
CMSC 754: Fall 2023 Dave Mount

CMSC 754: Final Exam

In all problems, unless otherwise stated, you may assume that inputs are in general position. If
you are asked for an O(T (n)) time algorithm, you may give a randomized algorithm with expected
time O(T (n)). If you are asked to give an algorithm, also explain how it works and derive its
running time. (Unless otherwise stated, formal proofs of correctness are not required.)

Problem 1. (30 points) Give a short answer (a few sentences at most) to each question. Except
where requested, explanations are not required.

(a) (5 points) Given a simple polygon with n sides, what can be said about the number
of triangles in any triangulation? Either state the exact number as a function of n, or
provide upper and lower bounds.

(b) (8 points) In class we showed that the trapezoidal map of n nonintersecting line segments
has at most 6n+ 4 vertices and at most 3n+ 1 trapezoids. Suppose instead that there
are k instances where two segments intersect. (In Fig. 1 there are n = 3 segments and
k = 2 intersection points.) At each intersection point, we shoot two bullet paths, up and
down. As a function of n and k, what is the (exact) number of vertices and trapezoids
in the resulting trapezoidal map? (No explanation needed.)

n = 3, k = 2 28 vertices, 16 trapezoids

Figure 1: A trapezoidal map with n = 3 segments and k = 2 intersection points.

(c) (4 points) In our backward analysis of randomized incremental algorithms, we were
careful to argue that the structure being analyzed does not depend on the order of
insertion. What aspect of the analysis would fail if the structure did depend on the
order of insertion? (Explain briefly.)

(d) (5 points) Consider the portion of the line arrangement shown in Fig. 2. Illustrate the
zone of the line ℓ in this arrangement.

(e) (8 points) Suppose you have a workspace with n disjoint obstacles, each of which is a
k-sided convex polygon, and you are given a robot that translates in this workspace,
which is modeled as an m-sided convex polygon.

(i) As a function of n, k, and m, give an upper bound on the total number of vertices in
all the C-obstacles? (You may express your answer using big-Oh notation.) Explain
briefly.

(ii) The C-obstacles may overlap. As a function of n, k, and m, give an upper bound
on the total number of vertices in the union of the C-obstacles? (Again, you can
use big-Oh notation.) Explain briefly.
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Figure 2: The zone of an arrangement.

Problem 2. (20 points) Present LP solutions to the following problems. In each case, explain how
the problem is formulated as an instance of LP (and what the dimension of the space is), and
how the result of the LP (feasible, infeasible, unbounded) is to be interpreted in answering
the problem.

ℓ : y = ax + bci

d−i

d+i

(a) (b)

h
h
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pi

Figure 3: Stabbing segments and squares.

(a) (10 points) You are given a set of n vertical line segments in the plane S = {s1, . . . , sn},
where each segment si is described by three values, its x-coordinate ci, its upper y-
coordinate d+i and its lower y-coordinate d−i . Compute a line ℓ : y = ax + b that
intersects all of these segments. If it exists, return the line that maximizes the vertical
spacing h above and below the line (see Fig. 3(a)).

(b) (10 points) You are given a collection of n axis-aligned squares in the plane, each of side
length 2. The squares are centered at the points P = {p1, . . . , pn}, where pi = (ci, di)
(see Fig. 3(b)). Determine whether there exists a line ℓ : y = ax+ b that intersects all of
these squares. If it exists, return any such line. Hint: You may need to make multiple
calls to LP.

Problem 3. (30 points) For each of the following search problems, explain how to map this to a
data structure that we have seen this semester. In each case, explain which data structure
you will use (e.g., point-location, kd-tree, range tree, etc.), what information is stored in the
data structure, how much space it uses, and what the query time is. There may be multiple
options, and if so, select one that is most efficient.
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The goal is to achieve space that is either linear in n or slightly higher (e.g., O(n), O(n log n),
or O(n log2 n)), and to achieve a query time that O(log n) or slightly higher (e.g., O(log2 n),
or O(log3 n)). We will give partial credit for a correct answer, even if the space or query time
is not optimal.

Hint: Keep your answers brief. We are looking for a reduction to known data structure,
perhaps with additional minor modifications.

(a) (10 points) The data is a set of n points P in R2. The query is an axis-aligned rectangle
Q = [x0, x1] × [y0, y1]. The answer to the query is the area of the smallest axis-aligned
rectangle that contains all the points of P ∩Q (see Fig. 4(a)).

q

q′

(a) (b)

x

y

y0

y1

x0 x1

Ans = area of this
rectangle

Q

x

y

Ans to (b) = 0

Ans to (c) = false

Ans to (b) = 2

Ans to (c) = true

1

1

Figure 4: Geometric queries.

(b) (10 points) The data is a set S of n axis-aligned unit squares in R2 (that is, each has
side length 1). The query is a point q = (qx, qy). The answer to the query is the number
of squares of S that contain q (see Fig. 4(b)).

(c) (10 points) The data set is again a set S of n axis-aligned unit squares in R2 (that is,
each has side length 1). The query is a point q = (qx, qy). The answer to the query is
true if q lies in the union of the squares and false otherwise (see Fig. 4(b)).

Problem 4. (20 points) For each of the following range spaces, derive its VC-dimension and prove
your result. (Note that in order to show that the VC-dimension is k, you need to give an
example of a k-element subset that is shattered and prove that no set of size k + 1 can be
shattered.) Throughout, you may assume that points are in general position.

Hint: Proving the upper bound on the VC-dimension can involve multiple cases. Do your
best to explain what the relevant cases are, but don’t bother proving each one formally. For
each case, you can give a short one-sentence explanation (or draw a picture) to explain which
subsets cannot be generated.

(a) (8 points) Σ = (R2,S), where S consists of parallelograms having two horizontal sides
and two sides that have a slope of 1 (see Fig. 5(a)).
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Figure 5: VC-Dimension of some range spaces.

(b) (12 points) Σ = (R2,P), where P consists of parallelograms having two horizontal sides
and two sides of arbitrary (nonzero) slope (see Fig. 5(b)).

Problem 5. (20 points) You are given a set P of n points in Rd and a real δ > 0. The objective
of a δ-distance query is to return a count of all the pairs of distinct points x, y ∈ P , such that
∥x− y∥ ≤ δ. Given 0 < ε < 1, in an ε-approximate δ-distance query, your count must include
all pairs such that ∥x−y∥ ≤ δ, and it must not include any pair such that ∥x−y∥ > (1+ ε)δ.
Pairs of points whose distances lie between these two bounds may or may not be counted, at
the discretion of the algorithm.

Explain how to preprocess P into a data structure so that ε-approximate distance counting
queries can be answered in O(n/εd) time and O(n/εd) space.

Hint: Use a well-separated pair decomposition. Explain clearly what separation factor is
used and what modifications are needed to the WSPD construction. It is not necessary to
derive the tightest possible bound on the separation factor, but formally justify your choice.
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