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Notes

* MPI project due Thursday, 6PM

* Questions on project?
* We will try to do grading within a week

* OpenMP project will be posted on Monday or
Tuesday, and due 2 weeks later

* Readings posted for next week
* Don’t forget to send questions when you are assigned
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Performance analysis

* Parallel performance of a program might not be
what the developer expects

* How do we find performance bottlenecks?

* Two parts to performance analysis: measurement
and analysis/visualization

* Simplest tool: timers in the code and printf
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Using timers

double start, end;
double phasel, phase?2, phase3;

start = MPI Wtime ()

phasel code
end = MPI_Wtime () ; Phase | took 2.45 s
phasel = end - start;

Phase 2 took |11.79 s

start = MPI Wtime ()
phase?

end = MPI_Wtime () ; Phase 3 took 4.37 s
phase?2 = end - start;

start = MPI Wtime ()

phase3
end = MPI Wtime ();
phase3 = end - start;

CMSC 714 - Alan Sussman and Abhinav Bhatele



Performance Tools

* Tracing tools
* Capture entire execution trace
* Vampir, Score-P

* Profiling tools
* Provide aggregated information

* Typically use statistical sampling
* Gprof, pyinstrument, cprofile

* Many tools can do both
* TAU, HPCToolkit, Projections
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Metrics recorded

e Counts of function invocations
*Time spent in code

* Number of bytes sent

* Hardware counters

* To fix performance problems — we need to connect
metrics to source code
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Tracing tools

* Record all the events in the program with
timestamps

e Events: function calls, MPI events, etc.
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Vampir visualization: https://hpc.linl.gov/software/development-environment-software/vampir-vampir-server
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Profiling tools

*|gnore the specific times at
which events occurred

gprof Data Q Enter filter text B ESSE

4 bytes per bucket, each sample counts as 10.000ms

* Provide aggregate i e — 2
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. . . »diag.c 25 _—].12%
information about different i ° =i
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* mpiP
* HPCToolkit, caliper

* Python tools: cprofile,
pyinstrument, scalene

gprof data in hpctView
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Calling contexts, trees, and graphs

* Calling context or call path:
Sequence of function
invocations leading to the
current sample

* Calling context tree (CCT):
dynamic prefix tree of all call
paths in an execution

* Call graph: merge nodes in a
CCT with the same name into a
single node but keep caller-
callee relationships as arcs

|
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Calling context trees, call graphs, ...

Contextual information

File

Line number
Function name
Callpath

Load module
Process 1D
Thread ID

Performance Metrics

‘/ // Time
baz Flops

Cache misses

Calling context tree (CCT)
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gprof

* Goal is to collect profiling information
e Static and dynamic call graphs
* How many times each function is called

* How much time is spent in each function, and in the
functions that a function calls

* Process is to first compile with a flag (-pg for C
compilers typically)

* To insert calls to monitoring code at entry (and/or exit)
from a function

* Then the program will generate monitoring output
in a file (by default gmon.out) that can be post-
processed by the gprof program to produce
profiling information

CMSC 714 - Alan Sussman and Abhinav Bhatele 11



gprof (cont.)

* Since the profiling info is collected during a run, can
combine info collected over multiple runs (presumably
with different input, to exercise different program
paths)

* Execution time info is not collected via timing routines,
but via sampling
* To minimize profiling overhead

 Basically sample periodically which function is currently
executing and assign the time for that interval to the function
currently running — only requires interval timer from the OS

* The time interval for each sample needs to be short enough to
not miss too many function calls (so depends on processor
speed/performance)
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gprof (cont.)

e Qutput includes number of times each function is
called, the time spent in each function, and the time
spent in a given function and all the functions it calls

* One difficulty is with mutually recursive functions
* Problem is that call graph then has a cycle
* So how to assign time for a function and everything it calls

* The overall goal is to use the profiling info to optimize
the program

* And the most important thing to know to do that is where your
program is spending its time!

* So use gprof iteratively to optimize parts of your
program

 Available in Linux and other Unix systems
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HPCToolkit

* Set of tools for measurement, analysis, attribution, and
presentation of application performance for sequential
and parallel (multi-threaded and message-passing)
programs

 Capabilities/goals include:

e collecting performance measurements of fully optimized
executables without adding instrumentation

 analyzing application binaries to understand the structure of
optimized code

e correlating measurements with program structure

 presenting the resulting performance data in a top-down way
to facilitate rapid (human) analysis

* Available at http://hpctoolkit.org/
 As part of DOE Exascale Computing Project (ECP) tools
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HPCToolkit features

* Language independent
 Works on binaries, so works with C, C++, Fortran, ...

* No code instrumentation
* So no instrumentation overhead
e Uses statistical sampling to measure performance

* Avoids "blind spots”

* Works on optimized and stripped binaries, including
(dyr|1ar_nically and statically linked) libraries, so requires binary
analysis

* Keeps track of context to help understand behavior of
modern OO software designs

. Useﬁs call path profiling to assign costs to specific execution
paths

* Presents measurement data in a hierarchical way

* To support a top-down analysis methodology that helps users
to quickly locate bottlenecks
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Features (cont.)

* Hierarchical attribution and presentation of
measurement data
* From function, to loop, to statement, etc., to make data
easier for users to understand and take action on
* Measurement and analysis is scalable

* Sampling-based measurement limits the size of the
performance data to be collected and analyzed, even on
large parallel systems
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HPCToolkit workflow

* Collect performance measurements while application
executes via sampling — hpcrun

* Can user hardware performance counters if available
* Can deal with threads and MPI calls

* Analyze program binaries to recover program structure,
and map to source code (if available) — hpcstruct

* Produce performance database by combining
application structure with performance measurements
— hpcprof

* Explore performance database to find bottlenecks —
hpcviewer

* Prototype visualization in space and time of a parallel
program — hpctraceview — now part of hpcviewer
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