Problem Set \#2

CMSC/Math 456
Instructor: Daniel Gottesman
Due on Gradscope, Thursday, Sep. 14, noon (before start of class)

General instructions: If you collaborate or use any outside resources, remember to cite them in your solutions.
Problem \#1. Big-O Notation and Negligible Functions (40 points)
For parts a-c, you need only give your answers, but if you explain your reasoning, you may qualify for partial credit in cases where your answer is incorrect. Parts a-c refer to the following five functions of n :

$$
\begin{align*}
& f_{1}(n)=3 n+15 \tag{1}\\
& f_{2}(n)=\frac{1}{2}\left(n^{3}+n^{-3}\right) \tag{2}\\
& f_{3}(n)=\frac{n^{-11}}{18} \tag{3}\\
& f_{4}(n)=\left(\frac{3}{2}\right)^{\sqrt{n}} \tag{4}\\
& f_{5}(n)=\left(\frac{2}{3}\right)^{\sqrt{n}} \tag{5}
\end{align*}
$$

a) (10 points) For each of the five functions $f_{i}(n)$, say if it is $O\left(n^{3}\right)$.
b) (10 points) For each of the five functions $f_{i}(n)$, say if it is $O(1)$. (I.e., if it is $O(g(n))$, where $g(n)=1$ is a constant function.)
c) (10 points) For each of the five functions $f_{i}(n)$, say if it is negligible.
d) (10 points) Let $\epsilon(s)$ be a negligible function of s and let $p(s)$ be a polynomial function of s. Show that there exists s_{1} such that for any $s>s_{1}, p(s) \epsilon(2 s)<1$.
Hint: Let $t=2 s$ and find another polynomial function $q(t)$ such that by applying the definition of negligible to $\epsilon(t)$, you get the desired result.
Comment: This result is the main step to proving that if $\epsilon(s)$ is negligible then $\epsilon(2 s)$ is also negligible.

Problem \#2. Combining Pseudorandom Generators (80 points)

For this problem, let $G(y)$ and $H(y)$ be two efficiently computable pseudorandom generators with $\ell(s)=$
$2 s$. Recall that G (or H) takes inputs of arbitrary length s and outputs bit strings of length $\ell(s)$.
a) (20 points) Let \mid represent concatenation, so if m and n are two bit strings of length $2 s$, then $m \mid n$ is the string of length $4 s$ formed by bits of m followed by the bits of n. Then let $K_{1}(y)=G(y) \mid G(y)$ (which takes inputs of length s and outputs bit strings of length $4 s$) and find an attack that shows that $K(y)$ is not a pseudorandom generator.
b) (20 points) Is $K_{2}(y)=G(y) \mid H(y)$ a pseudorandom generator for all pairs of functions $G(y)$ and $H(y)$ such that $G(y) \neq H(y)$ for all y ? Why or why not?
c) (20 points) Let $K_{3}(y)=H(G(y))$, which also takes inputs of size s and outputs bit strings of length 4s. $(G(y)$ and $H(y)$ do not always have to be different here.) Explain how to create a reduction which turns an efficient attack on $K_{3}(y)$ into an efficient attack on $G(y)$. (In fact, this reduction shows that $K_{3}(y)$ is a pseudorandom generator but you don't need to go through all the other details. In particular, you don't need to calculate the success probability of the attack on $G(y)$, merely set up the reduction.)
Hint: This reduction will look similar to the one showing the security of the pseudo one-time pad.
d) (5 points) Let $G^{(k)}=G^{(k-1)}(G(y))$ for $k \geq 2$, where $G^{(1)}(y)=G(y)$. If the input to $G^{(k)}$ is a bit string of length s, how long is the output?
e) (15 points) Define $G^{(k)}$ as in part d. Let $K_{4}(y)=G^{(s)}(y)$ when the length of y is s. Which of these two arguments is correct?

1. $K_{4}(y)$ is a pseudorandom generator, because the reduction in part c shows that if $H(y)=$ $G^{(k-1)}(y)$, then $G^{(k)}(y)$ is also a pseudorandom generator.
2. $K_{4}(y)$ is not a pseudorandom generator, because Eve can do a brute force attack by trying all possible inputs y to distinguish $K_{4}(y)$ from a random string.
