = a \cdot 1 + b \cdot 0$$

• **B**:
$$r_1 = aX_1 + bY_1 = a \cdot 0 + b \cdot 1$$

This class is being recorded

Claim: At every iteration of the algorithm, the following statements are true:

A.
$$0 \le r_i < r_{i-1}$$

B. $r_i = aX_i + bY_i$
C. $gcd(a, b) | r_i$

We are going to prove this claim by induction.

We can first check the base cases i=0, I:

- A: $0 \le r_1 = b < r_0 = a$
- **B**: $r_0 = aX_0 + bY_0 = a \cdot 1 + b \cdot 0$
- **B**: $r_1 = aX_1 + bY_1 = a \cdot 0 + b \cdot 1$
- **C**: $gcd(a, b) | r_0 = a$ and $gcd(a, b) | r_1 = b$

We now need to prove the inductive step: Suppose we have

A.
$$0 \le r_i < r_{i-1}$$

B. $r_i = aX_i + bY_i$ and
C. $gcd(a, b) | r_i$

 $r_{i+1} = r_{i-1} \mod r_i$ $m_i = \lfloor r_{i-1}/r_i \rfloor$ $X_{i+1} = X_{i-1} - m_i X_i$ $Y_{i+1} = Y_{i-1} - m_i Y_i$

Then

We now need to prove the inductive step: Suppose we have

 A. $0 \le r_i < r_{i-1}$ $r_{i+1} = r_{i-1} \mod r_i$

 B. $r_i = aX_i + bY_i$ and
 $m_i = \lfloor r_{i-1}/r_i \rfloor$

 C. $gcd(a, b) \mid r_i$ $X_{i+1} = X_{i-1} - m_i X_i$
 $Y_{i+1} = Y_{i-1} - m_i Y_i$

Then

• A: $0 \le r_{i+1} < r_i$ by the properties of mod

We now need to prove the inductive step: Suppose we have

A. $0 \le r_i < r_{i-1}$ B. $r_i = aX_i + bY_i$ and $r_{i+1} = r_{i-1} \mod r_i$ C. $gcd(a, b) | r_i$ $r_i = \lfloor r_{i-1}/r_i \rfloor$ $X_{i+1} = X_{i-1} - m_i X_i$ $Y_{i+1} = Y_{i-1} - m_i Y_i$

Then

- A: $0 \le r_{i+1} < r_i$ by the properties of mod
- C: $r_{i+1} = r_{i-1} m_i r_i$, and since gcd(a, b) divides both terms on the RHS, $gcd(a, b) | r_{i+1}$

We now need to prove the inductive step: Suppose we have

A. $0 \le r_i < r_{i-1}$ B. $r_i = aX_i + bY_i$ and $r_{i+1} = r_{i-1} \mod r_i$ C. $gcd(a, b) | r_i$ $r_i = \lfloor r_{i-1}/r_i \rfloor$ $X_{i+1} = X_{i-1} - m_i X_i$ $Y_{i+1} = Y_{i-1} - m_i Y_i$

Then

- A: $0 \le r_{i+1} < r_i$ by the properties of mod
- C: $r_{i+1} = r_{i-1} m_i r_i$, and since gcd(a, b) divides both terms on the RHS, $gcd(a, b) | r_{i+1}$

• and B:

$$aX_{i+1} + bY_{i+1} = a(X_{i-1} - m_iX_i) + b(Y_{i-1} - m_iY_i)$$

= $(aX_{i-1} + bY_{i-1}) - m_i(aX_i + bY_i)$
= $r_{i-1} - m_ir_i$
= r_{i+1}

Thus, these three properties hold true for all i.

Thus, these three properties hold true for all i.

 $0 \le r_i < r_{i-1}$ $r_i = aX_i + bY_i$ $gcd(a, b) | r_i$

• Since r_i strictly decreases, the algorithm must eventually reach $r_i = 0$, at which point it terminates with $i - 1 = i_{f'}$.

Thus, these three properties hold true for all i.

- Since r_i strictly decreases, the algorithm must eventually reach $r_i = 0$, at which point it terminates with $i 1 = i_f$.
- At that point, $r_{i_f} | r_{i_f-1}$ since $0 = r_{i_f+1} = r_{i_f-1} m_{i_f} r_{i_f}$.

Thus, these three properties hold true for all i.

- Since r_i strictly decreases, the algorithm must eventually reach $r_i = 0$, at which point it terminates with $i 1 = i_f$.
- At that point, $r_{i_f} | r_{i_f-1}$ since $0 = r_{i_f+1} = r_{i_f-1} m_{i_f} r_{i_f}$.
- But that means $r_{i_f} | r_{i_f-2} = m_{i_f-1}r_{i_f-1} + r_{i_f}$ and so on. By induction, we also have $r_{i_f} | r_j$ for all j.

Thus, these three properties hold true for all i.

- Since r_i strictly decreases, the algorithm must eventually reach $r_i = 0$, at which point it terminates with $i 1 = i_f$.
- At that point, $r_{i_f} | r_{i_f-1}$ since $0 = r_{i_f+1} = r_{i_f-1} m_{i_f} r_{i_f}$.
- But that means $r_{i_f} | r_{i_f-2} = m_{i_f-1}r_{i_f-1} + r_{i_f}$ and so on. By induction, we also have $r_{i_f} | r_j$ for all j.
- In particular, $r_{i_f} | a$ and $r_{i_f} | b$, so $r_{i_f} \leq \gcd(a, b)$.

Thus, these three properties hold true for all i.

- Since r_i strictly decreases, the algorithm must eventually reach $r_i = 0$, at which point it terminates with $i 1 = i_f$.
- At that point, $r_{i_f} | r_{i_f-1}$ since $0 = r_{i_f+1} = r_{i_f-1} m_{i_f} r_{i_f}$.
- But that means $r_{i_f} | r_{i_f-2} = m_{i_f-1}r_{i_f-1} + r_{i_f}$ and so on. By induction, we also have $r_{i_f} | r_j$ for all j.
- In particular, $r_{i_f} | a$ and $r_{i_f} | b$, so $r_{i_f} \leq \gcd(a, b)$.
- But $gcd(a, b) | r_{i_f}$, so

$$r_{i_f} = aX_{i_f} + bY_{i_f} = \gcd(a, b)$$

Efficiency of Euclid's Algorithm

How quickly does r_i decrease in Euclid's algorithm?

- If $r_i \ge r_{i-1}/2$, then $r_{i+1} \le r_{i-1}/2$.
- If $r_i \le r_{i-1}/2$, then $r_{i+1} \le r_i \le r_{i-1}/2$.

Either way, $r_{i+1} \le r_{i-1}/2$.

Since r_i is at least halved every 2 steps, the algorithm can run at most $2 \log_2 a$ steps before halting.

Meaning of Efficient

It's important to remember that efficient (or polynomial time) means polynomial time as a function of the input size.

When doing arithmetic or finding the gcd, the input size is the length (i.e., number of bits) of the numbers being computed with.

Not polynomial in the numbers themselves!

Integer addition, subtraction, multiplication, division (with remainder) are all efficient in this sense using standard grade school algorithms. Still true for modular +, -, *.

 $\log_2 a$ is the input size, so Euclid's algorithm has a polynomial number of steps, each of which is efficient. Therefore it is efficient overall.

Prime vs. Non-Prime Moduli

Because division mod N is well-defined only when gcd(a, N) = 1, there is an important difference in structure between values of N with many factors (so there are few numbers which are relatively prime to it) and those with few factors (so most numbers are relatively prime to N).

In particular, when N is prime, we can divide by *any* number mod N except for 0.

In mathematical jargon, numbers mod N form a field when N is prime, whereas they are only a ring when N is not prime.

(You don't need to know these terms; the thing you should understand is why prime N is different and special.)

Modular Arithmetic Examples

Mod 5 addition and multiplication:

Mod 6 addition and multiplication:

+	0	1	2	3	4	5
0	0	1	2	З	4	5
1	1	2	3	4	5	0
2	2	З	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

The next operation we need in modular arithmetic, and one we will use a lot, is exponentiation:

$x^a \mod N$

Here, x is a number mod N, and a is an integer. (We will see later that we can safely restrict the range of a but it is *not* a mod N number.)

Exponentiation is defined in the usual way, as the product of a copies of x, with multiplication defined in mod N arithmetic.

Many of the usual properties of exponents hold, e.g.:

 $x^{a}x^{b} = x^{a+b} \mod N$ $(x^{a})^{b} = x^{ab} \mod N$ $x^{a}y^{a} = (xy)^{a} \mod N$

This class is being recorded

Example: Mod 10

Let us calculate exponents mod 10.

To see how the cycling works, let's look at powers of 3 mod 10.

 $3^{1} = 3 \mod 10$ $3^{2} = 9 \mod 10$ $3^{3} = 7 \mod 10$ $3^{4} = 1 \mod 10$

To see how the cycling works, let's look at powers of 3 mod 10.

 $3^{1} = 3 \mod 10$ $3^{2} = 9 \mod 10$ $3^{3} = 7 \mod 10$ $3^{4} = 1 \mod 10$ Remember, we can reduce mod N before or after multiplying and get the same result: $3^4 = 81 = 1 \mod 10$ and $3 \cdot 7 = 21 = 1 \mod 10$

To see how the cycling works, let's look at powers of 3 mod 10.

Remember, we can reduce mod N before or after multiplying and get the same result: $3^4 = 81 = 1 \mod 10$ and $3 \cdot 7 = 21 = 1 \mod 10$

We can get $3^5 \mod 10$ by just multiplying $3^4 = 1 \mod 10$ by 3.

Repetition of Powers

Since there are only N possible values mod N, eventually x^a must repeat, $x^{r+1} = x \mod N$. If x and N are relatively prime, then we can cancel x and get $x^r = 1 \mod N$.

Definition: If gcd(x, N) = 1 and r is the lowest power for which $x^r = 1 \mod N$, then r is the order of x, ord(x).

After r, powers of x start to repeat:

 $x^{a} = x^{\operatorname{ord}(x)}x^{a - \operatorname{ord}(x)} = 1 \cdot x^{a - \operatorname{ord}(x)} = x^{a - \operatorname{ord}(x)} \mod N$

Or more generally,

 $x^a = x^b \mod N$ iff $a = b \mod \operatorname{ord}(x)$

So, for example, ord(3) = 4 in mod 10 arithmetic and

 $3^a = 3^b \mod 10$ iff $a = b \mod 4 \Leftrightarrow a = b + 4k$

This class is being recorded

Different Orders Mod 10

The numbers relatively prime to 10 are 1, 3, 7, and 9.

 $1^1 = 1 \mod 10$

ord(I) = I

$$3^{1} = 3 \mod 10$$

 $3^{2} = 9 \mod 10$
 $3^{3} = 7 \mod 10$
 $3^{4} = 1 \mod 10$

$$7^{1} = 7 \mod 10$$

 $7^{2} = 9 \mod 10$
 $7^{3} = 3 \mod 10$
 $7^{4} = 1 \mod 10$

$$ord(7) = 4$$

$$9^1 = 9 \mod 10$$

 $9^2 = 1 \mod 10$

ord(3) = 4

ord(9) = 2

The different bases have different orders mod 10.

This class is being recorded

Another observation: when we have a base x which is relatively prime to the modulus N, then all powers of x are also relatively prime to N.

Proposition: If
$$gcd(x, N) = 1$$
 and $y = x^a \mod N$, then $gcd(y, N) = 1$ as well.

$$3^{1} = 3 \mod 10$$

 $3^{2} = 9 \mod 10$
 $3^{3} = 7 \mod 10$
 $3^{4} = 1 \mod 10$

Another observation: when we have a base x which is relatively prime to the modulus N, then all powers of x are also relatively prime to N.

Proposition: If
$$gcd(x, N) = 1$$
 and $y = x^a \mod N$, then $gcd(y, N) = 1$ as well.

$$3^{1} = 3 \mod 10$$

 $3^{2} = 9 \mod 10$
 $3^{3} = 7 \mod 10$
 $3^{4} = 1 \mod 10$

Proof:

We can assume a < r = ord(x). Then

 $x^a x^{r-a} = x^r = 1 \mod N$

Another observation: when we have a base x which is relatively prime to the modulus N, then all powers of x are also relatively prime to N.

Proposition: If
$$gcd(x, N) = 1$$
 and $y = x^a \mod N$, then $gcd(y, N) = 1$ as well.

$$3^{1} = 3 \mod 10$$

 $3^{2} = 9 \mod 10$
 $3^{3} = 7 \mod 10$
 $3^{4} = 1 \mod 10$

Proof:

We can assume a < r = ord(x). Then

 $x^a x^{r-a} = x^r = 1 \mod N$

But this implies that x^{r-a} is the multiplicative inverse of x^a .

Another observation: when we have a base x which is relatively prime to the modulus N, then all powers of x are also relatively prime to N.

Proposition: If
$$gcd(x, N) = 1$$
 and $y = x^a \mod N$, then $gcd(y, N) = 1$ as well.

$$3^{1} = 3 \mod 10$$

 $3^{2} = 9 \mod 10$
 $3^{3} = 7 \mod 10$
 $3^{4} = 1 \mod 10$

Proof:

We can assume a < r = ord(x). Then

 $x^a x^{r-a} = x^r = 1 \mod N$

But this implies that x^{r-a} is the multiplicative inverse of x^a .

Since $y = x^a$ has a multiplicative inverse mod N, it follows that gcd(y, N) = 1.

This class is being recorded

Example: Mod 10

When $gcd(x, N) \neq 1$, the behavior is different.

$$0^{1} = 0 \mod 10$$

 $4^{1} = 4 \mod 10$
 $4^{2} = 6 \mod 10$
 $5^{1} = 5 \mod 10$
 $6^{1} = 6 \mod 10$

$$2^{1} = 2 \mod 10$$

 $2^{2} = 4 \mod 10$
 $2^{3} = 8 \mod 10$
 $2^{4} = 6 \mod 10$

 $8^1 = 8 \mod 10$

 $8^2 = 4 \mod 10$

 $8^3 = 2 \mod 10$

 $8^4 = 6 \mod 10$

If the base shares a factor with 10, all powers still share that factor.

The exponents still cycle, but they never reach 1.

When the base x is *not* relatively prime to the modulus N, the powers are not relatively prime either.

$8^1 = 8 \mod 10$
$8^2 = 4 \mod 10$
$8^3 = 2 \mod 10$
$8^4 = 6 \mod 10$

Proposition: If b = gcd(x, N) and $y = x^a \mod N$, then $b \mid y$.

In particular, if x is not relatively prime to N, then y is not either.

When the base x is *not* relatively prime to the modulus N, the powers are not relatively prime either.

$8^1 = 8 \mod 10$
$8^2 = 4 \mod 10$
$8^3 = 2 \mod 10$
$8^4 = 6 \mod 10$

Proposition: If b = gcd(x, N) and $y = x^a \mod N$, then $b \mid y$.

In particular, if x is not relatively prime to N, then y is not either.

Proof: We have that $b \mid x$ in integer arithmetic.

When the base x is *not* relatively prime to the modulus N, the powers are not relatively prime either.

$8^1 = 8 \mod 10$
$8^2 = 4 \mod 10$
$8^3 = 2 \mod 10$
$8^4 = 6 \mod 10$

Proposition: If b = gcd(x, N) and $y = x^a \mod N$, then $b \mid y$.

In particular, if x is not relatively prime to N, then y is not either.

Proof: We have that $b \mid x$ in integer arithmetic.

But then b | cx for all integer c. In particular, $b | x^{a-1}x = x^a$.

When the base x is *not* relatively prime to the modulus N, the powers are not relatively prime either.

$8^1 = 8 \mod 10$
$8^2 = 4 \mod 10$
$8^3 = 2 \mod 10$
$8^4 = 6 \mod 10$

Proposition: If b = gcd(x, N) and $y = x^a \mod N$, then $b \mid y$.

In particular, if x is not relatively prime to N, then y is not either.

Proof: We have that $b \mid x$ in integer arithmetic.

But then b | cx for all integer c. In particular, $b | x^{a-1}x = x^a$. This is in integer arithmetic. Still in integer arithmetic, $y = x^a + kN$

When the base x is *not* relatively prime to the modulus N, the powers are not relatively prime either.

$8^1 = 8 \mod 10$
$8^2 = 4 \mod 10$
$8^3 = 2 \mod 10$
$8^4 = 6 \mod 10$

Proposition: If b = gcd(x, N) and $y = x^a \mod N$, then $b \mid y$.

In particular, if x is not relatively prime to N, then y is not either.

Proof: We have that $b \mid x$ in integer arithmetic.

But then b | cx for all integer c. In particular, $b | x^{a-1}x = x^a$. This is in integer arithmetic. Still in integer arithmetic, $y = x^a + kN$

But $b \mid N$ as well, so since b divides both terms in the RHS sum, we have $b \mid y$.

This class is being recorded

Example: Mod II

Mod 11: Now every x is relatively prime to 11.

$$3^{1} = 3 \mod 11$$

 $3^{2} = 9 \mod 11$
 $3^{3} = 5 \mod 11$
 $3^{4} = 4 \mod 11$
 $3^{5} = 1 \mod 11$
 $5^{1} = 5 \mod 11$
 $5^{2} = 3 \mod 11$
 $5^{3} = 4 \mod 11$

$$5^4 = 9 \mod 11$$

 $5^5 = 1 \mod 11$

$$10^1 = 10 \mod 11$$

 $10^2 = 1 \mod 11$

ord (2) = ord(7) = 10 ord(3) = ord(5) = 5 ord(10) = 2

More generally, we are interested in which elements have which order.

Recall that 2 has order 10 in mod 11 arithmetic.

Question I: What is the order of $4 = 2^2 \mod 11$?

More generally, we are interested in which elements have which order.

Recall that 2 has order 10 in mod 11 arithmetic.

Question I: What is the order of $4 = 2^2 \mod 11$?

Answer: 5, because $4^5 = (2^2)^5 = 2^{10} = 1 \mod 11$.

Note that the answer can't be any r < 5, because then we would have $4^r = (2^2)^r = 2^{2r} = 1 \mod 11$ with 2r < 10, which we know is not possible since the order of 2 is the smallest power of 2 that gives us 1.

More generally, we are interested in which elements have which order.

Recall that 2 has order 10 in mod 11 arithmetic.

Question I: What is the order of $4 = 2^2 \mod 11$?

Answer: 5, because $4^5 = (2^2)^5 = 2^{10} = 1 \mod 11$.

Note that the answer can't be any r < 5, because then we would have $4^r = (2^2)^r = 2^{2r} = 1 \mod 11$ with 2r < 10, which we know is not possible since the order of 2 is the smallest power of 2 that gives us 1.

Similarly, the order of $10 = 2^5 \mod 11$ must be 2, which we saw on the last page.

Again, 2 has order 10 in mod 11 arithmetic.

Question 2: What is the order of $8 = 2^3 \mod 11$?

Again, 2 has order 10 in mod 11 arithmetic.

Question 2: What is the order of $8 = 2^3 \mod 11$?

Answer: 10. Certainly

 $8^{10} = (2^3)^{10} = (2^{10})^3 = 1^3 = 1 \mod 11$

but how do we know the order is not something smaller?

Again, 2 has order 10 in mod 11 arithmetic.

Question 2: What is the order of $8 = 2^3 \mod 11$?

Answer: 10. Certainly

 $8^{10} = (2^3)^{10} = (2^{10})^3 = 1^3 = 1 \mod 11$

but how do we know the order is not something smaller? Suppose $8^r = 1 \mod 11$. Then $2^{3r} = 1 \mod 11$.

Again, 2 has order 10 in mod 11 arithmetic.

Question 2: What is the order of $8 = 2^3 \mod 11$?

Answer: 10. Certainly

 $8^{10} = (2^3)^{10} = (2^{10})^3 = 1^3 = 1 \mod 11$

but how do we know the order is not something smaller? Suppose $8^r = 1 \mod 11$. Then $2^{3r} = 1 \mod 11$.

Since $2^0 = 1 = 2^{3r} \mod 11$, then 0 and 3r differ by a multiple of the order, i.e.

3r = 10k

Again, 2 has order 10 in mod 11 arithmetic.

Question 2: What is the order of $8 = 2^3 \mod 11$?

Answer: 10. Certainly

 $8^{10} = (2^3)^{10} = (2^{10})^3 = 1^3 = 1 \mod 11$

but how do we know the order is not something smaller?

Suppose $8^r = 1 \mod 11$. Then $2^{3r} = 1 \mod 11$.

Since $2^0 = 1 = 2^{3r} \mod 11$, then 0 and 3r differ by a multiple of the order, i.e.

3r = 10k

Since 3 is relatively prime to 10, the only way this is possible is for 10 | r.

This class is being recorded

Again, 2 has order 10 in mod 11 arithmetic.

Question 3: What is the order of $9 = 2^6 \mod 11$?

Again, 2 has order 10 in mod 11 arithmetic.

Question 3: What is the order of $9 = 2^6 \mod 11$?

Answer: 5. Consider:

 $9^5 = (2^6)^5 = 2^{30} = (2^{10})^3 = 1^3 = 1 \mod 10$

or alternatively, $9 = 8^2 \mod 11$ and 8 has order 10.

Again, 2 has order 10 in mod 11 arithmetic.

Question 3: What is the order of $9 = 2^6 \mod 11$?

Answer: 5. Consider:

 $9^5 = (2^6)^5 = 2^{30} = (2^{10})^3 = 1^3 = 1 \mod 10$

or alternatively, $9 = 8^2 \mod 11$ and 8 has order 10.

Question 3a: How could we have known it would be 5?

Again, 2 has order 10 in mod 11 arithmetic.

Question 3: What is the order of $9 = 2^6 \mod 11$?

Answer: 5. Consider:

 $9^5 = (2^6)^5 = 2^{30} = (2^{10})^3 = 1^3 = 1 \mod 10$

or alternatively, $9 = 8^2 \mod 11$ and 8 has order 10.

Question 3a: How could we have known it would be 5?

Let ord(9) = r, so

 $1 = 9^r = 2^{6r} \mod 11$

and 6r = 10k. Since 6 is even, gcd(6, 10) = 2, and we can divide through by 2 to get 3r = 5k.

Since we divided by the gcd, what's left is relatively prime, and we must have 5 | r.

This class is being recorded

Theorem: Let gcd(x, N) = 1 and $y = x^a \mod N$, and let r = ord(x) (in mod N arithmetic). Then $ord(y) = \frac{r}{gcd(a, r)}$

Proof:

Theorem: Let gcd(x, N) = 1 and $y = x^a \mod N$, and let r = ord(x) (in mod N arithmetic). Then $ord(y) = \frac{r}{gcd(a, r)}$

Proof: Let b = r/gcd(a, r) and c = a/gcd(a, r). Then note that b and c are relatively prime.

Theorem: Let gcd(x, N) = 1 and $y = x^a \mod N$, and let r = ord(x) (in mod N arithmetic). Then $ord(y) = \frac{r}{gcd(a, r)}$

Proof: Let $b = r/\gcd(a, r)$ and $c = a/\gcd(a, r)$. Then note that b and c are relatively prime. By definition, $1 = y^{\operatorname{ord}(y)} = x^{a \operatorname{ord}(y)} \mod N$. Thus, $a \operatorname{ord}(y) = kr$

Theorem: Let gcd(x, N) = 1 and $y = x^a \mod N$, and let r = ord(x) (in mod N arithmetic). Then $ord(y) = \frac{r}{gcd(a, r)}$

Proof: Let $b = r/\gcd(a, r)$ and $c = a/\gcd(a, r)$. Then note that b and c are relatively prime. By definition, $1 = y^{\operatorname{ord}(y)} = x^{a \operatorname{ord}(y)} \mod N$. Thus, $a \operatorname{ord}(y) = kr$ Dividing through by $\gcd(a, r)$, we have $c \operatorname{ord}(y) = kb$

This class is being recorded

Theorem: Let gcd(x, N) = 1 and $y = x^a \mod N$, and let r = ord(x) (in mod N arithmetic). Then $ord(y) = \frac{r}{gcd(a, r)}$

Proof: Let $b = r/\gcd(a, r)$ and $c = a/\gcd(a, r)$. Then note that b and c are relatively prime. By definition, $1 = y^{\operatorname{ord}(y)} = x^{a \operatorname{ord}(y)} \mod N$. Thus, $a \operatorname{ord}(y) = kr$ Dividing through by $\gcd(a, r)$, we have $c \operatorname{ord}(y) = kb$

Since **b** and **c** are relatively prime, we see that $b | \operatorname{ord}(y)$.

Theorem: Let gcd(x, N) = 1 and $y = x^a \mod N$, and let r = ord(x) (in mod N arithmetic). Then $ord(y) = \frac{r}{gcd(a, r)}$

Proof: Let $b = r/\gcd(a, r)$ and $c = a/\gcd(a, r)$. Then note that b and c are relatively prime. By definition, $1 = y^{\operatorname{ord}(y)} = x^{a \operatorname{ord}(y)} \mod N$. Thus, $a \operatorname{ord}(y) = kr$ Dividing through by $\gcd(a, r)$, we have $c \operatorname{ord}(y) = kb$ Since b and c are relatively prime, we see that $b | \operatorname{ord}(y)$.

But $y^b = x^{ab} = x^{cr} = (x^r)^c = 1 \mod N$, so $\operatorname{ord}(y) \le b$. Thus, $\operatorname{ord}(y) = b$.

This class is being recorded

Modular Exponentiation Summary

We have deduced the following facts about modular exponentials:

- Modular exponentials always recur in a cycle whose size is less than the modulus N.
- Powers of x relatively prime to N are also relatively prime and powers of non-relatively prime x are also not relatively prime.
- We define $\operatorname{ord}(x)$ as the minimum r such that $x^r = 1 \mod N$.
- If $x^a = x^b \mod N$, then $b = a + k \operatorname{ord}(x)$.
- Once we know ord(x), we can easily compute the order of all powers of x.

Efficiency of Modular Operations

We saw that Euclid's algorithm can run in a time polynomial in the length of the numbers involved. What about other modular operations, and in particular exponentiation?

To calculate $x^a \mod N$, we could:

- Start with $x \mod N$.
- Multiply by x a total of a times, each time reducing mod
 N after the multiplication.

However, this takes a total of a multiplications, which is too many: $a = O(\exp(\log a)).$

We would like a better algorithm for modular exponentiation.

Repeated Squaring

We can get large exponents quickly by repeated squaring:

From $x^i \mod N$, we can calculate $x^{2i} \mod N$ using 1 multiplication by squaring it.

Doing this repeatedly gives us x, x^2, x^4 , $x^8, ..., x^{2^c}$, with only **c** multiplications.

To calculate $x^a \mod N$ for general **a**, first write **a** in binary:

 $a = a_0 2^c + a_1 2^{c-1} + \dots + a_{c-1} 2 + a_c$ Then $x^a = \prod_{i=0}^c x^{a_{c-i} 2^i}$ This needs $O(\log a)$ multiplications.

This class is being recorded

Example:

Calculate $65^{12} \mod 71$:

 $65^2 = 36 \mod{71}$ $65^4 = 36^2 = 18 \mod{71}$ $65^8 = 18^2 = 40 \mod{71}$

Then

 $65^{12} = 65^8 \cdot 65^4 \mod 71$ = 40 \cdot 18 \cdot mod 71 = 10 \cdot mod 71