CMSC 754: Fall 2023 Dave Mount

CMSC 754: Midterm Exam

This exam is closed-book and closed-notes. You may use one sheet of notes (front and back).
Unless otherwise stated, you may assume that inputs are in general position. You may make use of
any results presented in class and any well known facts from algorithms or data structures. If you
are asked for an O(T'(n)) time algorithm, you may give a randomized algorithm with ezpected time
O(T'(n)). If you are asked to give an algorithm, also explain how it works and derive its running
time. (Unless otherwise stated, formal proofs of correctness are not required.)

Problem 1. (20 points) Short-answer questions.

(a) (4 points) Given a planar point set with n points and h vertices on the convex hull.
What must be true about the relationship between h and n for Jarvis’s algorithm to run
at least as fast as Graham’s algorithm? (State your answer asymptotically.)

(b) (4 points) Given a simple polygon with n > 3 vertices, what is the maximum number of
reflex vertices it might have. (Remember that a reflex vertex is one whose interior angle
is greater than 180°.) For full credit, give an exact answer as a function of n.

(c) (4 points) Consider Fortune’s algorithm to compute the Voronoi diagram of n sites in
the plane. What is the maximum number of arcs that any one site can contribute to the
beach line?

(d) (8 points) Which of the following assertions about the Delaunay triangulation (DT) of
a set P of n points in the plane are true?
(1) The closest pair of points are connected by an edge in the DT.
(2) The farthest pair of points cannot be connected by an edge in the DT.
(3) Among all triangulations of P, the DT maximizes the minimum angle.
(4) Among all triangulations of P, the DT minimizes the maximum angle.
)

(5) Among all triangulations of P, the DT minimizes the total sum of edge lengths.

Problem 2. (15 points) Recall the plane-sweep algorithm for decomposing a simple polygon into
monotonic pieces.

(a) (8 points) Give the values of helper(e;), for i =1,...,4 in Fig 1(a).

(b) (7 points) Show all the new diagonals that would be added as a result of the event at
vertex v;, for i = 1,...,4 in Fig 1(b).

Problem 3. (15 points) We are given a collection of n (non-vertical) line segments S = {s1,...,s,}
in the plane in no particular order. Each segment is given by its endpoints s; = p;q;, where
p; has the smaller z-coordinate. We want to know whether altogether, these segments form

the edges of a single simple polygon (see Fig. 2(a)). That is, we need to check the following
things:

e No two segments intersect, except at their endpoints (see Fig. 2(b)).
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Figure 1: Plane-sweep monotone decomposition.

e Each vertex should have degree two, meaning that there are exactly two segments sharing
each endpoint (see Fig. 2(b)).

e The segments form a single closed loop (see Fig. 2(c)).
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Figure 2: Does a set of segments define a simple polygon?

Present an efficient algorithm to check that the segments form a simple polygon. If the
segments violate any of the above conditions, print the first such violation and terminate.
Your algorithm should run in O(nlogn) time. (Partial credit will be given if you correctly
detect any of the three violations.)

Problem 4. (25 points) Explain how to solve each of the following problems in linear (expected)
time. Each can be modeled by reduction to linear programming (LP), perhaps involving
multiple instances along with some additional pre- and/or post-processing.

(a) (15 points) In your new career as an archer (shooting arrows), you want to shoot a single
arrow through a series of targets. You may stand anywhere you want on the positive
y-axis and may shoot in any direction you like. The targets are vertical line segments all
in the positive z, y-plane (see Fig. 3(a)). There are n targets. The ith target is specified
by giving its center point ¢; = (¢j 4, ¢i,y) and its height h;.



Figure 3: Hitting all targets with a single shot.

Present an algorithm that determines whether there exists a single (straight-line) shot
that passes through all n targets. If any such a shot exists, output the height d where
the shot originates on the y-axis and a directional vector u = (ug, uy) that indicates the
direction of the shot (see Fig. 3(b)). If there is no shot, indicate this. Your algorithm
should run in O(n) time.

(b) (10 points) Consider the same problem as (a) but with the following modification. As in
(a), your shot must hit all the targets, but in addition it should come as close as possible
(on average) to hitting the centers of the targets. More formally, given any shot, let
p; denote the point where the shot crosses the ith target (see Fig. 4). The objective
is to minimize the absolute value of %2?21(1%4/ — ¢iy). Explain your algorithm and

derive/explain its running time.

Hint: This is a bit tricky, and if you don’t see the answer right away, you may want to
come back to this later.

Figure 4: Hitting all targets close to the centers.

Problem 5. (25 points) Our objective is to develop a data structure to determine the first target
(if any) that is missed by a shot in the archery problem (Problem 4). The data structure is
constructed based on the target centers ¢; and their heights h; (see Fig. 5(a)). A query is
given the y-coordinate d along the y-axis where the shot starts and a directional vector u (see
Fig. 5(b)).

(a) (15 points) Present a data structure which, given d and v = (u,, u,) determines the first
target, if any, that is missed by the shot. You may assume that d > 0 and u, > 0. Your
data structure should use O(n) space and answer queries in time O(logn).

(b) (5 points) Suppose that your shot hits all the targets. Assuming that you maintain the
same directional vector for the shot, what is the minimum and maximum range of d
values such that the shot hits all the targets? Explain how to modify your solution to
(a) to answer this in the same space and query time bounds (see Fig. 6(b)).
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Figure 6: Arrow-shooting variants.

(c) (5 points) Suppose that your shot hits all the targets. Assuming that you maintain the
same d value on the y-axis for the shot, what is the minimum and maximum range slopes
such that the shot hits all the targets? Explain how to modify your solution to (a) to
answer this in the same space and query time bounds (see Fig. 6(c)).

Hint: This is a bit tricky, and if you don’t see the answer right away, you may want to
come back to this later.



