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Administrative

This class is being recorded

Reminder: Problem Set #4 is due Thursday (Sep. 28) at noon.

I apologize that I forgot to record the last lecture, but the slides 
are available on the public course website.

There was a typo in problem 2b (now fixed):  should be 
.

Gk(x)
Fk(x)



Modular Arithmetic
Modular arithmetic involves number systems that are cyclic, like 
a clock.  Numbers mod N can be thought of as a new type of 
number, and type conversion between the integers and mod N 
arithmetic makes addition, subtraction, and multiplication obey 
the usual integers properties.
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However, we saw that division by a 
is only well-defined in mod N 
arithmetic when gcd(a,N) = 1.

aX + NY = gcd(a, N)

We can find the multiplicative inverse 
1/a mod N by using Euclid’s algorithm 
to find X and Y such that

Then .X = 1/a mod N



Euclid’s Algorithm

Given a and b, Euclid’s algorithm finds X and Y such that

aX + bY = gcd(a, b)

• The basic idea of the algorithm is to keep a pair  and  
which have the same gcd.

• At each step, we subtract off multiples of the smaller 
member of the pair in order to get a new pair.

• Each time we do this, we keep track of what multiple is 
subtracted in order to write  and 

.
• We combine the pair into even and odd elements of a 

single sequence .

ai bi

ai = aXi + bYi
bi = aX′￼i + bY′￼i

ri
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Euclid’s Algorithm

Let  and .  Assume .r0 = a r1 = b a > b
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Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 57 r1 = 22

, 
, 

r2 = 13
X2 = 1 Y2 = − 2

, 
, 

r3 = 9
X3 = − 1 Y3 = 3

, 
, 

r4 = 4
X4 = 2 Y4 = − 5

, 
, 

r5 = 1
X5 = − 5 Y5 = 13

r6 = 0

,gcd(57,22) = 1
1 = − 5 ⋅ 57 + 13 ⋅ 22



Euclid’s Algorithm Analysis
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Claim: At every iteration of the algorithm, the following 
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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Claim: At every iteration of the algorithm, the following 
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A:  0 ≤ r1 = b < r0 = a

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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Claim: At every iteration of the algorithm, the following 
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A:  0 ≤ r1 = b < r0 = a
• B:  r0 = aX0 + bY0 = a ⋅ 1 + b ⋅ 0

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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Claim: At every iteration of the algorithm, the following 
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A:  0 ≤ r1 = b < r0 = a
• B:  r0 = aX0 + bY0 = a ⋅ 1 + b ⋅ 0
• B: r1 = aX1 + bY1 = a ⋅ 0 + b ⋅ 1

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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Claim: At every iteration of the algorithm, the following 
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A:  0 ≤ r1 = b < r0 = a
• B:  r0 = aX0 + bY0 = a ⋅ 1 + b ⋅ 0
• B: r1 = aX1 + bY1 = a ⋅ 0 + b ⋅ 1
• C:  and gcd(a, b) |r0 = a gcd(a, b) |r1 = b

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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A. 0 ≤ ri < ri−1

We now need to prove the inductive step:  Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋
C. gcd(a, b) |ri

B. ri = aXi + bYi
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A. 0 ≤ ri < ri−1

We now need to prove the inductive step:  Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋

• A:  by the properties of mod0 ≤ ri+1 < ri

C. gcd(a, b) |ri

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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A. 0 ≤ ri < ri−1

We now need to prove the inductive step:  Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋

• A:  by the properties of mod0 ≤ ri+1 < ri
• C: , and since  divides both terms 

on the RHS, 
ri+1 = ri−1 − miri gcd(a, b)

gcd(a, b) |ri+1

C. gcd(a, b) |ri

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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A. 0 ≤ ri < ri−1

We now need to prove the inductive step:  Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋

• A:  by the properties of mod0 ≤ ri+1 < ri
• C: , and since  divides both terms 

on the RHS, 
ri+1 = ri−1 − miri gcd(a, b)

gcd(a, b) |ri+1
• and B:

aXi+1 + bYi+1 = a(Xi−1 − miXi) + b(Yi−1 − miYi)
= (aXi−1 + bYi−1) − mi(aXi + bYi)
= ri−1 − miri
= ri+1

C. gcd(a, b) |ri

B. ri = aXi + bYi



Euclid’s Algorithm Analysis
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0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.



Euclid’s Algorithm Analysis

• Since  strictly decreases, the algorithm must eventually 
reach , at which point it terminates with . 

ri
ri = 0 i − 1 = if
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0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.



Euclid’s Algorithm Analysis

• Since  strictly decreases, the algorithm must eventually 
reach , at which point it terminates with . 

ri
ri = 0 i − 1 = if

•  At that point,  since .  rif |rif−1 0 = rif+1 = rif−1 − mifrif
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0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.



Euclid’s Algorithm Analysis

• Since  strictly decreases, the algorithm must eventually 
reach , at which point it terminates with . 

ri
ri = 0 i − 1 = if

•  At that point,  since .  rif |rif−1 0 = rif+1 = rif−1 − mifrif

• But that means  and so on.  By 

induction, we also have  for all j.

rif |rif−2 = mif−1rif−1 + rif
rif |rj

This class is being recorded

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.



Euclid’s Algorithm Analysis

• Since  strictly decreases, the algorithm must eventually 
reach , at which point it terminates with . 

ri
ri = 0 i − 1 = if

•  At that point,  since .  rif |rif−1 0 = rif+1 = rif−1 − mifrif

• But that means  and so on.  By 

induction, we also have  for all j.

rif |rif−2 = mif−1rif−1 + rif
rif |rj

• In particular,  and , so . rif |a rif |b rif ≤ gcd(a, b)
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0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.



Euclid’s Algorithm Analysis

• Since  strictly decreases, the algorithm must eventually 
reach , at which point it terminates with . 

ri
ri = 0 i − 1 = if

•  At that point,  since .  rif |rif−1 0 = rif+1 = rif−1 − mifrif

• But that means  and so on.  By 

induction, we also have  for all j.

rif |rif−2 = mif−1rif−1 + rif
rif |rj

• In particular,  and , so . rif |a rif |b rif ≤ gcd(a, b)
• But , sogcd(a, b) |rif
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0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.

rif = aXif + bYif = gcd(a, b)



Efficiency of Euclid’s Algorithm

This class is being recorded

How quickly does  decrease in Euclid’s algorithm?ri

If , then .ri ≥ ri−1/2 ri+1 ≤ ri−1/2
If , then .ri ≤ ri−1/2 ri+1 ≤ ri ≤ ri−1/2

Either way, .ri+1 ≤ ri−1/2

Since  is at least halved every 2 steps, the algorithm can run at 
most  steps before halting.

ri
2 log2 a



Meaning of Efficient
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It’s important to remember that efficient (or polynomial time) 
means polynomial time as a function of the input size.

When doing arithmetic or finding the gcd, the input size is 
the length (i.e., number of bits) of the numbers being 
computed with.

Not polynomial in the numbers themselves!

Integer addition, subtraction, multiplication, division (with 
remainder) are all efficient in this sense using standard grade 
school algorithms.  Still true for modular +, -, *.

 is the input size, so Euclid’s algorithm has a polynomial 
number of steps, each of which is efficient.  Therefore it is 
efficient overall.

log2 a



Prime vs. Non-Prime Moduli
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Because division mod N is well-defined only when , 
there is an important difference in structure between values of N 
with many factors (so there are few numbers which are relatively 
prime to it) and those with few factors (so most numbers are 
relatively prime to N).

gcd(a, N) = 1

In particular, when N is prime, we can divide by any number 
mod N except for 0.  

In mathematical jargon, numbers mod N form a field when N is 
prime, whereas they are only a ring when N is not prime.

(You don’t need to know these terms; the thing you should understand is 
why prime N is different and special.)



Modular Arithmetic Examples

This class is being recorded

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Mod 5 addition and multiplication:

* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Each 
non-zero 
row and 
column 
has all #s

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Mod 6 addition and multiplication:

Rows 
and 
columns 
have 0s 
and 
repeat #s



Exponentiation
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The next operation we need in modular arithmetic, and one we 
will use a lot, is exponentiation:

xa mod N

Exponentiation is defined in the usual way, as the product of a 
copies of x, with multiplication defined in mod N arithmetic.

Here, x is a number mod N, and a is an integer. (We will see later 
that we can safely restrict the range of a but it is not a mod N 
number.)

Many of the usual properties of exponents hold, e.g.:

xaxb = xa+b mod N

xaya = (xy)a mod N
(xa)b = xab mod N



Example: Mod 10
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Let us calculate exponents mod 10.

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

71 = 7 mod 10
72 = 9 mod 10
73 = 3 mod 10
74 = 1 mod 10

91 = 9 mod 10
92 = 1 mod 10
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01 = 0 mod 10

11 = 1 mod 10

21 = 2 mod 10
22 = 4 mod 10
23 = 8 mod 10
24 = 6 mod 1041 = 4 mod 10

42 = 6 mod 10

51 = 5 mod 10

61 = 6 mod 10

82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

Notice that the powers start to repeat 
after this point.  Then they cycle.



Powers Form a Cycle
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31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.



Powers Form a Cycle
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31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod 
N before or after multiplying 
and get the same result: 

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.



Powers Form a Cycle
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31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod 
N before or after multiplying 
and get the same result: 

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

35 = 3 mod 10
We can get  by just 
multiplying  by 3.

35 mod 10
34 = 1 mod 10



Powers Form a Cycle
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31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod 
N before or after multiplying 
and get the same result: 

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10

35 = 3 mod 10
We can get  by just 
multiplying  by 3.

35 mod 10
34 = 1 mod 10



Powers Form a Cycle
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31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod 
N before or after multiplying 
and get the same result: 

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10

35 = 3 mod 10
We can get  by just 
multiplying  by 3.

35 mod 10
34 = 1 mod 10

Once we get back to 1, the cycle 
starts repeating again.



Powers Form a Cycle
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31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod 
N before or after multiplying 
and get the same result: 

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10
39 = 3 mod 10

⋮

35 = 3 mod 10
We can get  by just 
multiplying  by 3.

35 mod 10
34 = 1 mod 10

Once we get back to 1, the cycle 
starts repeating again.



Powers Form a Cycle
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31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod 
N before or after multiplying 
and get the same result: 

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10
39 = 3 mod 10

⋮

35 = 3 mod 10
We can get  by just 
multiplying  by 3.

35 mod 10
34 = 1 mod 10

Once we get back to 1, the cycle 
starts repeating again.

Powers of 3 mod 10 repeat in a cycle of length 4.



Repetition of Powers

This class is being recorded

Since there are only N possible values mod N, eventually  must 
repeat, .  If x and N are relatively prime, then we 
can cancel x and get .

xa

xr+1 = x mod N
xr = 1 mod N

Definition: If  and r is the lowest power for 
which , then r is the order of x, ord(x).

gcd(x, N) = 1
xr = 1 mod N

After r, powers of x start to repeat:

xa = xord(x)xa−ord(x) = 1 ⋅ xa−ord(x) = xa−ord(x) mod N

Or more generally,

 iff xa = xb mod N a = b mod ord(x)

So, for example, ord(3) = 4 in mod 10  arithmetic and 

3a = 3b mod 10 iff a = b mod 4 ⇔ a = b + 4k



Different Orders Mod 10

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

71 = 7 mod 10
72 = 9 mod 10
73 = 3 mod 10
74 = 1 mod 10

91 = 9 mod 10
92 = 1 mod 10

11 = 1 mod 10

The numbers relatively prime to 10 are 1, 3, 7, and 9.

ord(1) = 1
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ord(3) = 4

ord(7) = 4

ord(9) = 2

The different bases have different orders mod 10.



Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

This class is being recorded

Another observation: when we have a base x which is relatively 
prime to the modulus N, then all powers of x are also relatively 
prime to N.

Proposition: If  and 
, then  

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1



Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10
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Another observation: when we have a base x which is relatively 
prime to the modulus N, then all powers of x are also relatively 
prime to N.

We can assume .  Thena < r = ord(x)
Proof:

xaxr−a = xr = 1 mod N

Proposition: If  and 
, then  

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1



Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10
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Another observation: when we have a base x which is relatively 
prime to the modulus N, then all powers of x are also relatively 
prime to N.

But this implies that  is the multiplicative inverse of .xr−a xa

We can assume .  Thena < r = ord(x)
Proof:

xaxr−a = xr = 1 mod N

Proposition: If  and 
, then  

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1



Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10
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Another observation: when we have a base x which is relatively 
prime to the modulus N, then all powers of x are also relatively 
prime to N.

But this implies that  is the multiplicative inverse of .xr−a xa

Since  has a multiplicative inverse mod N, it follows 
that .

y = xa

gcd(y, N) = 1

We can assume .  Thena < r = ord(x)
Proof:

xaxr−a = xr = 1 mod N

Proposition: If  and 
, then  

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1



Example: Mod 10

01 = 0 mod 10 21 = 2 mod 10
22 = 4 mod 10
23 = 8 mod 10
24 = 6 mod 10

41 = 4 mod 10
42 = 6 mod 10

51 = 5 mod 10

61 = 6 mod 10 82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

If the base shares a 
factor with 10, all 
powers still share 
that factor.
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The exponents still 
cycle, but they never 
reach 1.

When , the behavior is different.gcd(x, N) ≠ 1



Non-Relatively Prime Elements
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82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the 
powers are not relatively prime either.

Proposition: If  and 
, then .
b = gcd(x, N)

y = xa mod N b |y

In particular, if x is not relatively prime to 
N, then y is not either.



Non-Relatively Prime Elements
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82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the 
powers are not relatively prime either.

Proposition: If  and 
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that  in integer arithmetic.  b |x

In particular, if x is not relatively prime to 
N, then y is not either.



Non-Relatively Prime Elements
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82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the 
powers are not relatively prime either.

Proposition: If  and 
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that  in integer arithmetic.  b |x

But then  for all integer c.  In particular, .b |cx b |xa−1x = xa

In particular, if x is not relatively prime to 
N, then y is not either.



Non-Relatively Prime Elements
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82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the 
powers are not relatively prime either.

Proposition: If  and 
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that  in integer arithmetic.  b |x

But then  for all integer c.  In particular, .b |cx b |xa−1x = xa

This is in integer arithmetic.  Still in integer arithmetic, 
y = xa + kN

In particular, if x is not relatively prime to 
N, then y is not either.



Non-Relatively Prime Elements
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82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the 
powers are not relatively prime either.

Proposition: If  and 
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that  in integer arithmetic.  b |x

But then  for all integer c.  In particular, .b |cx b |xa−1x = xa

This is in integer arithmetic.  Still in integer arithmetic, 
y = xa + kN

But  as well, so since b divides both terms in the RHS 
sum, we have .

b |N
b |y

In particular, if x is not relatively prime to 
N, then y is not either.



Example: Mod 11
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Mod 11: Now every x is relatively prime to 11.

ord(3) = ord(5) = 5
ord (2) = ord(7) = 10

31 = 3 mod 11
32 = 9 mod 11
33 = 5 mod 11
34 = 4 mod 11
35 = 1 mod 11

21 = 2 mod 11
22 = 4 mod 11
23 = 8 mod 11
24 = 5 mod 11
25 = 10 mod 11
26 = 9 mod 11
27 = 7 mod 11
28 = 3 mod 11
29 = 6 mod 11
210 = 1 mod 11

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11

51 = 5 mod 11
52 = 3 mod 11
53 = 4 mod 11
54 = 9 mod 11
55 = 1 mod 11

101 = 10 mod 11
102 = 1 mod 11 ord(10) = 2



Order of Elements

This class is being recorded

More generally, we are interested in which elements have which 
order.

Question 1: What is the order of ?4 = 22 mod 11

Recall that 2 has order 10 in mod 11 arithmetic.



Order of Elements

This class is being recorded

More generally, we are interested in which elements have which 
order.

Question 1: What is the order of ?4 = 22 mod 11

Recall that 2 has order 10 in mod 11 arithmetic.

Answer: 5, because .45 = (22)5 = 210 = 1 mod 11

Note that the answer can’t be any , because then we 
would have  with , 
which we know is not possible since the order of 2 is the 
smallest power of 2 that gives us 1. 

r < 5
4r = (22)r = 22r = 1 mod 11 2r < 10



Order of Elements

This class is being recorded

More generally, we are interested in which elements have which 
order.

Question 1: What is the order of ?4 = 22 mod 11

Recall that 2 has order 10 in mod 11 arithmetic.

Answer: 5, because .45 = (22)5 = 210 = 1 mod 11

Note that the answer can’t be any , because then we 
would have  with , 
which we know is not possible since the order of 2 is the 
smallest power of 2 that gives us 1. 

r < 5
4r = (22)r = 22r = 1 mod 11 2r < 10

Similarly, the order of  must be 2, which we saw 
on the last page.

10 = 25 mod 11



Order of Elements

Question 2: What is the order of ?8 = 23 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded



Order of Elements

Question 2: What is the order of ?8 = 23 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 10.  Certainly

810 = (23)10 = (210)3 = 13 = 1 mod 11

but how do we know the order is not something smaller?



Order of Elements
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Answer: 10.  Certainly

810 = (23)10 = (210)3 = 13 = 1 mod 11

but how do we know the order is not something smaller?

Suppose .  Then .8r = 1 mod 11 23r = 1 mod 11

Since , then 0 and 3r differ by a 
multiple of the order, i.e.

20 = 1 = 23r mod 11

3r = 10k

Since 3 is relatively prime to 10, the only way this is possible 
is for .10 |r
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Answer: 5.  Consider:

95 = (26)5 = 230 = (210)3 = 13 = 1 mod 10

or alternatively,  and 8 has order 10.9 = 82 mod 11

Question 3a: How could we have known it would be 5?

Let ord(9) = r, so

1 = 9r = 26r mod 11

and 6r = 10k.  Since 6 is even, gcd(6,10) = 2, and we can 
divide through by 2 to get .3r = 5k
Since we divided by the gcd, what’s left is relatively prime, 
and we must have .5 |r
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Theorem: Let  and , and let 
 (in mod N arithmetic).  Then

gcd(x, N) = 1 y = xa mod N
r = ord(x)

ord(y) =
r

gcd(a, r)

Proof: Let  and .  Then note that 
b and c are relatively prime.

b = r/ gcd(a, r) c = a/ gcd(a, r)

By definition, .  Thus,1 = yord(y) = xa ord(y) mod N
a ord(y) = kr

Dividing through by , we havegcd(a, r)
c ord(y) = kb

Since b and c are relatively prime, we see that . b |ord(y)
But , so .  
Thus, .

yb = xab = xcr = (xr)c = 1 mod N ord(y) ≤ b
ord(y) = b
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We have deduced the following facts about modular 
exponentials:

• Modular exponentials always recur in a cycle whose size is 
less than the modulus N.

• Powers of x relatively prime to N are also relatively prime 
and powers of non-relatively prime x are also not relatively 
prime.

• We define ord(x) as the minimum r such that .
• If , then .
• Once we know ord(x), we can easily compute the order of 

all powers of x.

xr = 1 mod N
xa = xb mod N b = a + k ord(x)



Efficiency of Modular Operations

We saw that Euclid’s algorithm can run in a time polynomial in 
the length of the numbers involved.  What about other modular 
operations, and in particular exponentiation?

This class is being recorded

To calculate , we could:xa mod N

• Start with .
• Multiply by x a total of a times, each time reducing mod 

N after the multiplication.

x mod N

However, this takes a total of a multiplications, which is too many: 
.a = O(exp(log a))

We would like a better algorithm for modular exponentiation.



Repeated Squaring
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We can get large exponents quickly by 
repeated squaring:

From  , we can calculate 
 using 1 multiplication by 

squaring it.

xi mod N
x2i mod N

Doing this repeatedly gives us , , , 
, …, , with only c multiplications.

x x2 x4

x8 x2c

To calculate  for general a, 
first write a in binary:

xa mod N

a = a02c + a12c−1 + ⋯ + ac−12 + ac

Then xa =
c

∏
i=0

xac−i2i

This needs  multiplications.O(log a)

Example:

Calculate :6512 mod 71

652 = 36 mod 71
654 = 362 = 18 mod 71
658 = 182 = 40 mod 71

Then

6512 = 658 ⋅ 654 mod 71
= 40 ⋅ 18 mod 71
= 10 mod 71




