
CMSC714
Lecture 21

Job Scheduling
Alan Sussman 

(mostly from Abhinav Bhatele)



Notes
• Midterm exam next Thursday, November 16, in class

• Sample questions posted on Exams web page
• Email me if you are out of town next week, to arrange a time to take the exam

• Interim report for group project due Monday, 6PM

• No class Tuesday

CMSC714 - Abhinav Bhatele and Alan Sussman 2



Job scheduling
• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

Job Queue

CMSC714 - Abhinav Bhatele and Alan Sussman

#Nodes Time 
Requested Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

3



Job scheduling
• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” 
scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, 
priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

Job Queue

CMSC714 - Abhinav Bhatele and Alan Sussman

#Nodes Time 
Requested Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

4



Job scheduling
• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

Job Queue

#Nodes Time 
Requested Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

• Compute nodes: dedicated to each job

• Network, filesystem(s): shared by all jobs

CMSC714 - Abhinav Bhatele and Alan Sussman 5



Job scheduling
• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

Job Queue

#Nodes Time 
Requested Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

• Compute nodes: dedicated to each job

• Network, filesystem: shared by all jobs

Concurrently running jobs can 
contend for shared resources: 

network, filesystem

CMSC714 - Abhinav Bhatele and Alan Sussman 6



Two components of a scheduler

CMSC714 - Abhinav Bhatele and Alan Sussman

• Decide what job(s) to schedule next: scheduler

• Decide what nodes (and other resources) to allocate to them: resource manager

7



Scheduling policies

CMSC714 - Abhinav Bhatele and Alan Sussman

• First come first serve (FCFS)

• Priority-based

• Depending on project name and remaining allocation

• Backfilling

• Use idle nodes that are being reserved for the next large jobs

• Aggressive (EAZY) backfill: run jobs as long as they don’t delay the first job in the queue (could lead to 
unbounded delays)

• Conservative backfill: runs jobs as long as they don’t delay any future job

8



Resource management

CMSC714 - Abhinav Bhatele and Alan Sussman

• Most primitive: manage nodes

• Advanced management:

• Node type aware (low vs. high memory, GPU nodes, etc.)

• Network topology aware

• Power aware

9



Space sharing and time sharing

CMSC714 - Abhinav Bhatele and Alan Sussman

• Space sharing: Exclusive access to a resource until job completion

• Time sharing: Interleaved access to the same resource

• Co-scheduling

• Gang scheduling

10



Quality of service metrics

• Job Wait Time: time between a job’s submission and start

T
wait = T

start − T
submit

Slowdown =

• Slowdown: incorporates running time of a job

Twait + Trunning

T

CMSC714 - Abhinav Bhatele and Alan Sussman

running

11



Quality of service metrics

• System Utilization: fraction of nodes allocated to running jobs at a given time

utilizationt = Nt

N

• Schedule Makespan: time between the first job’s submission and last job’s 
completion for a job trace (workload)

CMSC714 - Abhinav Bhatele and Alan Sussman 12



PBS paper - Takeaways
• Separating job scheduling policy from resource management makes it 

possible for sites to manage their own resources as they see fit – to 
optimize for throughput, give priority to specific groups of users (at 
certain times), or whatever the resource owner desires
• The real power is in managing clusters to run parallel (e.g., MPI) jobs, not single machines 

as is mainly discussed in the paper
• PBS is the beginning of a lot of efforts at schedulers for clusters, 

including SLURM
• Eventually 2 companies formed to support PBS, and later a derivative called Torque (PBS 

and Torque were both used on UMD clusters, before SLURM)
• An open source version, OpenPBS, is still used, but at many sites has been supplanted by 

SLURM

CMSC714 - Abhinav Bhatele and Alan Sussman 13



Gang Scheduling/Backfilling paper
• A study to take a careful look at the benefits of the two 

scheduling methods, which are complementary
• Conclusion is that backfilling is the big win, since it allows for utilizing resources 

that would otherwise go unused with a FCFS policy, or other standard policies
• But gang scheduling helps by enabling multiple jobs to utilize the same nodes at 

the same time – time sharing in addition to space sharing
• Gang scheduling ensures that all processes for the same job run at the same 

time (really important for MPI, and other parallel, jobs)
• Multiprogramming level does not seem to matter all that much, once it is more 

than 1
• And higher levels of over-estimation of job run times do not seem to hurt 

much, especially when using both gang scheduling and backfilling
• For all the metrics, including responsiveness, slowdown, fairness, and 

utilization
CMSC714 - Abhinav Bhatele and Alan Sussman 14


