CMSC 714
Lecture 12
GPUs

Alan Sussman
Notes

• **OpenMP project due next Wednesday**
 • don’t compile for profiling (with –pg) and for OpenMP at same time
 • questions?

• **Research project proposal due a week after OpenMP project deadline**
Somewhat Recent (2016) NVIDIA GPU architecture

- Targeted at both HPC workloads and deep learning
 - Supports double precision (64-bit) FP all the way to half-precision (16-bit)
- 6 Graphics Processing Clusters (GPCs), each with 10 Streaming Multiprocessors (SMs), 8 512-bit memory controllers, 4 stacks of HBM2 DRAM (16GB)
- Each SM has 64 CUDA (SIMD) cores, partitioned into 2 32-core blocks, 4 texture units (mainly for graphics operations on bitmap images), 256KB registers
- Each memory controller has 512KB L2 cache, 2 controllers for each HBM2 memory stack
A Streaming Multiprocessor (SM)

• 2 blocks of 32 single-precision (FP32) cores (or 32 total double-precision (FP64)), each with instruction buffer, warp scheduler (warp is a set of SIMD threads), 2 dispatch units
 • And 64KB shared memory per SM plus an L1 cache – to gather data for all threads of a warp before loading into registers
 • 4MB L2 cache is shared across all SMs

• Atomic memory operations
 • For shared memory operations (synchronization) between threads/warps (even on different GPUs), using Unified Memory and NVLink
Additional features

• **RDMA via GPUDirect**
 • To allow other devices (e.g., Infiniband, SSD) to directly access memory on multiple GPUs – can help with MPI latency for sends/receives to/from GPU memory

• **HBM2 memory**
 • Provides very high bandwidth DRAM by directly connecting stacks of memory dies vertically, with vias (holes) through the dies to connect them to the GPU die
 • 4-8 DRAM dies per stack, up to 8 Gb per die, up to 180GB/sec per stack, max 4 stacks per GPU
 • SECDED error correction
Additional features

• **NVLink high speed interconnect**
 - High speed bus connecting pairs (or more) of GPUs, much higher bandwidth than PCIe – 40GB/sec bidirectional bandwidth
 - Helps support shared memory across GPUs – full support for atomic operations across GPUs
 - For even higher bandwidth, can combine up to 4 links into 1 connection – 160GB/sec
 - Can also be used to connect to NVLink-enabled CPU

• **Unified Memory**
 - Basically gives single virtual address space across GPU and CPU memory, so physical pages can be mapped from both sides
 - Helps limit copies, and with irregular memory accesses in warps
 - For performance, still need to maintain locality
 - Simplifies user programs, since no special memory allocator needed
 - Paging mechanism guarantees global coherency across GPU and CPU memory
More recent GPUs - Ampere

• Recent focus on machine learning (ML) training and inference applications
 • Focusing on deep neural networks (DNNs) of various types
 • Training is the really computationally expensive part
 • Very high performance obtained by DL-specific data types and instructions – FP32, FP16, INT8, and INT4, BFLOAT16
 • Most recent Ampere architecture added support for sparse data computations (of a very specific type needed for DL training and inference)
HPC Features in Ampere

• Added some support for barrier operations to ease coordination of asynchronous tasks (so more flexibility), and for collective operations
• Tensor core support for FP64 (double precision floating point) operations
• Higher bandwidth NVLink (up to 600GB/s off chip)
 • To scale up connect up to 8 GPUs
• Application performance still limited by memory bandwidth, even with new generations of HBM
• Paper notes that until recently the GPU programming model has been UMA (any SM can access any memory available in a GPU at same speed), but that can no longer be sustained
 • Programs (and programmers) have to be aware of NUMA to get the best performance
GPUs vs. CPUs

• **Study targeting throughput computing**
 • Also called streaming applications sometimes, or data parallel

• **Architectural limits to parallelism**
 • CPUs have limited number of cores
 • GPUs have limited capabilities, e.g., no caches (not true now)

• **End results, on a set of representative benchmarks, is that GPU performs 2.5X faster than CPU**
 • Application kernels include linear algebra (SGEMM from BLAS), Monte Carlo, Convolution, FFT, SAXPY (from BLAS), Lattice Boltzman (CFD), Constraint Solver, Sparse Matrix/Vector Multiply, Collision Detection (virtual environments), Radix Sort, Ray Casting, Index Search, Histogram, Bilateral Filter (image processing)
 • Platforms are Intel Core i7 CPU (4 hyper-threaded cores, 4-wide SIMD units, and caches) and NVIDIA GTX280 GPU (array of 30 SMs, each with 8 scalar processing units and local memory)
GPUs vs. CPUs

- **Main advantage of CPU is caches**
 - For fast single thread performance, but also helps with multi-threaded apps
 - Disadvantage is complexity, limiting number of cores per chip
 - Also have fast synchronization

- **Main advantage of GPU is high throughput**
 - Each instruction for an SM executes on 8 scalar units (32 data elements)
 - Disadvantage is need to move data explicitly into (small) SM memory from large shared memory
 - Also have support for gather/scatter from memory and special functional units (e.g., texture sampling, math ops)

- **Performance measurements for GPU assume data already in GPU memory (from other GPU computations)**

- **Overall performance of GPU (geometric mean) is 2.5X of CPU (nth root of product of speedups)**
 - Why? Because they optimized both CPU and GPU versions of the kernels