
CMSC/Math 456:
Cryptography (Fall 2022)

Lecture 9
Daniel Gottesman

Administrative

This class is being recorded

Reminder: Problem Set #4 is due Thursday (Sep. 28) at noon.

I apologize that I forgot to record the last lecture, but the slides
are available on the public course website.

There was a typo in problem 2b (now fixed): should be
.

Gk(x)
Fk(x)

Modular Arithmetic
Modular arithmetic involves number systems that are cyclic, like
a clock. Numbers mod N can be thought of as a new type of
number, and type conversion between the integers and mod N
arithmetic makes addition, subtraction, and multiplication obey
the usual integers properties.

This class is being recorded

0 1

2

3

4

567

8

9

10
11

However, we saw that division by a
is only well-defined in mod N
arithmetic when gcd(a,N) = 1.

aX + NY = gcd(a, N)

We can find the multiplicative inverse
1/a mod N by using Euclid’s algorithm
to find X and Y such that

Then .X = 1/a mod N

Euclid’s Algorithm

Given a and b, Euclid’s algorithm finds X and Y such that

aX + bY = gcd(a, b)

• The basic idea of the algorithm is to keep a pair and
which have the same gcd.

• At each step, we subtract off multiples of the smaller
member of the pair in order to get a new pair.

• Each time we do this, we keep track of what multiple is
subtracted in order to write and

.
• We combine the pair into even and odd elements of a

single sequence .

ai bi

ai = aXi + bYi
bi = aX′￼i + bY′￼i

ri

This class is being recorded

Euclid’s Algorithm

Let and . Assume .r0 = a r1 = b a > b

This class is being recorded

Repeat:

Example:

ri+1 = ri−1 mod ri

, , , , i = 1 X0 = 1 Y0 = 0 X1 = 0 Y1 = 1

mi = ⌊ri−1/ri⌋
Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

i = i + 1
Until ri = 0
Output:

gcd(a, b) = ri−1

, X = Xi−1 Y = Yi−1

, r0 = 57 r1 = 22

,
,

r2 = 13
X2 = 1 Y2 = − 2

,
,

r3 = 9
X3 = − 1 Y3 = 3

,
,

r4 = 4
X4 = 2 Y4 = − 5

,
,

r5 = 1
X5 = − 5 Y5 = 13

r6 = 0

,gcd(57,22) = 1
1 = − 5 ⋅ 57 + 13 ⋅ 22

Euclid’s Algorithm Analysis

This class is being recorded

Claim: At every iteration of the algorithm, the following
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

Claim: At every iteration of the algorithm, the following
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A: 0 ≤ r1 = b < r0 = a

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

Claim: At every iteration of the algorithm, the following
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A: 0 ≤ r1 = b < r0 = a
• B: r0 = aX0 + bY0 = a ⋅ 1 + b ⋅ 0

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

Claim: At every iteration of the algorithm, the following
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A: 0 ≤ r1 = b < r0 = a
• B: r0 = aX0 + bY0 = a ⋅ 1 + b ⋅ 0
• B: r1 = aX1 + bY1 = a ⋅ 0 + b ⋅ 1

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

Claim: At every iteration of the algorithm, the following
statements are true:

A. 0 ≤ ri < ri−1

C. gcd(a, b) |ri

We are going to prove this claim by induction.

We can first check the base cases i=0,1:

• A: 0 ≤ r1 = b < r0 = a
• B: r0 = aX0 + bY0 = a ⋅ 1 + b ⋅ 0
• B: r1 = aX1 + bY1 = a ⋅ 0 + b ⋅ 1
• C: and gcd(a, b) |r0 = a gcd(a, b) |r1 = b

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

A. 0 ≤ ri < ri−1

We now need to prove the inductive step: Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋
C. gcd(a, b) |ri

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

A. 0 ≤ ri < ri−1

We now need to prove the inductive step: Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋

• A: by the properties of mod0 ≤ ri+1 < ri

C. gcd(a, b) |ri

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

A. 0 ≤ ri < ri−1

We now need to prove the inductive step: Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋

• A: by the properties of mod0 ≤ ri+1 < ri
• C: , and since divides both terms

on the RHS,
ri+1 = ri−1 − miri gcd(a, b)

gcd(a, b) |ri+1

C. gcd(a, b) |ri

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

A. 0 ≤ ri < ri−1

We now need to prove the inductive step: Suppose we have

and

ri+1 = ri−1 mod ri

Then

Xi+1 = Xi−1 − miXi

Yi+1 = Yi−1 − miYi

mi = ⌊ri−1/ri⌋

• A: by the properties of mod0 ≤ ri+1 < ri
• C: , and since divides both terms

on the RHS,
ri+1 = ri−1 − miri gcd(a, b)

gcd(a, b) |ri+1
• and B:

aXi+1 + bYi+1 = a(Xi−1 − miXi) + b(Yi−1 − miYi)
= (aXi−1 + bYi−1) − mi(aXi + bYi)
= ri−1 − miri
= ri+1

C. gcd(a, b) |ri

B. ri = aXi + bYi

Euclid’s Algorithm Analysis

This class is being recorded

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.

Euclid’s Algorithm Analysis

• Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with .

ri
ri = 0 i − 1 = if

This class is being recorded

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.

Euclid’s Algorithm Analysis

• Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with .

ri
ri = 0 i − 1 = if

• At that point, since . rif |rif−1 0 = rif+1 = rif−1 − mifrif

This class is being recorded

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.

Euclid’s Algorithm Analysis

• Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with .

ri
ri = 0 i − 1 = if

• At that point, since . rif |rif−1 0 = rif+1 = rif−1 − mifrif

• But that means and so on. By

induction, we also have for all j.

rif |rif−2 = mif−1rif−1 + rif
rif |rj

This class is being recorded

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.

Euclid’s Algorithm Analysis

• Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with .

ri
ri = 0 i − 1 = if

• At that point, since . rif |rif−1 0 = rif+1 = rif−1 − mifrif

• But that means and so on. By

induction, we also have for all j.

rif |rif−2 = mif−1rif−1 + rif
rif |rj

• In particular, and , so . rif |a rif |b rif ≤ gcd(a, b)

This class is being recorded

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.

Euclid’s Algorithm Analysis

• Since strictly decreases, the algorithm must eventually
reach , at which point it terminates with .

ri
ri = 0 i − 1 = if

• At that point, since . rif |rif−1 0 = rif+1 = rif−1 − mifrif

• But that means and so on. By

induction, we also have for all j.

rif |rif−2 = mif−1rif−1 + rif
rif |rj

• In particular, and , so . rif |a rif |b rif ≤ gcd(a, b)
• But , sogcd(a, b) |rif

This class is being recorded

0 ≤ ri < ri−1
ri = aXi + bYi

gcd(a, b) |ri

Thus, these three properties hold true for all i.

rif = aXif + bYif = gcd(a, b)

Efficiency of Euclid’s Algorithm

This class is being recorded

How quickly does decrease in Euclid’s algorithm?ri

If , then .ri ≥ ri−1/2 ri+1 ≤ ri−1/2
If , then .ri ≤ ri−1/2 ri+1 ≤ ri ≤ ri−1/2

Either way, .ri+1 ≤ ri−1/2

Since is at least halved every 2 steps, the algorithm can run at
most steps before halting.

ri
2 log2 a

Meaning of Efficient

This class is being recorded

It’s important to remember that efficient (or polynomial time)
means polynomial time as a function of the input size.

When doing arithmetic or finding the gcd, the input size is
the length (i.e., number of bits) of the numbers being
computed with.

Not polynomial in the numbers themselves!

Integer addition, subtraction, multiplication, division (with
remainder) are all efficient in this sense using standard grade
school algorithms. Still true for modular +, -, *.

 is the input size, so Euclid’s algorithm has a polynomial
number of steps, each of which is efficient. Therefore it is
efficient overall.

log2 a

Prime vs. Non-Prime Moduli

This class is being recorded

Because division mod N is well-defined only when ,
there is an important difference in structure between values of N
with many factors (so there are few numbers which are relatively
prime to it) and those with few factors (so most numbers are
relatively prime to N).

gcd(a, N) = 1

In particular, when N is prime, we can divide by any number
mod N except for 0.

In mathematical jargon, numbers mod N form a field when N is
prime, whereas they are only a ring when N is not prime.

(You don’t need to know these terms; the thing you should understand is
why prime N is different and special.)

Modular Arithmetic Examples

This class is being recorded

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Mod 5 addition and multiplication:

* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Each
non-zero
row and
column
has all #s

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Mod 6 addition and multiplication:

Rows
and
columns
have 0s
and
repeat #s

Exponentiation

This class is being recorded

The next operation we need in modular arithmetic, and one we
will use a lot, is exponentiation:

xa mod N

Exponentiation is defined in the usual way, as the product of a
copies of x, with multiplication defined in mod N arithmetic.

Here, x is a number mod N, and a is an integer. (We will see later
that we can safely restrict the range of a but it is not a mod N
number.)

Many of the usual properties of exponents hold, e.g.:

xaxb = xa+b mod N

xaya = (xy)a mod N
(xa)b = xab mod N

Example: Mod 10

This class is being recorded

Let us calculate exponents mod 10.

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

71 = 7 mod 10
72 = 9 mod 10
73 = 3 mod 10
74 = 1 mod 10

91 = 9 mod 10
92 = 1 mod 10

This class is being recorded

01 = 0 mod 10

11 = 1 mod 10

21 = 2 mod 10
22 = 4 mod 10
23 = 8 mod 10
24 = 6 mod 1041 = 4 mod 10

42 = 6 mod 10

51 = 5 mod 10

61 = 6 mod 10

82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

Notice that the powers start to repeat
after this point. Then they cycle.

Powers Form a Cycle

This class is being recorded

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

Powers Form a Cycle

This class is being recorded

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod
N before or after multiplying
and get the same result:

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

Powers Form a Cycle

This class is being recorded

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod
N before or after multiplying
and get the same result:

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

35 = 3 mod 10
We can get by just
multiplying by 3.

35 mod 10
34 = 1 mod 10

Powers Form a Cycle

This class is being recorded

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod
N before or after multiplying
and get the same result:

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10

35 = 3 mod 10
We can get by just
multiplying by 3.

35 mod 10
34 = 1 mod 10

Powers Form a Cycle

This class is being recorded

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod
N before or after multiplying
and get the same result:

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10

35 = 3 mod 10
We can get by just
multiplying by 3.

35 mod 10
34 = 1 mod 10

Once we get back to 1, the cycle
starts repeating again.

Powers Form a Cycle

This class is being recorded

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod
N before or after multiplying
and get the same result:

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10
39 = 3 mod 10

⋮

35 = 3 mod 10
We can get by just
multiplying by 3.

35 mod 10
34 = 1 mod 10

Once we get back to 1, the cycle
starts repeating again.

Powers Form a Cycle

This class is being recorded

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

Remember, we can reduce mod
N before or after multiplying
and get the same result:

 and 34 = 81 = 1 mod 10
3 ⋅ 7 = 21 = 1 mod 10

To see how the cycling works, let’s look at powers of 3 mod 10.

36 = 9 mod 10
37 = 7 mod 10
38 = 1 mod 10
39 = 3 mod 10

⋮

35 = 3 mod 10
We can get by just
multiplying by 3.

35 mod 10
34 = 1 mod 10

Once we get back to 1, the cycle
starts repeating again.

Powers of 3 mod 10 repeat in a cycle of length 4.

Repetition of Powers

This class is being recorded

Since there are only N possible values mod N, eventually must
repeat, . If x and N are relatively prime, then we
can cancel x and get .

xa

xr+1 = x mod N
xr = 1 mod N

Definition: If and r is the lowest power for
which , then r is the order of x, ord(x).

gcd(x, N) = 1
xr = 1 mod N

After r, powers of x start to repeat:

xa = xord(x)xa−ord(x) = 1 ⋅ xa−ord(x) = xa−ord(x) mod N

Or more generally,

 iff xa = xb mod N a = b mod ord(x)

So, for example, ord(3) = 4 in mod 10 arithmetic and

3a = 3b mod 10 iff a = b mod 4 ⇔ a = b + 4k

Different Orders Mod 10

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

71 = 7 mod 10
72 = 9 mod 10
73 = 3 mod 10
74 = 1 mod 10

91 = 9 mod 10
92 = 1 mod 10

11 = 1 mod 10

The numbers relatively prime to 10 are 1, 3, 7, and 9.

ord(1) = 1

This class is being recorded

ord(3) = 4

ord(7) = 4

ord(9) = 2

The different bases have different orders mod 10.

Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

This class is being recorded

Another observation: when we have a base x which is relatively
prime to the modulus N, then all powers of x are also relatively
prime to N.

Proposition: If and
, then

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1

Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

This class is being recorded

Another observation: when we have a base x which is relatively
prime to the modulus N, then all powers of x are also relatively
prime to N.

We can assume . Thena < r = ord(x)
Proof:

xaxr−a = xr = 1 mod N

Proposition: If and
, then

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1

Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

This class is being recorded

Another observation: when we have a base x which is relatively
prime to the modulus N, then all powers of x are also relatively
prime to N.

But this implies that is the multiplicative inverse of .xr−a xa

We can assume . Thena < r = ord(x)
Proof:

xaxr−a = xr = 1 mod N

Proposition: If and
, then

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1

Closure of Relatively Prime Elements

31 = 3 mod 10
32 = 9 mod 10
33 = 7 mod 10
34 = 1 mod 10

This class is being recorded

Another observation: when we have a base x which is relatively
prime to the modulus N, then all powers of x are also relatively
prime to N.

But this implies that is the multiplicative inverse of .xr−a xa

Since has a multiplicative inverse mod N, it follows
that .

y = xa

gcd(y, N) = 1

We can assume . Thena < r = ord(x)
Proof:

xaxr−a = xr = 1 mod N

Proposition: If and
, then

as well.

gcd(x, N) = 1
y = xa mod N gcd(y, N) = 1

Example: Mod 10

01 = 0 mod 10 21 = 2 mod 10
22 = 4 mod 10
23 = 8 mod 10
24 = 6 mod 10

41 = 4 mod 10
42 = 6 mod 10

51 = 5 mod 10

61 = 6 mod 10 82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

If the base shares a
factor with 10, all
powers still share
that factor.

This class is being recorded

The exponents still
cycle, but they never
reach 1.

When , the behavior is different.gcd(x, N) ≠ 1

Non-Relatively Prime Elements

This class is being recorded

82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the
powers are not relatively prime either.

Proposition: If and
, then .
b = gcd(x, N)

y = xa mod N b |y

In particular, if x is not relatively prime to
N, then y is not either.

Non-Relatively Prime Elements

This class is being recorded

82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the
powers are not relatively prime either.

Proposition: If and
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that in integer arithmetic. b |x

In particular, if x is not relatively prime to
N, then y is not either.

Non-Relatively Prime Elements

This class is being recorded

82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the
powers are not relatively prime either.

Proposition: If and
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that in integer arithmetic. b |x

But then for all integer c. In particular, .b |cx b |xa−1x = xa

In particular, if x is not relatively prime to
N, then y is not either.

Non-Relatively Prime Elements

This class is being recorded

82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the
powers are not relatively prime either.

Proposition: If and
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that in integer arithmetic. b |x

But then for all integer c. In particular, .b |cx b |xa−1x = xa

This is in integer arithmetic. Still in integer arithmetic,
y = xa + kN

In particular, if x is not relatively prime to
N, then y is not either.

Non-Relatively Prime Elements

This class is being recorded

82 = 4 mod 10
81 = 8 mod 10

83 = 2 mod 10
84 = 6 mod 10

When the base x is not relatively prime to the modulus N, the
powers are not relatively prime either.

Proposition: If and
, then .
b = gcd(x, N)

y = xa mod N b |y

Proof: We have that in integer arithmetic. b |x

But then for all integer c. In particular, .b |cx b |xa−1x = xa

This is in integer arithmetic. Still in integer arithmetic,
y = xa + kN

But as well, so since b divides both terms in the RHS
sum, we have .

b |N
b |y

In particular, if x is not relatively prime to
N, then y is not either.

Example: Mod 11

This class is being recorded

Mod 11: Now every x is relatively prime to 11.

ord(3) = ord(5) = 5
ord (2) = ord(7) = 10

31 = 3 mod 11
32 = 9 mod 11
33 = 5 mod 11
34 = 4 mod 11
35 = 1 mod 11

21 = 2 mod 11
22 = 4 mod 11
23 = 8 mod 11
24 = 5 mod 11
25 = 10 mod 11
26 = 9 mod 11
27 = 7 mod 11
28 = 3 mod 11
29 = 6 mod 11
210 = 1 mod 11

71 = 7 mod 11
72 = 5 mod 11
73 = 2 mod 11
74 = 3 mod 11
75 = 10 mod 11
76 = 4 mod 11
77 = 6 mod 11
78 = 9 mod 11
79 = 8 mod 11
710 = 1 mod 11

51 = 5 mod 11
52 = 3 mod 11
53 = 4 mod 11
54 = 9 mod 11
55 = 1 mod 11

101 = 10 mod 11
102 = 1 mod 11 ord(10) = 2

Order of Elements

This class is being recorded

More generally, we are interested in which elements have which
order.

Question 1: What is the order of ?4 = 22 mod 11

Recall that 2 has order 10 in mod 11 arithmetic.

Order of Elements

This class is being recorded

More generally, we are interested in which elements have which
order.

Question 1: What is the order of ?4 = 22 mod 11

Recall that 2 has order 10 in mod 11 arithmetic.

Answer: 5, because .45 = (22)5 = 210 = 1 mod 11

Note that the answer can’t be any , because then we
would have with ,
which we know is not possible since the order of 2 is the
smallest power of 2 that gives us 1.

r < 5
4r = (22)r = 22r = 1 mod 11 2r < 10

Order of Elements

This class is being recorded

More generally, we are interested in which elements have which
order.

Question 1: What is the order of ?4 = 22 mod 11

Recall that 2 has order 10 in mod 11 arithmetic.

Answer: 5, because .45 = (22)5 = 210 = 1 mod 11

Note that the answer can’t be any , because then we
would have with ,
which we know is not possible since the order of 2 is the
smallest power of 2 that gives us 1.

r < 5
4r = (22)r = 22r = 1 mod 11 2r < 10

Similarly, the order of must be 2, which we saw
on the last page.

10 = 25 mod 11

Order of Elements

Question 2: What is the order of ?8 = 23 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Order of Elements

Question 2: What is the order of ?8 = 23 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 10. Certainly

810 = (23)10 = (210)3 = 13 = 1 mod 11

but how do we know the order is not something smaller?

Order of Elements

Question 2: What is the order of ?8 = 23 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 10. Certainly

810 = (23)10 = (210)3 = 13 = 1 mod 11

but how do we know the order is not something smaller?

Suppose . Then .8r = 1 mod 11 23r = 1 mod 11

Order of Elements

Question 2: What is the order of ?8 = 23 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 10. Certainly

810 = (23)10 = (210)3 = 13 = 1 mod 11

but how do we know the order is not something smaller?

Suppose . Then .8r = 1 mod 11 23r = 1 mod 11

Since , then 0 and 3r differ by a
multiple of the order, i.e.

20 = 1 = 23r mod 11

3r = 10k

Order of Elements

Question 2: What is the order of ?8 = 23 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 10. Certainly

810 = (23)10 = (210)3 = 13 = 1 mod 11

but how do we know the order is not something smaller?

Suppose . Then .8r = 1 mod 11 23r = 1 mod 11

Since , then 0 and 3r differ by a
multiple of the order, i.e.

20 = 1 = 23r mod 11

3r = 10k

Since 3 is relatively prime to 10, the only way this is possible
is for .10 |r

Order of Elements

Question 3: What is the order of ?9 = 26 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Order of Elements

Question 3: What is the order of ?9 = 26 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 5. Consider:

95 = (26)5 = 230 = (210)3 = 13 = 1 mod 10

or alternatively, and 8 has order 10.9 = 82 mod 11

Order of Elements

Question 3: What is the order of ?9 = 26 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 5. Consider:

95 = (26)5 = 230 = (210)3 = 13 = 1 mod 10

or alternatively, and 8 has order 10.9 = 82 mod 11

Question 3a: How could we have known it would be 5?

Order of Elements

Question 3: What is the order of ?9 = 26 mod 11

Again, 2 has order 10 in mod 11 arithmetic.

This class is being recorded

Answer: 5. Consider:

95 = (26)5 = 230 = (210)3 = 13 = 1 mod 10

or alternatively, and 8 has order 10.9 = 82 mod 11

Question 3a: How could we have known it would be 5?

Let ord(9) = r, so

1 = 9r = 26r mod 11

and 6r = 10k. Since 6 is even, gcd(6,10) = 2, and we can
divide through by 2 to get .3r = 5k
Since we divided by the gcd, what’s left is relatively prime,
and we must have .5 |r

Order of Elements

This class is being recorded

Theorem: Let and , and let
 (in mod N arithmetic). Then

gcd(x, N) = 1 y = xa mod N
r = ord(x)

ord(y) =
r

gcd(a, r)

Proof:

Order of Elements

This class is being recorded

Theorem: Let and , and let
 (in mod N arithmetic). Then

gcd(x, N) = 1 y = xa mod N
r = ord(x)

ord(y) =
r

gcd(a, r)

Proof: Let and . Then note that
b and c are relatively prime.

b = r/ gcd(a, r) c = a/ gcd(a, r)

Order of Elements

This class is being recorded

Theorem: Let and , and let
 (in mod N arithmetic). Then

gcd(x, N) = 1 y = xa mod N
r = ord(x)

ord(y) =
r

gcd(a, r)

Proof: Let and . Then note that
b and c are relatively prime.

b = r/ gcd(a, r) c = a/ gcd(a, r)

By definition, . Thus,1 = yord(y) = xa ord(y) mod N
a ord(y) = kr

Order of Elements

This class is being recorded

Theorem: Let and , and let
 (in mod N arithmetic). Then

gcd(x, N) = 1 y = xa mod N
r = ord(x)

ord(y) =
r

gcd(a, r)

Proof: Let and . Then note that
b and c are relatively prime.

b = r/ gcd(a, r) c = a/ gcd(a, r)

By definition, . Thus,1 = yord(y) = xa ord(y) mod N
a ord(y) = kr

Dividing through by , we havegcd(a, r)
c ord(y) = kb

Order of Elements

This class is being recorded

Theorem: Let and , and let
 (in mod N arithmetic). Then

gcd(x, N) = 1 y = xa mod N
r = ord(x)

ord(y) =
r

gcd(a, r)

Proof: Let and . Then note that
b and c are relatively prime.

b = r/ gcd(a, r) c = a/ gcd(a, r)

By definition, . Thus,1 = yord(y) = xa ord(y) mod N
a ord(y) = kr

Dividing through by , we havegcd(a, r)
c ord(y) = kb

Since b and c are relatively prime, we see that . b |ord(y)

Order of Elements

This class is being recorded

Theorem: Let and , and let
 (in mod N arithmetic). Then

gcd(x, N) = 1 y = xa mod N
r = ord(x)

ord(y) =
r

gcd(a, r)

Proof: Let and . Then note that
b and c are relatively prime.

b = r/ gcd(a, r) c = a/ gcd(a, r)

By definition, . Thus,1 = yord(y) = xa ord(y) mod N
a ord(y) = kr

Dividing through by , we havegcd(a, r)
c ord(y) = kb

Since b and c are relatively prime, we see that . b |ord(y)
But , so .
Thus, .

yb = xab = xcr = (xr)c = 1 mod N ord(y) ≤ b
ord(y) = b

Modular Exponentiation Summary

This class is being recorded

We have deduced the following facts about modular
exponentials:

• Modular exponentials always recur in a cycle whose size is
less than the modulus N.

• Powers of x relatively prime to N are also relatively prime
and powers of non-relatively prime x are also not relatively
prime.

• We define ord(x) as the minimum r such that .
• If , then .
• Once we know ord(x), we can easily compute the order of

all powers of x.

xr = 1 mod N
xa = xb mod N b = a + k ord(x)

Efficiency of Modular Operations

We saw that Euclid’s algorithm can run in a time polynomial in
the length of the numbers involved. What about other modular
operations, and in particular exponentiation?

This class is being recorded

To calculate , we could:xa mod N

• Start with .
• Multiply by x a total of a times, each time reducing mod

N after the multiplication.

x mod N

However, this takes a total of a multiplications, which is too many:
.a = O(exp(log a))

We would like a better algorithm for modular exponentiation.

Repeated Squaring

This class is being recorded

We can get large exponents quickly by
repeated squaring:

From , we can calculate
 using 1 multiplication by

squaring it.

xi mod N
x2i mod N

Doing this repeatedly gives us , , ,
, …, , with only c multiplications.

x x2 x4

x8 x2c

To calculate for general a,
first write a in binary:

xa mod N

a = a02c + a12c−1 + ⋯ + ac−12 + ac

Then xa =
c

∏
i=0

xac−i2i

This needs multiplications.O(log a)

Example:

Calculate :6512 mod 71

652 = 36 mod 71
654 = 362 = 18 mod 71
658 = 182 = 40 mod 71

Then

6512 = 658 ⋅ 654 mod 71
= 40 ⋅ 18 mod 71
= 10 mod 71

