
CMSC 714
Lecture 20

Finding Idle Cycles
or

High Throughput Computing

Adam Bazinet and Alan Sussman

CMSC714 - Alan Sussman and Adam Bazinet

Notes

• Midterm exam on Thursday, November 16
• Sample questions posted on Exams web page

• Interim report for group project due Nov.
13, 6PM

• Last chance to sign up for Zaratan tour –
on Wednesday, Nov. 29

CMSC714 - Alan Sussman and Adam Bazinet

Condor

• Developed at the University of
Wisconsin-Madison

• Condor is aimed at High Throughput
Computing (HTC) on collections of
distributively owned resources

• Mainly used to scavenge idle CPU cycles
from workstations (typically desktop
machines and clusters)

CMSC714 - Alan Sussman and Adam Bazinet

Typical Condor Pool
Central Manager

collector

negotiator

schedd

master

startd

= Process Spawned
= ClassAd

Communication
Pathway

Submit-Only
master

schedd
Regular Node

master
startd

schedd

Regular Node
master

startd

schedd

Execute-Only
master

startd

Execute-Only
master

startd

CMSC714 - Alan Sussman and Adam Bazinet

Condor Daemons
• condor_master - keeps other daemons running

• condor_startd - advertises a given resource

• condor_starter - spawns a remote Condor job

• condor_schedd - local job scheduler

• condor_shadow - coordinates with submitted job

• condor_collector - keeps status of Condor pool

• condor_negotiator - does all matchmaking

CMSC714 - Alan Sussman and Adam Bazinet

Condor Universes

• Universes are runtime environments for jobs

• Standard universe
• Provides checkpointing and remote system calls
• Application must be re-linked with condor_compile

• Vanilla universe
• Instead of with remote system calls, files are accessed with

NFS/AFS or explicitly transferred to the executing host

• Other universes: PVM, MPI, Globus, Java, Scheduler

CMSC714 - Alan Sussman and Adam Bazinet

Matchmaking
• Matchmaking is Condor’s scheduling

mechanism

• Jobs specify their requirements as a list
of attributes and values

• Resources advertise their capabilities as
a list of attributes and values (ClassAds)

• The condor_negotiator matches jobs to
resources using these criteria

CMSC714 - Alan Sussman and Adam Bazinet

Condor - A Hunter of Idle Workstations
Michael J. Litzkow, Miron Livny, Matt W. Mutka

CMSC714 - Alan Sussman and
Adam Bazinet

Previous Work

• In three key areas:

• The analysis of workstation usage patterns

• The design of remote capacity allocation
algorithms

• The development of remote execution
facilities

CMSC714 - Alan Sussman and Adam Bazinet

Design Goals
• Condor is designed to serve users

executing long running background jobs
on idle workstations

• Job placement should be transparent

• Job migration should be supported

• Fair access to cycles is expected

• The system should be low overhead

CMSC714 - Alan Sussman and Adam Bazinet

The Scheduling Spectrum
• At one end: a centralized, static coordinator would handle scheduling

• At the other end: workstations cooperate to conduct a scheduling policy

• In the middle: Condor!

CMSC714 - Alan Sussman and Adam Bazinet

Remote Unix (RU) Facility

• Turns idle workstations into cycle servers

• When invoked, a shadow process runs
locally as the surrogate of the remotely
executing process

• System calls go over the network back to
the shadow (an RPC of sorts)

• Used in the standard universe, nowadays

CMSC714 - Alan Sussman and Adam Bazinet

Checkpointing
• When a job is interrupted, RU checkpoints it

- the state of the program is sent back to
submitting machine, and the job may be
rescheduled

• Checkpoints consist of the text, data, bss, and
stack program segments, registers, status of
open files, outstanding messages to the
shadow, and so on ...

• So to restart the job has to run on on a
compatible system

CMSC714 - Alan Sussman and Adam Bazinet

Checkpointing (cont’d)
• Adding checkpointing requires

re-linking an application with
condor_compile, which fattens up the
binary a good deal

• Programs now use much more RAM
than they did in the past, so
checkpointing in the Condor fashion
may be problematic in some
(many?) cases...

CMSC714 - Alan Sussman and Adam Bazinet

Fair Access to Remote Cycles
• By means of the Up-Down algorithm

• In essence, the fewer cycles you burn,
the greater your priority over other users
of the system... (a dynamic equilibrium)

CMSC714 - Alan Sussman and Adam Bazinet

Performance Study

• 23 workstations executing Condor jobs
were monitored for 1 month

• Study simulated a “heavy” user, and
several light users

• Jobs ranged from 30 minutes to 6 hours

• Queue length as high as 40 jobs, for the
heavy user

CMSC714 - Alan Sussman and Adam Bazinet

Results

• On average, light users didn’t have to wait
long for their jobs to run - that’s good

• Utilization of remote resources was
substantially increased - an additional 200
machine days of capacity were consumed by
the Condor system

• Coordinator predicted to be able to manage
at least 100 workstations with low overhead

CMSC714 - Alan Sussman and Adam Bazinet

Results (cont’d)
• Average cost of job placement and

checkpointing was 2.5 seconds (again,
would be higher nowadays)

• On average, all jobs experienced less
than one checkpoint per hour

• Remote Unix calls are 20x more
expensive than a comparable local call

• A metric called leverage is defined as the ratio of
remote capacity consumed to local capacity consumed

CMSC714 - Alan Sussman and Adam Bazinet

Conclusions

• The major design goals were achieved!

• Job placement is transparent

• Job migration is supported

• Fair access to cycles is granted

• The system is low overhead

CMSC714 - Alan Sussman and Adam Bazinet

Condor Today
• Condor has been extremely successful

• It is used by a variety of organizations: large
corporations, small businesses, and of
course, academic institutions

• At least one company formed to provide
Condor support: www.cyclecomputing.com

• And now it is called HTCondor

CMSC714 - Alan Sussman and Adam Bazinet

http://www.cyclecomputing.com/

Top Five Myths About Condor
• Myth: Condor requires users to recompile their applications.
• Reality: Condor runs ordinary, unmodified applications.

• Myth: Condor has a single point of failure.
• Reality: Condor has excellent failure isolation.

• Myth: Condor is only good at "cycle stealing."
• Reality: Condor can effectively manage many kinds of distributed

systems.

• Myth: Condor only runs sequential jobs.
• Reality: Condor has extensive support for parallel programming

environments.

CMSC714 - Alan Sussman and Adam Bazinet

Designing a Runtime System for
Volunteer Computing

David P. Anderson, Carl Christensen, Bruce Allen

CMSC714 - Alan Sussman and
Adam Bazinet

BOINC

• BOINC - Berkeley Open Infrastructure
for Network Computing

• A platform for volunteer computing

• Popular in the scientific community

• Well established projects include
SETI@home, Folding@home,
LHC@home, and about 30 others
currently

CMSC714 - Alan Sussman and Adam Bazinet

Design Goals

• To attract and retain volunteers

• To handle widely varying applications

• Support for application debugging

• Support for all popular platforms

CMSC714 - Alan Sussman and Adam Bazinet

BOINC Server
• One per project

• Hands out work to clients

• Keeps track of work to be done for a specific
application, available hosts, state of jobs currently
running, and where output files end up – all in an
RDBMS

• Uses lots of threads to keep everything going w/o
much overhead

• Uses adaptive replication to make sure all jobs get
done in a timely way, even with unreliable clients

CMSC714 - Alan Sussman and Adam Bazinet

BOINC Runtime System
• Consists of an application, the core

client, the BOINC manager, and an
optional BOINC screensaver

CMSC714 - Alan Sussman and Adam Bazinet

BOINC Core Client (CC)

• Can be run as a standalone command
line program, or as a service

• Responsible for scheduling applications

• Also checks resource consumption of the
running application

• BOINC runtime library allows
application to interact with core client

CMSC714 - Alan Sussman and Adam Bazinet

Architecture: Shared Memory

• For each application, the CC creates a
shared memory segment containing a
number of unidirectional message channels

CMSC714 - Alan Sussman and Adam Bazinet

Architecture: Application Thread Structure

• Applications are threaded (pthreads on
UNIX, native threads on Windows)

CMSC714 - Alan Sussman and Adam Bazinet

Compound Applications
• Consists of several programs - typically a

coordinator that executes one or more
worker programs (so a workflow)

CMSC714 - Alan Sussman and Adam Bazinet

Task Control

• CC can perform various operations on
running tasks: suspend, resume, quit,
abort

• These operations are implemented by
sending messages to the process control
channel

CMSC714 - Alan Sussman and Adam Bazinet

Status Reporting

• CC needs to know the CPU time and
memory usage of each application every
second (or so)

• The BOINC runtime library makes the
measurements and reports them through
the status channel

CMSC714 - Alan Sussman and Adam Bazinet

Credit Reporting
• By default, credit is computed by

multiplying a benchmark score by the
application’s total CPU time

• However, for a number of reasons, this
estimate can be erroneous

• Hence, there is support in the BOINC API
for allowing the application to directly
compute floating point operations

CMSC714 - Alan Sussman and Adam Bazinet

Directory Structure and File Access

• BOINC must run tasks in separate
directories, but want to avoid making
unnecessary copies of data
• b o i n c _ r e s o l v e _ f i l e n a m e (" i n f i l e " , p h y s i c a l _ n a m e) ;
• f = b o i n c _ f o p e n (p h y s i c a l _ n a m e , " r ") ;

CMSC714 - Alan Sussman and Adam Bazinet

Checkpointing
• Not absolutely necessary, but extremely

helpful when trying to get long-running
results back, or when a reliable turnaround
time is desired

• Checkpointing scheme is application
specific! Unlike the Condor mechanism...

• BOINC users care about checkpointing
immensely (and will harass you
indefinitely until you implement it)

CMSC714 - Alan Sussman and Adam Bazinet

Graphics

• Applications supplied graphics are
viewable either as a screensaver or in a
window

• BOINC runtime library limits the
fraction of CPU time used by the
graphics thread

CMSC714 - Alan Sussman and Adam Bazinet

Remote Diagnostics

• Application’s standard error is directed
to a file and returned to the server for all
tasks

• If an application crashes or is aborted, a
stack trace is written to standard error

• Problems may occur only with specific
OSes, architectures, library versions, etc.

CMSC714 - Alan Sussman and Adam Bazinet

Long-running Applications
• Some projects run tasks that take an

extremely long time to complete

• Besides checkpointing, other mechanisms
are necessary to support these tasks - for
example, periodically granting users
credit, or communicating intermediate
results to the server for processing

• These mechanisms use the trickle messages channel

CMSC714 - Alan Sussman and Adam Bazinet

Conclusions

• BOINC is very flexible - it satisfies those who
want it to stay out of the way completely, as
well as those who really want to be involved
in the science

• BOINC supports a wide range of applications
and runs on every major platform

• Current version includes using GPUs and
multicore machines (and run
multithreaded applications)

CMSC714 - Alan Sussman and Adam Bazinet

