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Notes

•MPI project due 1 week from Thursday, Sept. 28
• any questions about project spec, or running on zaratan 

cluster?
•Readings posted through next week
•Don't forget to send questions for readings
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Chapel

•A parallel programming language
• a Partitioned Global Address Space (PGAS) language
• others include UPC/UPC++ (C/C++), Titanium (Java), Co-

Array Fortran (part of the current Fortran standard)
•Target Environment
• Distributed memory machines
• Cache Coherent multi-processors (so multi-core 

processors)
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PGAS Programming Model

•Partitioned Global Address Space Model
• Provides a global view of memory across the nodes
•Memory is still physically partitioned à local vs. remote 

accesses
• But allows for a shared-memory style of communication
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Message-passing (e.g., MPI)
matching sends/receives

PGAS
just “get” the data

Shared-memory (e.g., OpenMP)
just “get” the data
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Chapel
•  Characteristics
• Goal is programmer productivity of OpenMP but functionality 

of MPI + OpenMP, so at scale
• separate low-level parallelization and data distribution details 

from the algorithm - enable domain scientists to write 
efficient parallel code
• Compiler generates communication as needed for non-local 

accesses
• Example – SpMV – sparse matrix-vector multiply
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Chapel Example

•Sparse Matrix-Vector Multiply (SpMV) - Ax=b
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• forall is a data parallel loop

• Rows is a block-distributed 
array of records (i.e., C 
structs)

Assuming 4 locales
and 16 elements

Locale 0
Rows[0]
Rows[1]
Rows[2]
Rows[3]

Rows[4]
Rows[5]
Rows[6]
Rows[7]

Rows[8]
Rows[9]
Rows[10]
Rows[11]

Rows[12]
Rows[13]
Rows[14]
Rows[15]

Locale 1 Locale 2 Locale 3

Rows



Chapel Basics
• Tasks, threads, locales, etc.
• tasks: computations that can conceptually execute concurrently
• threads: mechanisms for executing parallel work
• locales: unit of machine resources (e.g., cores and memory) where 

tasks execute
• Usually think of locale as a compute node in a cluster

• domain: represents an index set – for loops and to operate on arrays
• Chapel supports various domain types including associative, sparse, and 

unstructured, in addition to ranges of integers (multi-dimensional)
• Data parallel constructs built on top of task parallel ones:

• Via the begin keyword, or co-begin
• And a co-forall loop, where each iteration is a separate task

• on clause - to specify that a statement should execute on a specific 
locale (the argument to the on clause)

• Execution model is similar to OpenMP, but more general
• One task starts in one locale
• Tasks created dynamically, using task and data parallel constructs
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Chapel Performance

•For single-locale programs, execution is fairly 
competitive with hand-coded C+OpenMP
•For multiple locales, across multiple machines, 

depends on the communication patterns
• For regular patterns (e.g., stencil) performance is 

competitive with MPI (but maybe not to very large 
number of locales)
• For less regular patterns, compiler still needs a lot of 

optimization work
• Underlying communication layer on most high-

performance networks (e.g., Infiniband) is GASNet – one-
sided communication plus active messages
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Additional info

•Documentation and more information at 
https://chapel-lang.org/ 
•Current version is 1.31, from June 2023
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Julia
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Overview

• Julia goals: productivity and performance for 
numerical scientific computing
• From “careful  language  design  and the right 

combination of carefully chosen technologies that work 
very well with each other”

•  all basic functionality must be possible to 
implement in Julia – no escape to C or something 
else lower level
•Users interact with Julia through a standard REPL 

(real-eval-print loop environment like Python,  R, or 
MATLAB), by collecting commands in a .jl file,  or by 
typing directly into a Jupyter (JUlia,  PYThon,  R)  
notebook 
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Language Features
•An expressive type system, allowing optional type 

annotations (section 3 in paper)
•Multiple dispatch using the types to select 

implementations (section 4 in paper)
•Metaprogramming for code generation (section 5.3 in 

paper)
•A dataflow type inference algorithm allowing types of 

most expressions to be inferred
•Aggressive code specialization against run-time types
• JIT compilation using the LLVM compiler framework, 

which is also used by other compilers such as Clang and 
Apple’s Swift
• Julia’s carefully written libraries that leverage the 

language design
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Parallelism in Julia
•Multi-threading
• able to schedule Tasks simultaneously on more than one 

thread or CPU core, sharing memory
• multi-threading is composable - when one multi-threaded 

function calls another multi-threaded function, Julia will 
schedule all the threads globally on available resources, 
without oversubscribing
• Can set the number of threads via command line argument, or 

through an environment variable – always start execution in 
one (main) thread

•Distributed computing
• multiple Julia processes with separate memory spaces, on the 

same computer or multiple computers
• Distributed standard library enables remote execution of a 

Julia function, using remote calls that return futures and 
remote references (of 2 types, Future and RemoteChannel)
•  MPI.jl and Elemental.jl provide access to the existing MPI 

ecosystem of libraries
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Performance
• Can take advantage of multiple types of parallelism
• SIMD instructions, multi-threading on a single node, multiple nodes, 

GPUs
• Performance on a single machine/node is “competitive” with C, 

esp. for numerical computations
• See https://julialang.org/benchmarks/ for microbenchmarks

• Should be very efficient because of JIT compilation and multiple 
dispatch
• Specialize the generated code to the actual types used for each version 

(combination of parameter types)
• Generate efficient LLVM intermediate code, then rely on LLVM to 

generate efficient machine code
• There have been real applications ported to Julia that achieved 

very high performance (i.e. petaflops)
• First example was an astronomy application – processing Sloan Digital 

Sky Survey (SDSS) data using the Celeste Julia code, using 1.3M threads 
on a DOE supercomputer
• 178TB of image data processed in 14.6 minutes, in 2017, so about 

1.5Petaflops
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Summary

•For more info on Julia, see https://julialang.org/ 
•Current version is 1.9, from April 2023

CMSC 714 - Alan Sussman 15

https://julialang.org/

