
CMSC 754: Fall 2023 Dave Mount

Sample Problems for the Final Exam

The final exam will be Thu, Dec 14, 8:00am-10:00am in class. The exam will be closed-book
and closed-notes. You may use two sheets of notes (front and back). The following problems have
been collected from old homeworks and exams. They do not necessarily reflect the actual difficulty
or coverage of questions on the final exam. The final will be comprehensive, but will emphasize
material since the midterm.

In all problems, unless otherwise stated, you may assume general position, and you may use of
any results presented in class or any well-known result from algorithms and data structures.

Problem 1. Give a short answer (a few sentences) to each question. Unless explicitly requested,
explanations are not required, but may be given for partial credit.

(a) A dodecahedron is a convex polyhedron that has 12 faces, each of which is a 5-sided pen-
tagon. Every vertex has degree 3. How many vertices and edges does the dodecahedron
have? Show how you derived your answer.

(b) Given a set P of n points in the plane, what is the maximum number of edges in P ’s
Voronoi diagram? (For full credit, express your answer up to an additive constant.)

(c) When the ith site is added to the Delaunay triangulation using the randomized incre-
mental algorithm, what is the worst-case number of edges that can be incident on the
newly added site? What can you say about the expected-case number of such edges
(assuming that points are inserted in random order)?

(d) What was the importance of the Zone Theorem in our incremental algorithm for building
line arrangements in the plane?

(e) An arrangement of n lines in the plane has exactly n2 edges. How many edges are there
in an arrangement of n planes in 3-dimensional space? (Give an exact answer for full
credit or an asymptotically tight answer for half credit.) Explain briefly.

(f) Let P and Q be two simple polygons in R2, where P has m vertices and Q has n vertices.
What is the maximum number of vertices on the boundary of the Minkowski sum P ⊕Q
(asymptotically) assuming:

(i) P and Q are both convex

(ii) P is convex but Q is arbitrary

(iii) P and Q are both arbitrary

(g) In each of the following cases, what is the asymptotic worst-case complexity (number of
vertices) on the boundary of the union of n of the following objects in R2:

(i) axis-parallel squares

(ii) axis-parallel rectangles (of arbitrary heights and widths)

(iii) rectangles (of arbitrary heights and widths which need not be axis parallel)

(iv) axis-parallel rectangles, where the width to height ratio is either 4× 1 or 1× 4.

1

(a) (b)

ℓ

P+(ℓ)

P−(ℓ)

ℓ

h

ℓ

(c)

ℓ+

ℓ−

Figure 1: Query problem.

Problem 2. You are given a set P of n points in R2. A nonvertical line ℓ partitions P into two
(possibly empty) subsets: P+(ℓ) consists of the points lie on or above ℓ and P−(ℓ) consists
of the points of P that lie strictly below ℓ (see Fig. 1(a)).

Given the point set P , present data structures for answering the following two queries. In each
case, the data structure should use O(n2) space, it should answer queries in O(log n) time.
(You do not need to explain how to build the data structure, but it should be constructable
in polynomial time in n.)

(a) The input to the query is a nonvertical line ℓ. The answer is the maximum vertical dis-
tance h between two lines parallel to h that lie between P+(ℓ) and P−(ℓ) (see Fig. 1(b)).
For simplicity, you may assume that neither set is empty (implying that h is finite).

(b) Again, the input to the query is a nonvertical line ℓ. The answer to the query are the
two lines ℓ− and ℓ+ of minimum and maximum slope, respectively, that separate P+(ℓ)
from P−(ℓ) (see Fig. 1(c)). You may assume that P+(ℓ) from P−(ℓ) are not separable
by a vertical line (implying that these two slopes are finite).

Problem 3. Consider an n-element point set P = {p1, . . . , pn} in R2, and an arbitrary point
q ∈ R2 (which is not in P). We say that q is k-deep within P if any line ℓ passing through q
has at least k points of P on or above the line and at least k points of P on or below it.

q

ℓ

Figure 2: Point q is 4-deep within P .

For example, the point q in Fig. 2 is 4-deep, because any line passing through q has at least
four points of P on either side of it (including lying on the line itself).

(a) Assuming we use the usual dual transformation, which maps point p = (a, b) to line
p∗ : y = ax− b, explain what it means for a point q to be k-deep within P (in terms of
the dual line q∗ and the dual arrangement A(P ∗)).

2

(b) Present an efficient algorithm which, given P and q, determines the maximum value k
such that q is k-deep within P . (Hint: O(n log n) time is possible. I will accept a slower
algorithm for partial credit.)

(c) Present an efficient algorithm which, given P and an integer k, determines whether there
exists a point q that is k-deep within P . (Hint: First consider what this means in the
dual setting. O(n2 log n) time is possible. I will accept a slower algorithm for partial
credit.)

For parts (b) and (c) briefly justify your algorithm’s correctness and derive its running time.

Problem 4. You are given a set P of n points in the plane and a path π that visits each point
exactly once. (This path may self-intersect. See Fig. 3.)

π

ℓ1 ℓ2

Figure 3: Path crossing queries.

Explain how to build a data structure from P and π of space O(n) so that given any query
line ℓ, it is possible to determine in O(log n) time whether ℓ intersects the path. (For example,
in Fig. 3 the answer for ℓ1 is “yes,” and the answer for ℓ2 is “no.”) (Hint: Duality is involved,
but the solution requires a bit of lateral thinking.)

Problem 5. Consider the following two geometric graphs defined on a set P of points in the plane.

(a) Box Graph: Given two points p, q ∈ P , define box(p, q) to be the square centered at
the midpoint of pq having two sides parallel to the segment pq (see Fig. 4(a)). The
edge (p, q) is in the box graph if and only if box(p, q) contains no other point of P (see
Fig. 4(b)). Show that the box graph is a subgraph of the Delaunay triangulation of P .

(b) Diamond Graph: Given two points p, q ∈ P , define diamond(p, q) to be the square having
pq as a diagonal (see Fig. 4(c)). The edge (p, q) is in the diamond graph if and only if
diamond(p, q) contains no other point of P (see Fig. 4(d)). Show that the diamond graph
may not be a subgraph of the Delaunay triangulation of P . (Hint: Give an example that
shows that the diamond graph is not even planar.)

(a) (b)

q
p

box(p, q)

(c) (d)

q
p

diamond(p, q)

Figure 4: The box and diamond graphs.

3

Problem 6. Consider the range space Σ = (R2, T), where T is the set of all right triangles whose
two legs are parallel to the coordinate axes, so that the right angle is in the lower-left corner
of the triangle (see Fig. 5).

Figure 5: Set system of axis-aligned right triangles.

(a) Give an example of a 4-element point set P in R2 that is shattered by Σ, and demonstrate
why it is shattered. (For preciseness, indicate the coordinates of the points, but you can
present a drawing to illustrate how to shatter them.)

(b) Prove that no 5-element point set in R2 is shattered by Σ.

(c) What is the VC-dimension of Σ?

(d) Given a point set P in R2 with n points, give a (tight) asymptotic upper bound on the
number of distinct subsets of P determined by Σ. (Using the notation given in class,
this is |T|P |.)

Problem 7. Given a set of n points P in Rd, and given any point p ∈ P , its nearest neighbor
is the closest point to p among the remaining points of P . Note that nearest neighbors are
not reflexive, in the sense that if p is the nearest neighbor of q, then q is not necessarily the
nearest neighbor of p. Given an approximation factor ε > 0, we say that a point p′ ∈ P is
an ε-approximate nearest neighbor to p if ∥pp′∥ ≤ (1 + ε)∥pp′′∥, where p′′ is the true nearest
neighbor to p.

Show that in O(n log n + (1/ε)dn) time it is possible to compute an ε-approximate nearest
neighbor for every point of P . Justify the correctness of your algorithm. Hint: This can be
solved using either WSPDs or spanners.

Note: There exists an algorithm that runs in O(n log n) time that solves this problem exactly,
but it is considerably more complicated than the one I have in mind here.

Problem 8. A set P of n points in Rd determines a set of
(
n
2

)
different distances. Define ∆(P) to

be this set of distances {∥pi − pj∥ : 1 ≤ i < j ≤ n}. Given an integer k, where 1 ≤ k ≤
(
n
2

)
,

we are interested in computing the kth smallest distance from this set. Normally, this would
take O(n2) time, so let’s consider a fast approximation algorithm.

Let δ(P, k) denote the exact kth smallest distance in ∆(P). Given ε > 0, a distance value x
is an ε-approximation to δ(P, k) if

δ(P, k)

1 + ε
≤ x ≤ (1 + ε)δ(P, k).

Present an efficient algorithm to compute such a value x. Justify your algorithm’s correctness
and derive its running time. (Hint: Use well-separated pair decompositions. You may assume

4

that, when the quadtree is computed, each node u of the quadtree is associated with an integer
wt(u), which indicates the number of points of P lying within u’s subtree.)

You may assume that d and ε are constants (independent of n). I know of an algorithm that
runs in time O(n log n + n/εd) time, but I will accept for full credit an algorithm that runs
in time O((n log n)/εd).

Problem 9. You are given a set P of n points in Rd and an approximation factor ε > 0. An
(exact) distance query is defined as follows. You are given a real δ > 0, and you are to return
a count of all the pairs of points (p, q) ∈ P × P , such that ∥pq∥ ≥ δ. In an ε-approximate
distance query, your count must include all pairs (p, q) where ∥pq∥ ≥ δ(1+ ε) and it must not
include any pairs (p, q) where ∥pq∥ < δ/(1 + ε). Pairs of points whose distances lie between
these two bounds may or may not be counted, at the discretion of the algorithm.

Explain how to preprocess P into a data structure so that ε-approximate distance counting
queries can be answered in O(n/εd) time and O(n/εd) space. (Hint: Use a well-separated pair
decomposition. Explain clearly what separation factor is used and any needed modification
to the WSPD construction.)

Problem 10. This problem considers motion planning in a dynamic setting, which is inspired by
various old video games. You are given a robot that consists of a line segment of unit length
that resides on the x-axis. The robot can move left or right (but not up or down) at a speed
of up to one unit per second. You are given two real values x− and x+, and the robot must
remain entirely between these two values at all times (see Fig. 6). The robot’s reference point
is its left endpoint, and at time t = 0, the left endpoint is located at x−. (You may assume
that x+ > x− + 1.)

x− x+1

pi = (xi, yi)

Figure 6: Robot motion planning.

You are also given a set of missiles in the form of n vertical line segments, each of length 0.2,
that fall down from the sky at a rate of two units per second. Each of these vertical segments
is specified by the coordinates of its lower endpoint at time t = 0. So, if pi = (xi, yi) is the
starting position of the ith missile, then at time t is its lower endpoint is located at (xi, yi−2t),
and its upper endpoint is at (xi, yi − 2t+ 0.2). You may assume that x− ≤ xi ≤ x+.

The question is whether it is possible for the robot to move in a manner to avoid all the
missiles. We will explore an algorithm for solving this problem.

(a) A natural way to define the robot’s configuration at any time is as a pair (t, x), where

5

t is the current time, and x is the location of the robot’s left endpoint. Based on this,
what is the C-obstacle associated with a missile whose starting position is pi (as defined
above)? In other words, describe the set of robot configurations (t, x) such that the robot
intersects this missile. (Please provide low-level details, as opposed, say, to expressing
this as a Minkowski sum.)

(b) Provide a complete characterization of the properties of a path in configuration space
(assuming it exists) that corresponds to a motion plan for the robot that satisfies the
robot’s speed constraints and avoids all the missiles. Be sure to include constraints on
the path’s starting and ending positions and include the robot’s maximum speed.

6

