
CMSC 714
Lecture 5
OpenMP

Alan Sussman

Notes

•MPI project posted
• due 2 weeks from Thursday, Sept. 28
• Send any questions about project spec, or running on

zaratan cluster, to me or Keon, or post on Piazza
•Don't forget to send questions for readings
• additional readings posted last week, with who should

send questions (check again, since class roster has
changed)

•We will finish OpenMP next class
• Other readings/lectures pushed back – see Readings web

page

CMSC 714 - Alan Sussman and Abhinav Bhatele 2

OpenMP
•Support Parallelism for SMPs
• provide a simple portable model
• allows both shared and private data
• provides parallel do loops

• Includes
• automatic support for fork/join parallelism
• reduction variables
• atomic statement
• one process executes at a time

• plus a lot more

CMSC 714 - Alan Sussman and Abhinav Bhatele 3

OpenMP
• Characteristics
• Both thread-local & shared memory (depending on

directives)
• Parallelism : directives for parallel loops, functions
• Compilers convert programs into multi-threaded (i.e.

pthreads)
• Not able to run on more than one node in a cluster

•Example

CMSC 714 - Alan Sussman and Abhinav Bhatele

#pragma omp parallel for private(i)
for (i=0; i<NUPDATE; i++) {
 int ran = random();
 table[ran & (TABSIZE-1)] ^= stable[ran >> (64-LSTSIZE)];
}

4

More on OpenMP
•Characteristics
• Not a full parallel language, but a language extension
• A set of standard compiler directives and library routines
• Used to create parallel Fortran, C and C++ programs
• Usually used to parallelize loops
• Standardizes last ~20 years of SMP practice

• Implementation
• C/C++ compiler directives using #pragma omp <directive>
• Parallelism can be specified for regions & loops
• Data can be
• Private – each thread has local copy
• Shared – single copy for all threads

CMSC 714 - Alan Sussman and Abhinav Bhatele 5

OpenMP – Programming Model
•Fork-join parallelism (restricted form of MIMD)
• Normally single thread of control (primary)
•Worker threads spawned when parallel region

encountered
• Barrier synchronization required at end of parallel region

CMSC 714 - Alan Sussman and Abhinav Bhatele

Primary
Thread

Parallel Regions

6

OpenMP – Example Parallel Region
•Task level parallelism – #pragma omp parallel { … }

CMSC 714 - Alan Sussman and Abhinav Bhatele

double a[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int id = omp_thread_num();
 foo(id,a);
}
printf(“all done \n”);

double a[1000];

#pragma omp parallel

foo(3,a);

printf(“all done \n”);

foo(2,a);foo(1,a);foo(0,a);

omp_set_num_threads(4);

OpenMP
compiler

7

OpenMP – Example Parallel Loop

CMSC 714 - Alan Sussman and Abhinav Bhatele

#pragma omp parallel
{
 int id, i, nthreads,start, end;
 id = omp_get_thread_num();
 nthreads = omp_get_num_threads();
 start = id * N / nthreads ; // assigning
 end = (id+1) * N / nthreads ; // work
 for (i=start; i<end; i++) {
 foo(i);
 }
}

#pragma omp parallel for
for (i=0;i<N;i++) {
 foo(i);
}

• Loop level parallelism – #pragma omp parallel for
• Loop iterations are assigned to threads, invoked as functions

OpenMP
compiler

8

Race conditions when threads interact

•Unintended sharing of variables can lead to race
conditions
•Race condition: program outcome depends on the

scheduling order of threads
•How can we prevent data races?
• Use synchronization
• Change how data is stored

9CMSC 714 - Alan Sussman and Abhinav Bhatele

OpenMP details

CMSC 714 - Alan Sussman and Abhinav Bhatele 10

OpenMP pragmas

•Pragma: a compiler directive in C or C++
•Mechanism to communicate with the compiler
•Compiler may ignore pragmas

11

#pragma omp construct [clause [clause] ...]

CMSC 714 - Alan Sussman and Abhinav Bhatele

Hello World in OpenMP

•Compiling:

•Setting number of threads:

12

#include <stdio.h>
#include <omp.h>

int main(void)
{
 #pragma omp parallel
 printf("Hello, world.\n");
 return 0;
}

gcc -fopenmp hello.c -o hello

export OMP_NUM_THREADS=2

CMSC 714 - Alan Sussman and Abhinav Bhatele

Parallel for

•Directs the compiler that the immediately following
for loop should be executed in parallel

13

#pragma omp parallel for [clause [clause] ...]
for (i = init; test_expression; increment_expression) {
 ...
 do work
 ...
}

CMSC 714 - Alan Sussman and Abhinav Bhatele

Parallel for example

• saxpy (single precision a*x+y) example

14

int main(int argc, char **argv)
{
 ...

 for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
 }

 ...
}

#pragma omp parallel for

CMSC 714 - Alan Sussman and Abhinav Bhatele

Parallel for execution

•Primary thread creates worker threads
•All threads divide iterations of the loop among

themselves

15

Primary thread

Worker thread 1

Time

Worker thread 2

Worker thread 3

parallel for synchronize

CMSC 714 - Alan Sussman and Abhinav Bhatele

Number of threads

•Use environment variable in shell

•Use omp_set_num_threads(int num_threads)
• Set the number of OpenMP threads to be used in parallel

regions
• int omp_get_num_procs(void)
• Returns the number of available processors/cores
• Can be used to decide the number of threads to create

16

export OMP_NUM_THREADS=X

CMSC 714 - Alan Sussman and Abhinav Bhatele

Data sharing defaults

•Most variables are shared by default
•Global variables are shared
•Exception: loop index variables are private by

default
•Stack variables in function calls from parallel regions

are also private to each thread (thread-private)

17CMSC 714 - Alan Sussman and Abhinav Bhatele

Overriding defaults using clauses
• Specify how data is shared between threads executing a

parallel region

• private(list)

• shared(list)

• default(shared | none)

• reduction(operator: list)

• firstprivate(list)

• lastprivate(list)

18

https://www.openmp.org/spec-html/5.0/openmpsu106.html#x139-5540002.19.4

CMSC 714 - Alan Sussman and Abhinav Bhatele

firstprivate clause

• Initializes each thread’s private copy to the value of
the primary thread’s copy

19

val = 5;

#pragma omp parallel for firstprivate(val)
for (int i = 0; i < n; i++) {
 ... = val + 1;
}

CMSC 714 - Alan Sussman and Abhinav Bhatele

lastprivate clause

•Writes the value belonging to the thread that
executed the last iteration of the loop to the
primary’s copy
• Last iteration determined by sequential order

20

#pragma omp parallel for lastprivate(val)
for (int i = 0; i < n; i++) {
 val = i + 1;
}

printf(“%d\n”, val);

CMSC 714 - Alan Sussman and Abhinav Bhatele

reduction(operator: list) clause

•Reduce values across private copies of a variable
•Operators: +, -, *, &, |, ^, &&, ||, max, min
• User-defined operators can be created

21

#pragma omp parallel for
for (int i = 0; i < n; i++) {
 val += i;
}

printf(“%d\n”, val);

reduction(+: val)

https://www.openmp.org/spec-html/5.0/openmpsu107.html#x140-5800002.19.5

CMSC 714 - Alan Sussman and Abhinav Bhatele

Loop scheduling

•Assignment of loop iterations to different worker
threads
•Default schedule tries to balance iterations among

threads
•User-specified schedules are also available

22CMSC 714 - Alan Sussman and Abhinav Bhatele

User-specified loop scheduling

•Schedule clause

• type: static, dynamic, guided, runtime
• static: iterations divided as evenly as possible

(#iterations/#threads)
• chunk size < #iterations/#threads can be used to

interleave threads
•dynamic: assign a chunk size block to each thread
•When a thread is finished, it retrieves the next block from

an internal work queue, so requires a scheduler thread
• Default chunk size = 1

23

schedule (type[, chunk])

CMSC 714 - Alan Sussman and Abhinav Bhatele

Other schedules

•guided: similar to dynamic but start with a large
chunk size and gradually decrease it for handling
load imbalance between iterations
•auto: scheduling delegated to the compiler
• runtime: use the OMP_SCHEDULE environment

variable

24

https://software.intel.com/content/www/us/en/develop/articles/openmp-loop-scheduling.html

CMSC 714 - Alan Sussman and Abhinav Bhatele

Calculate the value of

25

𝜋 = ∫!
" 4
1 + 𝑥#

int main(int argc, char *argv[])
{
 ...

 n = 10000;

 h = 1.0 / (double) n;
 sum = 0.0;

 for (i = 1; i <= n; i += 1) {
 x = h * ((double)i - 0.5);

 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 ...
}

CMSC 714 - Alan Sussman and Abhinav Bhatele

Calculate the value of

26

𝜋 = ∫!
" 4
1 + 𝑥#

int main(int argc, char *argv[])
{
 ...

 n = 10000;
 h = 1.0 / (double) n;
 sum = 0.0;

 #pragma omp parallel for private(x) reduction(+: sum)
 for (i = 1; i <= n; i += 1) {

 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 ...
}

CMSC 714 - Alan Sussman and Abhinav Bhatele

Synchronization

•Concurrent access to shared data may result in
inconsistencies
•Use mutual exclusion to avoid that
• critical directive
•atomic directive
• Library lock routines

27

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/replacing-
annotations-with-openmp-code/adding-openmp-code-to-synchronize-the-shared-resources.html

CMSC 714 - Alan Sussman and Abhinav Bhatele

