
CMSC 714
Lecture 5

Chapel and Julia

Alan Sussman

Notes

•MPI project due 1 week from Thursday, Sept. 28
• any questions about project spec, or running on zaratan

cluster?
•Readings posted through next week
•Don't forget to send questions for readings

CMSC 714 - Alan Sussman 2

Chapel

•A parallel programming language
• a Partitioned Global Address Space (PGAS) language
• others include UPC/UPC++ (C/C++), Titanium (Java), Co-

Array Fortran (part of the current Fortran standard)
•Target Environment
• Distributed memory machines
• Cache Coherent multi-processors (so multi-core

processors)

CMSC 714 - Alan Sussman 3

PGAS Programming Model

•Partitioned Global Address Space Model
• Provides a global view of memory across the nodes
•Memory is still physically partitioned à local vs. remote

accesses
• But allows for a shared-memory style of communication

8

Message-passing (e.g., MPI)
matching sends/receives

PGAS
just “get” the data

Shared-memory (e.g., OpenMP)
just “get” the data

CMSC 714 - Alan Sussman

Chapel
• Characteristics
• Goal is programmer productivity of OpenMP but functionality

of MPI + OpenMP, so at scale
• separate low-level parallelization and data distribution details

from the algorithm - enable domain scientists to write
efficient parallel code
• Compiler generates communication as needed for non-local

accesses
• Example – SpMV – sparse matrix-vector multiply

CMSC 714 - Alan Sussman 5

Chapel Example

•Sparse Matrix-Vector Multiply (SpMV) - Ax=b

6

• forall is a data parallel loop

• Rows is a block-distributed
array of records (i.e., C
structs)

Assuming 4 locales
and 16 elements

Locale 0
Rows[0]
Rows[1]
Rows[2]
Rows[3]

Rows[4]
Rows[5]
Rows[6]
Rows[7]

Rows[8]
Rows[9]
Rows[10]
Rows[11]

Rows[12]
Rows[13]
Rows[14]
Rows[15]

Locale 1 Locale 2 Locale 3

Rows

Chapel Basics
• Tasks, threads, locales, etc.
• tasks: computations that can conceptually execute concurrently
• threads: mechanisms for executing parallel work
• locales: unit of machine resources (e.g., cores and memory) where

tasks execute
• Usually think of locale as a compute node in a cluster

• domain: represents an index set – for loops and to operate on arrays
• Chapel supports various domain types including associative, sparse, and

unstructured, in addition to ranges of integers (multi-dimensional)
• Data parallel constructs built on top of task parallel ones:

• Via the begin keyword, or co-begin
• And a co-forall loop, where each iteration is a separate task

• on clause - to specify that a statement should execute on a specific
locale (the argument to the on clause)

• Execution model is similar to OpenMP, but more general
• One task starts in one locale
• Tasks created dynamically, using task and data parallel constructs

16

Chapel Performance

•For single-locale programs, execution is fairly
competitive with hand-coded C+OpenMP
•For multiple locales, across multiple machines,

depends on the communication patterns
• For regular patterns (e.g., stencil) performance is

competitive with MPI (but maybe not to very large
number of locales)
• For less regular patterns, compiler still needs a lot of

optimization work
• Underlying communication layer on most high-

performance networks (e.g., Infiniband) is GASNet – one-
sided communication plus active messages

CMSC 714 - Alan Sussman 8

Additional info

•Documentation and more information at
https://chapel-lang.org/
•Current version is 1.31, from June 2023

CMSC 714 - Alan Sussman 9

https://chapel-lang.org/

Julia

CMSC 714 - Alan Sussman 10

Overview

• Julia goals: productivity and performance for
numerical scientific computing
• From “careful language design and the right

combination of carefully chosen technologies that work
very well with each other”

• all basic functionality must be possible to
implement in Julia – no escape to C or something
else lower level
•Users interact with Julia through a standard REPL

(real-eval-print loop environment like Python, R, or
MATLAB), by collecting commands in a .jl file, or by
typing directly into a Jupyter (JUlia, PYThon, R)
notebook

CMSC 714 - Alan Sussman 11

Language Features
•An expressive type system, allowing optional type

annotations (section 3 in paper)
•Multiple dispatch using the types to select

implementations (section 4 in paper)
•Metaprogramming for code generation (section 5.3 in

paper)
•A dataflow type inference algorithm allowing types of

most expressions to be inferred
•Aggressive code specialization against run-time types
• JIT compilation using the LLVM compiler framework,

which is also used by other compilers such as Clang and
Apple’s Swift
• Julia’s carefully written libraries that leverage the

language design

CMSC 714 - Alan Sussman 12

Parallelism in Julia
•Multi-threading
• able to schedule Tasks simultaneously on more than one

thread or CPU core, sharing memory
• multi-threading is composable - when one multi-threaded

function calls another multi-threaded function, Julia will
schedule all the threads globally on available resources,
without oversubscribing
• Can set the number of threads via command line argument, or

through an environment variable – always start execution in
one (main) thread

•Distributed computing
• multiple Julia processes with separate memory spaces, on the

same computer or multiple computers
• Distributed standard library enables remote execution of a

Julia function, using remote calls that return futures and
remote references (of 2 types, Future and RemoteChannel)
• MPI.jl and Elemental.jl provide access to the existing MPI

ecosystem of libraries

CMSC 714 - Alan Sussman 13

Performance
• Can take advantage of multiple types of parallelism
• SIMD instructions, multi-threading on a single node, multiple nodes,

GPUs
• Performance on a single machine/node is “competitive” with C,

esp. for numerical computations
• See https://julialang.org/benchmarks/ for microbenchmarks

• Should be very efficient because of JIT compilation and multiple
dispatch
• Specialize the generated code to the actual types used for each version

(combination of parameter types)
• Generate efficient LLVM intermediate code, then rely on LLVM to

generate efficient machine code
• There have been real applications ported to Julia that achieved

very high performance (i.e. petaflops)
• First example was an astronomy application – processing Sloan Digital

Sky Survey (SDSS) data using the Celeste Julia code, using 1.3M threads
on a DOE supercomputer
• 178TB of image data processed in 14.6 minutes, in 2017, so about

1.5Petaflops

CMSC 714 - Alan Sussman 14

https://julialang.org/benchmarks/

Summary

•For more info on Julia, see https://julialang.org/
•Current version is 1.9, from April 2023

CMSC 714 - Alan Sussman 15

https://julialang.org/

