
CMSC 714
Lecture 22
Parallel I/O

Alan Sussman and Abhinav Bhatele



Notes
•Midterm exams returned Thursday
•Group Project presentations need to be scheduled
• Email me with preference for day to present, Dec. 5 or 7
• If not enough of you volunteer for Dec. 5 I will have have to pick

• final report due Tuesday, December 12

CMSC 714 - Alan Sussman and Abhinav Bhatele 2



When do parallel programs perform I/O?

• Reading input datasets

• Writing numerical output

• Writing checkpoints

CMSC 714 - Alan Sussman and Abhinav Bhatele 3



Non-parallel I/O

•Designated process does I/O
•All processes send data to/receive data from that 

one process
•Not scalable

CMSC 714 - Alan Sussman and Abhinav Bhatele 4



Parallel filesystem

CMSC 714 - Alan Sussman and Abhinav Bhatele 5

Compute Cluster

OSS 1

OSS 2

OSS n

MDS

MDS = Metadata Server 
MDT = Metadata Target
OSS = Object Storage Server
OST = Object Storage Target

OST 1

OST 2

OST m



Different parallel filesystems

• Lustre: open-source (lustre.org)

•BeeGFS: community supported (beegfs.io)
• Commercial support too

•GPFS: General Parallel File System from IBM, now 
called Spectrum Scale

•PVFS: Parallel Virtual File System: another open 
source, but no longer in wide use – a branch called 
OrangeFS and is still being supported



Tape drive (archive) and burst buffers

•Store copy of data on magnetic tapes for archival 
purposes
•Burst buffers: fast, intermediate storage between 

compute nodes and the parallel filesystem
• Typically some form of flash memory, for persistence, high 

capacity, and speed (reads and writes)
•Two designs:
• Node-local burst buffer – e.g., Frontier, Summit @ ORNL
• Remote (shared) burst buffer – e.g., Cori @ LBL



I/O libraries

•High-level libraries: HDF5, NetCDF
• Self-describing data formats w/associated libraries
•Metadata stored with the data

•Middleware: MPI-IO
•MPI-like I/O interface for collective I/O

• Low-level: POSIX IO
• Standard Unix/Linux I/O interface



Different I/O patterns

• One process reading/writing all the data

• Multiple processes reading/writing data from/to
shared file

• Multiple processes reading/writing data from/to
different files

• Different performance depending upon number of 
readers/writers, file sizes, filesystem, etc.

CMSC 714 - Alan Sussman and Abhinav Bhatele 9



IBM GPFS
•Designed to support high throughput parallel 

applications, including multimedia
•well suited for scientific computations
• still used in some of Top 500 supercomputers

•Main idea is to use parallel I/O to increase 
performance and scale to large configurations
• increase bandwidth by spreading reads and writes (even 

to a single file) across multiple disks, especially for 
sequential access
• avoid the “one file per parallel process” model, or 

sending all I/O through one node
• use internal high performance switch, plus separate I/O 

nodes, for I/O from parallel processes running on 
compute nodes
• files can be both striped across multiple I/O nodes, and 

across multiple disks in each I/O node
CMSC 714 - Alan Sussman and Abhinav Bhatele 10



IBM GPFS
• Each node runs a demon (mmfsd) to provide I/O services
• one demon runs a metanode service, to serve file metadata (ownership, 

permissions), and inode/directory updates
• one demon runs a stripe group manager, to keep track of available disks
• a token manager to synchronize concurrent access to files, maintain 

consistency across caches
• each application node demon mounts a file system and performs file 

accesses (through switch, to I/O nodes that have the disks with the data)
• Client-side caching
• inside Virtual Shared Disk (VSD) layer in kernel (server is on I/O nodes)
• pagepool in each application node’s memory
• read-ahead discovers sequential and constant stride access patterns
• write behind allows application to continue after data copied into 

pagepool – cost is extra copy to pagepool
• Experiments show that GPFS scales well to very high absolute 

performance for sequential accesses
• need big transfer sizes for non-sequential accesses to get decent 

performance – use MPI-IO to aggregate (collective I/O)
• 1 server can handle up to maybe 6 clients – this is technology dependent 

(switch, disks, processors)

CMSC 714 - Alan Sussman and Abhinav Bhatele 11



Burst Buffers
• Intermediate storage layer between compute nodes and 

disk (parallel file system)
• Slower, but higher capacity, than on-node memory (DRAM)
• Faster, but lower capacity, than disk storage on file system

•On this system (LBL NERSC Cori), burst buffer is on I/O 
nodes connected to same network as compute nodes (a 
“dragonfly” Cray Aries network)
• As SSDs, and with a POSIX filesystem interface
• But only available to compute nodes using it, for a limited time 

– but can persist across multiple jobs
• 144 I/O nodes with burst buffers for >1660 compute nodes, 

and a 27PB Lustre parallel file system
• Burst buffer resources allocated via SLURM, using DataWarp

services
• Striped across nodes, or in “private” mode
• Looks like a separate file system

CMSC 714 - Alan Sussman and Abhinav Bhatele 12



Burst Buffers – Use Cases

•Original target is high bandwidth checkpoint-restart
• But several other scenarios at NERSC
• Complex I/O patterns with high IOPs – e.g., non-sequential 

table lookups
• Out-of-core applications
• Workflows – to couple multiple applications – e.g., store data 

between simulation and analysis components, or for 
analysis/visualization (in-situ, in-transit, or interactive)

• Results show burst buffer performs at least well as 
Lustre, and scales better
• Both in IOPS, and I/O bandwidth 
• But work still needed on writes to shared file with MPI-IO

• And the science use cases show the complexity of getting best 
performance for applications in using burst buffers

CMSC 714 - Alan Sussman and Abhinav Bhatele 13


