
CMSC 714
Lecture 17

Valgrind and DynInst

Alan Sussman

Notes
•Still working on OpenMP project grading
• Should be ready early next week

•Research project questions?
• Feedback on proposals soon

•Sample midterm exam questions posted

CMSC 714 - Alan Sussman

Valgrind
• Framework for building dynamic binary analysis tools
• works on program binaries
• instrumentation inserted before the program runs
• provides basic services that a tool writer can use to perform

dynamic analyses
• basic mechanism is shadow values

• Shadow values – heavyweight instrumentation
• basic idea is to maintain a copy of all program state for an

analysis tool to use (and tool can add more state needed for
its analysis)
• 9 requirements, 3 classes
• shadow state – registers and memory
• read/write operations – instrument instructions (loads and stores)

and system calls – arguments and return values to/from
registers/memory, and via pointers
• allocation/deallocation operations – start-up (registers, static data),

system calls (brk, mmap), stack pointer movement (function
call/return), heap (esp. bookkeeping data)
• transparent execution, but extra output – only effect on

instrumented program is extra side-channel output

CMSC 714 - Alan Sussman

Valgrind
• Tool-specific code plugs into Valgrind core
• to instrument code fragments that the core passes to it

• Dynamic binary recompilation
• a tool loads client program, recompiles it a block at a time as the client

program executes within Valgrind
• core disassembles code block into IR, then tool plug-in instruments it,

then core converts IR back to machine code to execute
• can deal with dlls, shared libraries, and dynamically generated code – only

problem is self-modifying code
• dissassemble/resynthesize (D&R), vs. copy/annotate (C&A) – claim is that D&R

better for heavyweight analyses
• key issue, and reason for difficulty of implementation, is having the

tool/core sharing memory with the (instrumented) client program
• Events system used to inform tools about system call activities

not directly visible from IR
• i.e. what state gets changed in the system call

• One big problem is that thread execution is serialized, to keep
updates to main and shadow memory consistent always
• not clear how to fix this and allow concurrent thread execution

• Tool performance (e.g., Memcheck) similar to that of other
equivalent tools

CMSC 714 - Alan Sussman

Valgrind Tools

•Memcheck – detects memory problems in C/C++
programs
• Access memory the program shouldn’t (areas not yet allocated,

areas that have been freed, etc.)
• Use uninitialized values in dangerous ways
• Leak memory
• Does bad frees of heap blocks (double frees, mismatched

frees)
• Cachegrind – cache profiler to find sources of cache

misses via simulation
•Massif - heap profiler, via snapshots
•Helgrind - thread debugger to find data races in

multithreaded programs – uses Eraser algorithm

CMSC 714 - Alan Sussman

DynInst
• C++ class library for binary static and dynamic

instrumentation
• lightweight infrastructure for building dynamic analysis tools
• differs from earlier instrumentation tools because can work on

executing program, and uses machine independent description of
inserted code
• Targeted at tool developers, not really for direct use by application

developers
• Insert snippets into one or more client processes
• at instrumentation points
• mutator process inserts snippets into the application program, which

was linked with the Dyninst runtime library, either before or at
runtime

• Implementation for runtime patching uses similar OS
services as a debugger, for controlling activity of another
process
• control process execution
• read/write address space

CMSC 714 - Alan Sussman

DynInst
•Generate code from snippet calls into machine

language of host machine in the mutator, then copy
into space allocated in application address space
• use trampoline code – base tramp with pointers to pre

and post code surrounding one relocated instruction from
the point of insertion
•mini-tramp for pre or post code snippet, to save/restore

registers and set up arguments for snippet function code
• multiple snippets can be chained at one point

•Conditional breakpoint example shows power of
the method, and how it can reduce execution cost
for expensive operations by directly inserting code
into the application at runtime

CMSC 714 - Alan Sussman

How does DynInst work?

CMSC 714 - Alan Sussman

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

How does DynInst work?

CMSC 714 - Alan Sussman

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

