CMSC 714
Lecture 17/
Valgrind and DynlInst

Alan Sussman

Notes

* Still working on OpenMP project grading
* Should be ready early next week

* Research project questions?
* Feedback on proposals soon

e Sample midterm exam questions posted

CMSC 714 - Alan Sussman

Valgrind
* Framework for building dynamic binary analysis tools

e works on program binaries
* instrumentation inserted before the program runs

* provides basic services that a tool writer can use to perform
dynamic analyses

* basic mechanism is shadow values

* Shadow values — heavyweight instrumentation
e basic idea is to maintain a copy of all program state for an
analysis tool to use (and tool can add more state needed for
its analysis)
* 9 requirements, 3 classes
* shadow state — registers and memory

* read/write operations — instrument instructions (loads and stores)
and system calls — arguments and return values to/from
registers/memory, and via pointers

» allocation/deallocation operations — start-up (registers, static data),
system calls (brk, mmap), stack pointer movement (function
call/return), heap (esp. bookkeeping data)

* transparent execution, but extra output — only effect on
instrumented program is extra side-channel output

CMSC 714 - Alan Sussman

Valgrind

* Tool-specific code plugs into Valgrind core
* to instrument code fragments that the core passes to it

* Dynamic binary recompilation

 a tool loads client pr_oEram, recompiles it a block at a time as the client
program executes within Valgrind

* core disassembles code block into IR, then tool plug-in instruments it,
then core converts IR back to machine code to execute

* can deal with dlls, shared libraries, and dynamically generated code — only
problem is self-modifying code

* dissassemble/resynthesize {D&R), vs. copy/annotate (C&A) — claim is that D&R
better for heavyweight analyses

* key issue, and reason for difficulty of implementation, is having the
tool/core sharing memory with the (instrumented) client program

* Events system used to inform tools about system call activities
not directly visible from IR
* i.e. what state gets changed in the system call

* One big problem is that thread execution is serialized, to keep
updates to main and shadow memory consistent always
* not clear how to fix this and allow concurrent thread execution

 Tool performance (e.g., Memcheck) similar to that of other
equivalent tools

CMSC 714 - Alan Sussman

Valgrind Tools

* Memcheck — detects memory problems in C/C++
programs

* Access memory the program shouldn’t (areas not yet allocated,
areas that have been freed, etc.)

e Use uninitialized values in dangerous ways
* Leak memory

* Does bad frees of heap blocks (double frees, mismatched
frees)

* Cachegrind — cache profiler to find sources of cache
misses via simulation

* Massif - heap profiler, via snapshots

* Helgrind - thread debugger to find data races in
multithreaded programs — uses Eraser algorithm

CMSC 714 - Alan Sussman

Dynlnst

* C++ class library for binary static and dynamic
Instrumentation
* lightweight infrastructure for building dynamic analysis tools

* differs from earlier instrumentation tools because can work on
executing program, and uses machine independent description of
inserted code

* Targeted at tool developers, not really for direct use by application
developers
* Insert snippets into one or more client processes
* at instrumentation points

* mutator process inserts snippets into the application program, which
was linked with the Dyninst runtime library, either betore or at

runtime

* Implementation for runtime patching uses similar OS
services as a debugger, for controlling activity of another
process

 control process execution
 read/write address space

CMSC 714 - Alan Sussman

Dynlnst

e Generate code from snippet calls into machine
language of host machine in the mutator, then copy
into space allocated in application address space

* use trampoline code — base tramp with pointers to pre
and post code surrounding one relocated instruction from
the point of insertion

* mini-tramp for pre or post code snippet, to save/restore
registers and set up arguments for snippet function code
* multiple snippets can be chained at one point

e Conditional breakpoint example shows power of
the method, and how it can reduce execution cost

for expensive operations by directly inserting code
into the application at runtime

CMSC 714 - Alan Sussman

How does DynInst work?

Mutator Application
doWork(int =, D)
“UMO‘APP izt &,
Point
L < 18; L+¢)
API|

Fig. 1 Abstractions used in the APl

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

CMSC 714 - Alan Sussman

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

How does Dyninst work?

Mini-Tramp App Functic

Program Base Tramp
Pre Save Registers
Setup Args al
e | [swopn = |
Post Restore \
_ wm o

—

Fig. 2 Inserting code into a running program

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

CMSC 714 - Alan Sussman

https://journals.sagepub.com/doi/pdf/10.1177/109434200001400404

