Adam Bazinet and Alan Sussman

CMSC714 - Alan Sussman and Adam Bazinet

Notes

Midterm exam on Thursday, November 16
« Sample questions posted on Exams web page

Interim report for group project due Nov.
13, 6PM

Last chance to sign up for Zaratan tour —
on Wednesday, Nov. 29

CMSC714 - Alan Sussman and Adam Bazinet

Condor

e Developed at the University of
Wisconsin-Madison

e Condor is aimed at High Throughput
Computing (HTC) on collections of
distributively owned resources

* Mainly used to scavenge idle CPU cycles
from workstations (typically desktop
machines and clusters)

CMSC714 - Alan Sussman and Adam Bazinet

Typical Condor Pool
G o S=cmnrzen

Communication m
\}

Pathway

Execute-Onl

) G
Cstartd>

Regular Node

=/ =

Condor Daemons

condor_master - keeps other daemons running
condor_startd - advertises a given resource
condor_starter - spawns a remote Condor job
condor_schedd - local job scheduler
condor_shadow - coordinates with submitted job
condor_collector - keeps status of Condor pool

condor_negotiator - does all matchmaking

CMSC714 - Alan Sussman and Adam Bazinet

Condor Universes

e Universes are runtime environments for jobs

e Standard universe

e Provides checkpointing and remote system calls

 Application must be re-linked with condor_compile

e Vanilla universe

e Instead of with remote system calls, files are accessed with
NFS/ AFS or explicitly transferred to the executing host

e Other universes: PVM, MPI, Globus, Java, Scheduler

CMSC714 - Alan Sussman and Adam Bazinet

Matchmaking

Matchmaking is Condor’s scheduling
mechanism

Jobs specify their requirements as a list
of attributes and values

Resources advertise their capabilities as
a list of attributes and values (ClassAds)

The condor_negotiator matches jobs to
resources using these criteria

CMSC714 - Alan Sussman and Adam Bazinet

Condor - A Hunter of Idle Workstations

Michael J. Litzkow, Miron Livny, Matt W. Mutka

CMSC714 - Alan Sussman and
Adam Bazinet

Previous Work

e In three key areas:

* The analysis of workstation usage patterns

The design of remote capacity allocation
algorithms

The development of remote execution
facilities

CMSC714 - Alan Sussman and Adam Bazinet

Design Goals

* Condor is designed to serve users
executing long running background jobs
on idle workstations

e Job placement should be transparent

e Job migration should be supported
e Fair access to cycles is expected

e The system should be low overhead

CMSC714 - Alan Sussman and Adam Bazinet

The Scheduling Spectrum

e Atoneend: a centralized, static coordinator would handle scheduling

e At the other end: workstations cooperate to conduct a scheduling policy

e In the middle: Condor!

I,

Figure 1: The Condor Scheduling Structure.
CMSC714 - Alan Sussman and Adam Bazinet

Remote Unix (RU) Facility

Turns idle workstations into cycle servers

When invoked, a shadow process runs
locally as the surrogate of the remotely
executing process

System calls go over the network back to
the shadow (an RPC of sorts)

Used in the standard universe, nowadays

CMSC714 - Alan Sussman and Adam Bazinet

Checkpointing

e When a job is interrupted, RU checkpoints it
- the state of the program is sent back to

submitting machine, and the job may be
rescheduled

Checkpoints consist of the text, data, bss, and
stack program segments, registers, status of
open files, outstanding messages to the
shadow, and so on ...

So to restart the job has to run on on a

compatible system
CMSC714 - Alan Sussman and Adam Bazinet

Checkpointing (cont’d)

e Adding checkpointing requires
re-linking an application with
condor_compile, which fattens up the
binary a good deal

Programs now use much more RAM
than they did in the past, so
checkpointing in the Condor fashion
may be problematic in some

(many?) cases...
CMSC714 - Alan Sussman and Adam Bazinet

Fair Access to Remote Cycles

e By means of the Up-Down algorithm

e In essence, the fewer cycles you burn,

the greater your priority over other users
of the system... (a dynamic equilibrium)

"|"|"|l"1

khut?7?7@leucine i~
= condoy_userprio
Last Priority Update: 11/17 23:33
Effective
User MName Priority

austinjp@umiacs .umd.edu
freed@umiacs .umd.edu

CMSC714 - Alan Sussman and Adam Bazinet

Performance Study

e 23 workstations executing Condor jobs
were monitored for 1 month

e Study simulated a “heavy” user, and
several light users

e Jobs ranged from 30 minutes to 6 hours

e Queue length as high as 40 jobs, for the
heavy user

CMSC714 - Alan Sussman and Adam Bazinet

e On average, light users didn’t have to wait
long for their jobs to run - that’s good

Utilization of remote resources was
substantially increased - an additional 200
machine days of capacity were consumed by
the Condor system

Coordinator predicted to be able to manage
at least 100 workstations with low overhead

CMSC714 - Alan Sussman and Adam Bazinet

Results (cont’d)

e Average cost of job placement and
checkpointing was 2.5 seconds (again,
would be higher nowadays)

* On average, all jobs experienced less
than one checkpoint per hour

 Remote Unix calls are 20x more
expensive than a comparable local call

e A metric called leverage is defined as the ratio of

remote capacity consumed to local capacity consumed
CMSC714 - Alan Sussman and Adam Bazinet

Conclusions

e The major design goals were achieved!

* Job placement is transparent
* Job migration is supported
e Fair access to cycles is granted

e The system is low overhead

CMSC714 - Alan Sussman and Adam Bazinet

Condor Today

Condor has been extremely successful

It is used by a variety of organizations: large
corporations, small businesses, and of
course, academic institutions

At least one company formed to provide
Condor support: www.cyclecomputing.com

And now it is called HTCondor

CMSC714 - Alan Sussman and Adam Bazinet

http://www.cyclecomputing.com/

Top Five Myths About Condor

Myth: Condor requires users to recompile their applications.
Reality: Condor runs ordinary, unmodified applications.

Myth: Condor has a single point of failure.
Reality: Condor has excellent failure isolation.

Myth: Condor is only good at "cycle stealing."
Reality: Condor can effectively manage many kinds of distributed
systems.

Myth: Condor only runs sequential jobs.
Reality: Condor has extensive support for parallel programming
environments.

CMSC714 - Alan Sussman and Adam Bazinet

Designing a Runtime System for
Volunteer Computing

David P. Anderson, Carl Christensen, Bruce Allen

CMSC714 - Alan Sussman and
Adam Bazinet

BOINC

BOINC - Berkeley Open Infrastructure
for Network Computing

A platform for volunteer computing

Popular in the scientific community

Well established projects include

SETI@home, Folding@home,
LHC@home, and about 30 others

currently
CMSC714 - Alan Sussman and Adam Bazinet

Design Goals

To attract and retain volunteers

To handle widely varying applications
Support for application debugging
Support for all popular platforms

CMSC714 - Alan Sussman and Adam Bazinet

BOINC Server

One per project
Hands out work to clients

Keeps track of work to be done for a specific
application, available hosts, state of jobs currently

running, and where output files end up —all in an
RDBMS

Uses lots of threads to keep everything going w/o
much overhead

Uses adaptive replication to make sure all jobs get

done in a timel Way, even with unreliable clients
CMSC714 - Alan Sussman and Adam Bazinet

BOINC Runtime System

e Consists of an application, the core
client, the BOINC manager, and an
optional BOINC screensaver

applhicaton
AP |
runtime hibrary

‘ Manager ;_-:. e system v

| —r

| Screensaver | -

datz scheduling
servers servers

CMSC714 - Alan Sussman and Adam Bazinet

BOINC Core Client (CC)

Can be run as a standalone command
line program, or as a service

Responsible for scheduling applications

Also checks resource consumption of the
running application

BOINC runtime library allows
application to interact with core client

CMSC714 - Alan Sussman and Adam Bazinet

Architecture: Shared Memory

e For each application, the CC creates a
shared memory segment containing a
number of unidirectional message channels

| |
message channals

apphcation

R B

Core client e

(:::) — <,':D runtime library

ph

—_—
-

datis

|
“

I

Incke negsages |

shared memory

CMSC714 - Alan Sussman and Adam Bazinet

Architecture: Application Thread Structure

e Applications are threaded (pthreads on
UNIX, native threads on Windows)

application
Worker ™, graphics
thread / functions

SIGALRM
handler

BOINC runtime liprary

¥ A
graphics status,

messages process control
messages

CMSC714 - Alan Sussman and Adam Bazinet

Compound Applications

o Consists of several programs - typically a
coordinator that executes one or more
worker programs (so a workflow)

message channels coordinator

runtime library

graphics
runtime library

|
s N
\ worker

runtime library

-

w

trickle messages

shared memory

compound application

CMSC714 - Alan Sussman and Adam Bazinet

Task Control

e CC can perform various operations on
running tasks: suspend, resume, quit,
abort

e These operations are implemented by
sending messages to the process control
channel

CMSC714 - Alan Sussman and Adam Bazinet

Status Reporting

e CC needs to know the CPU time and
memory usage of each application every
second (or so)

e The BOINC runtime library makes the
measurements and reports them through
the status channel

CMSC714 - Alan Sussman and Adam Bazinet

Credit Reporting

e By default, credit is computed by
multiplying a benchmark score by the
application’s total CPU time

However, for a number of reasons, this
estimate can be erroneous

Hence, there is support in the BOINC API
for allowing the application to directly
compute floating point operations

CMSC714 - Alan Sussman and Adam Bazinet

Directory Structure and File Access

¢ BOINC must run tasks in separate
directories, but want to avoid making
unnecessary copies of data

* boinc resolve filename("infile", physical name);
e f = boinc fopen(physical name, "r");

BOINC
7 N
projects slots
SN AT
SETI@homes Lattice ... (: 1 ...
’(- -
infile_7492 - infile

<link>
BCINMC/prcjects/SETIfhane/infile 7432
</link>

CMSC714 - Alan Sussman and Adam Bazinet

Checkpointing

* Not absolutely necessary, but extremely
helpful when trying to get long-running
results back, or when a reliable turnaround
time is desired

Checkpointing scheme is application
specific! Unlike the Condor mechanism...

BOINC users care about checkpointing
immensely (and will harass you
indefinitely until you implement it)

CMSC714 - Alan Sussman and Adam Bazinet

Graphics

e Applications supplied graphics are
viewable either as a screensaver or in a
window

e BOINC runtime library limits the
fraction of CPU time used by the
graphics thread

CMSC714 - Alan Sussman and Adam Bazinet

Remote Diagnostics

* Application’s standard error is directed
to a file and returned to the server for all
tasks

e If an application crashes or is aborted, a
stack trace is written to standard error

e Problems may occur only with specific
OSes, architectures, library versions, etc.

CMSC714 - Alan Sussman and Adam Bazinet

Long-running Applications

e Some projects run tasks that take an
extremely long time to complete

e Besides checkpointing, other mechanisms
are necessary to support these tasks - for
example, periodically granting users
credit, or communicating intermediate
results to the server for processing

e These mechanisms use the trickle messages channel

CMSC714 - Alan Sussman and Adam Bazinet

Conclusions

e BOINC is very flexible - it satisfies those who
want it to stay out of the way completely, as
well as those who really want to be involved
in the science

BOINC supports a wide range of applications
and runs on every major platform

Current version includes using GPUs and
multicore machines (and run
multithreaded applications)

CMSC714 - Alan Sussman and Adam Bazinet

