
CMSC 754 Dave Mount

CMSC 754: Lecture 2
Convex Hulls in the Plane

Reading: Some of the material of this lecture is covered in Chapter 1 in the “4M’s” book (by de
Berg, Cheong, van Kreveld, and Overmars). The divide-and-conquer algorithm is given in Joseph
O’Rourke’s, “Computational Geometry in C.”

Convex Hulls: In this lecture we will consider a fundamental structure in computational geom-
etry, called the convex hull. We will give a more formal definition later, but, given a set
P of points in the plane, the convex hull of P , denoted conv(P), can be defined intuitively
by surrounding a collection of points with a rubber band and then letting the rubber band
“snap” tightly around the points (see Fig. 1).

P conv(P)

Fig. 1: A point set and its convex hull.

The (planar) convex hull problem is, given a discrete set of n points P in the plane, output
a representation of P ’s convex hull. We may assume the points are given as a list of (x, y)
coordinates. The convex hull is a closed convex polygon, the simplest representation is a cyclic
(say, counterclockwise) enumeration of the vertices of the convex hull. In higher dimensions,
the convex hull will be a convex polytope. We will discuss the representation of polytopes
in future lectures, but in 3-dimensional space, the representation would consist of a vertices,
edges, and faces that constitute the boundary of the polytope.

Applications: There are a number of reasons that the convex hull of a point set is an important
geometric structure. One is that it is one of the simplest shape approximations for a set of
points. (Other examples include minimum area enclosing rectangles, circles, and ellipses.) It
can also be used for approximating more complex shapes. For example, the convex hull of a
polygon in the plane or polyhedron in 3-space is the convex hull of its vertices.

Also many algorithms compute the convex hull as an initial stage in their execution or to
filter out irrelevant points. For example, the diameter of a point set is the maximum distance
between any two points of the set. It can be shown that the pair of points determining the
diameter are both vertices of the convex hull. Also observe that minimum enclosing convex
shapes (such as the minimum area rectangle, circle, and ellipse) depend only on the points of
the convex hull.

Basic Definitions: Before getting to the discussion of the various convex-hull algorithms, let’s
begin with a few standard definitions, which will be useful throughout the semester. For any
d ≥ 1, let Rd denote real d-dimensional space, that is, the set of d-dimensional vectors over
the real numbers. We refer to elements of Rd either as “points” or “vectors”, depending on

Lecture 2 1 Fall 2023

CMSC 754 Dave Mount

what we intend them to represent (a location in space or a displacement, respectively). We
refer to real numbers as scalars.

A point/vector p ∈ Rd is expressed as a d-vector (p1, . . . , pd), where pi ∈ R. Following
standard terminology from linear algebra, given two vectors u, v ∈ Rd and a scalar α ∈ R,
let “u+ v” be the vector-valued sum, αv be scalar-vector product, and let “u · v” denote the
standard scalar-valued dot-product.

Affine and convex combinations: Given two points p = (px, py) and q = (qx, qy) in Rd,
we can express any point on the (infinite) line ←→pq as a linear combination of their
coordinates, where the coefficient sum to 1:

(1− α)p+ αq = ((1− α)px + αqx, (1− α)py + αqy).

This is called an affine combination of p and q (see Fig. 2(a)).

p
1
3p +

2
3q

q

p

q
(1− α)p + αq

p1
p2

p3
α1p1 + α2p2 + α3p3 α1 + α2 + α3 = 1

(a) (b) (c)

Fig. 2: Affine and convex combinations.

By adding the additional constraint that 0 ≤ α ≤ 1, the set of points generated lie on
the line segment pq (see Fig. 2(b)). This is called a convex combination. Notice that this
can be viewed as taking a weighted average of p and q. As α approaches 1, the point
lies closer to p and when α approaches zero, the point lies closer to q.

It is easy to extend both types of combinations to more than two points. For example,
given k points {p1, . . . , pk} an affine combination of these points is the linear combination

k∑
i=1

αipi, such that α1 + · · ·+ αk = 1.

When 0 ≤ αi ≤ 1 for all i, the result is called a convex combination.

The set of all affine combinations of three (non-collinear) points generates a plane, and
generally, the resulting set is called the affine span or affine closure of the points. Given
three noncollinear points in R3, their affine span generates the points on the plane passing
through these points. The set of all convex combinations generates the triangle defined
by the points. This generalizes in a natural way to all higher dimensions.

Hyperplanes/Halfspaces: Given a nonzero vector v ∈ Rd and a scalar α ∈ R, the set
of points {p | p · v = α} is a (d − 1)-dimensional affine subspace, more often called a
hyperplane. In the special cases R2 and R3, this defines a line and plane, respectively. If
v is a unit vector and α ≥ 0, this hyperplane is orthogonal to v and lies at distance α from

Lecture 2 2 Fall 2023

CMSC 754 Dave Mount

(b)

convex nonconvex

p

q q
p

(c)(a) (d)

support line

p

O

v
α

hyperplane ext(K)

int(K)

∂K
h

ℓ

Fig. 3: Basic concepts.

the origin (see Fig. 3(a)). If we change the equality to an inequality, we obtain a halfspace
consisting of points lying on one side of the hyperplane, for example {p | p · v ≤ α}.

Concepts from Topology: There are a number of useful concepts that arise from topology:
open and closed sets, interior, exterior, and boundary, connectivity, etc. We will use
these without definitions, since for the simple objects that we will be working with,
these concepts are easily understood at an intuitive level.1 We will use int(K), ext(K),
and ∂K to denote the interior, exterior, and boundary of a set K, respectively (see
Fig. 3(b))).

Convexity: A set K ⊆ Rd is convex if given any points p, q ∈ K, the line segment pq is
entirely contained within K (see Fig. 3(c)). Otherwise, it is called nonconvex. This is
equivalent to saying that K is “closed” under convex combinations. Examples of convex
sets in the plane include circular disks (the set of points contained within a circle), the
set of points lying within any regular n-sided polygon, lines (infinite), line segments
(finite), rays, and halfspaces.

Support line/hyperplane: An important property of any convex set K in R2 is that at
every point p on the boundary of K, there exists a (not necessarily unique) line ℓ that
passes through p such that K lies entirely to one side of ℓ (see Fig. 3(d)). This is called a
supporting line (or support line) for K. In higher dimensions Rd this will generally by a
(d− 1)-dimensional hyperplane, called a supporting hyperplane. Observe that there may
generally be multiple (indeed an infinite number of) supporting lines passing through a
given boundary point of K. This happens when p is a vertex of K.

Convex Hulls: Formally, the convex hull of a point set P is defined to be smallest convex
set containing P . It can be characterized in two provably equivalent ways (one additive
and one subtractive). First, it is equal to the set of all convex combinations of points in
P and second, it is equal to the intersection of all halfspaces that contain P .

When computing convex hulls, we will usually take P to be a finite set of points. In such a
case, conv(P) will be a convex polygon. Generally P could be an infinite set of points. For
example, we could talk about the convex hull of a collection of circles. The boundary of such
a shape would consist of a combination of circular arcs and straight line segments.

General Position: As in many of our algorithms, it will simplify the presentation to avoid lots of
special cases by assuming that the points are in general position. This effectively means that
“degenerate” geometric configurations do not arise in the input.

1See, for example https://en.wikipedia.org/wiki/Boundary (topology) for definitions.

Lecture 2 3 Fall 2023

https://en.wikipedia.org/wiki/Boundary_(topology)

CMSC 754 Dave Mount

What do we mean by “degenerate”? This can be defined formally (by giving a definition on
the measure of point sets and excluding certain configurations that have measure zero), but
for our purposes, we will give a more intuitive, but less rigorous, definition. A degeneracy
is any geometric property that can be destroyed by some infinitesimal perturbation of the
geometric objects (or more accurately, the real-valued parameters that define these objects).

Here are some concrete examples of degenerate configurations (see Fig. 4):

� three points in the plane that are collinear

� two points that share the same x-coordinate

� three lines that pass through the same point (coincident)

� four points that lie on the same circle

Note, by the way that three points lying on the same circle is not a degeneracy, since generally
three points uniquely determine a circle.

3 collinear points duplicate x-coordinates 3 coincident lines 4 cocircular points

Fig. 4: Examples of degenerate configurations of geometric objects.

When we say that “we assume that our input is in general position”, we mean that the input
set is free of any degenerate configurations of points (e.g., no three points from the set are
collinear). Whenever we do this, we should explain precisely which geometric configurations
we are excluding. But, often we will be sloppy and just omit this, since it will usually be
obvious by inspection of the algorithm.

Graham’s Scan: We will begin with a presentation of a simple O(n log n) algorithm for the convex
hull problem. It is a simple variation of a famous algorithm for convex hulls, called Graham’s
Scan, which dates back to the early 1970’s (and named for its inventor Ronald Graham). The
algorithm is loosely based on a common approach for building geometric structures called
incremental construction. In such a algorithm object (points here) are added one at a time,
and the structure (convex hull here) is updated with each new insertion.

Let us assume that the input consists of a set P of n points {p1, . . . , pn}, where pi = (xi, yi).
While we will not do so, it is easy to prove that the convex hull of a finite set of points is a
convex polygon, whose vertices are a subset of P . A natural representation of such a polygon
is a cyclic (for example, counterclockwise) listing of the vertices of this polygon.

An important issue with incremental algorithms is the order of insertion. If we were to add
points in some arbitrary order, we would need some method of testing whether the newly
added point is inside the existing hull. Instead, we will insert points in increasing order of
x-coordinates. This guarantees that each newly added point is outside the current hull. (Note
that Graham’s original algorithm sorted points in a different way. It found the lowest point

Lecture 2 4 Fall 2023

CMSC 754 Dave Mount

in the data set and then sorted points cyclically around this point. Sorting by x-coordinate
seems to be a bit easier to implement, however.)

Since we are working from left to right, it would be convenient if the convex hull vertices were
themselves ordered from left to right. To do this, we can break the boundary of the convex
hull into two chains, an upper chain consisting of the vertices along the upper part of the hull
and a lower chain consisting of the vertices along the lower part of the hull. Both chains will
start with the leftmost point of P and will end with the rightmost point of P . We will make
the general-position assumption that no two vertices have the same x-coordinates, so these
two points are unique (see Fig. 5(a)).

pnp1

upper hull

lower hull

(b)(a)

pij

pij−1

pij−2

(b)

support line

Fig. 5: (a) Upper and lower hulls, (b) supporting line, and (c) the left-hand turn property of points
on the upper hull.

It suffices to show how to compute the upper hull, since the lower hull is symmetrical. (Just flip
the picture upside down.) Once the two hulls have been computed, we can simply concatenate
them with the reversal of the other to form the final hull.

Observe that a point p ∈ P lies on the upper hull if and only if there is a supporting line
passing through p such that all the points of P lie on or below this line (see Fig. 5(b)). Our
algorithm will be based on the following lemma, which characterizes the upper hull of P . This
is a simple consequence of the convexity. The first part says that the line passing through
each edge of the hull is a supporting line, and the second part says that as we walk from right
to left along the upper hull, we make successive left-hand turns (see Fig. 5(c)).

Lemma 1: Let ⟨pi1 , . . . , pim⟩ denote the vertices of the upper hull of P , sorted from left to
right. Then for 1 ≤ j ≤ m, (1) all the points of P lie on or below the line pijpij−1 joining
consecutive vertices and (2) each consecutive triple ⟨pijpij−1pij−2⟩ forms a left-hand turn.

Let ⟨p1, . . . , pn⟩ denote the sequence of points sorted by increasing order of x-coordinates.
For i ranging from 1 to n, let Pi = ⟨p1, . . . , pi⟩. We will store the vertices of the upper hull of
Pi on a stack S, where the top-to-bottom order of the stack corresponds to the right-to-left
order of the vertices on the upper hull. Let S[t] denote the stack’s top. Observe that as we
read the stack elements from top to bottom (that is, from right to left) consecutive triples of
points of the upper hull form a (strict) left-hand turn (see Fig. 5(b)). As we push new points
on the stack, we will enforce this property by popping points off of the stack that violate it.

Turning and orientations: Before proceeding with the presentation of the algorithm, we should
first make a short digression to discuss the question of how to determine whether three points

Lecture 2 5 Fall 2023

CMSC 754 Dave Mount

form a “left-hand turn.” This can be done by a powerful primitive operation, called an
orientation test, which is fundamental to many algorithms in computational geometry.

Given an ordered triple of points ⟨p, q, r⟩ in the plane, we say that they have positive orien-
tation if they define a counterclockwise oriented triangle (see Fig. 6(a)), negative orientation
if they define a clockwise oriented triangle (see Fig. 6(b)), and zero orientation if they are
collinear, which includes as well the case where two or more of the points are identical (see
Fig. 6(c)). Note that orientation depends on the order in which the points are given.

(a) (b) (c)

p

q

r

p

q
r

p

q

r p = r

q

orient(p, q, r) > 0 orient(p, q, r) < 0 orient(p, q, r) = 0

Fig. 6: Orientations of the ordered triple (p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homoge-
neous coordinates, that is, by prepending a 1 to each coordinate. For example, in the plane,
we define

orient(p, q, r) = sign

det

 1 px py
1 qx qy
1 rx ry

 .

Observe that in the 1-dimensional case, orient(p, q) is just q− p. Hence it is positive if p < q,
zero if p = q, and negative if p > q. Thus orientation generalizes the familiar 1-dimensional
binary relations <,=, >.

Also, observe that the sign of the orientation of an ordered triple is unchanged if the points
are translated, rotated, or scaled (by a positive scale factor). A reflection transformation
(e.g., f(x, y) = (−x, y)) reverses the sign of the orientation. In general, applying any affine
transformation to the point alters the sign of the orientation according to the sign of the
determinant of the matrix used in the transformation. (By the way, the notion of orientation
can be generalized to d + 1 points in d-dimensional space, and is related to the notion of
chirality in Chemistry and Physics. For example, in 3-space the orientation is positive if the
point sequence defines a right-handed screw.)

Why use the orientation rather than computing the actual angle? Due to its discrete nature,
the orientation test has many uses in computational geometry. This means that if we imple-
ment this test once in a manner that is very efficient and numerically very stable, we do not
need to worry about designing our own ad hoc geometric primitives.

Given a sequence of three points p, q, r, we say that the sequence ⟨p, q, r⟩ makes a (strict)
left-hand turn if orient(p, q, r) > 0.

Graham’s Scan Details: We can now present the full algorithm. Recall that the input is a set

Lecture 2 6 Fall 2023

CMSC 754 Dave Mount

P of n points in R2. We may assume that n ≥ 3, since a hulls with fewer points are rather
trivial.

Let us consider just the case of the upper hull, and let’s see what happens when we process
the insertion of the ith point, pi (see Fig. 7(a)). First observe that pi is on the upper hull of
Pi (since it is the rightmost point seen so far). Let pj be its predecessor on the upper hull of
Pi. We know from Lemma 1 that all the points of Pi lie on or below the line pipj . Let pj−1

be the point immediately preceding pj on the upper hull. We also know from this lemma
that ⟨pipjpj−1⟩ forms a left-hand turn. Clearly then, if any triple ⟨pi, S[t], S[t− 1]⟩ does not
form a left-hand turn (that is, orient(pi, S[t], S[t− 1]) ≤ 0), we may infer that S[t] is not on
the upper hull, and hence it is safe to delete it by popping it off the stack. We repeat this
until we find a left-turning triple (see Fig. 7(b)) or hitting the bottom of the stack. Once this
happens, we push pi on top of the stack, making it the rightmost vertex on the upper hull
(see Fig. 7(c)). The algorithm is presented in the code block below.

Graham’s Scan

(1) Sort the points according to increasing order of their x-coordinates, denoted ⟨p1, p2, . . . , pn⟩.
(2) push p1 and then p2 onto S.

(3) for i← 3, . . . , n do:

(a) while (|S| ≥ 2 and orient(pi, S[t], S[t− 1]) ≤ 0) pop S.

(b) push pi onto S.

(b)

pipj

(c)

pop

pipj

(a)

processing pi after adding pi
pipj

pop

before adding pi

Fig. 7: Graham’s scan.

Correctness: The correctness of Graham’s scan follows from the following invariant. Let Ui denote
the sequence of vertices forming the upper hull of {p1, . . . , pi}, from left to right.

Lemma: Following any step i ≥ 2, the stack contains (from bottom to top order) the vertices
Ui of the upper convex hull.

Proof: The proof of this lemma naturally involves induction. The basis of induction is trivial,
since clearly U(2) just consists of p1 and p2.

Let us assume inductively that Ui−1 has been correctly computed after stage i− 1, and
we will show that Ui is correctly computed after stage i. As we argued before, pi must
be the final vertex of Ui, and indeed the algorithm pushes it last. It remains to show
that the algorithm will correctly pop all the points along Ui−1 that are strictly between
pi and pj from the stack, but leave pj itself on the stack.

Lecture 2 7 Fall 2023

CMSC 754 Dave Mount

To see this, let Hi−1 denote the convex body whose upper hull is Ui−1 and no lower
hull (that is, it extends down to y = −∞) (see Fig. 8(a)). Clearly, all the vertices to
be popped from the stack have x-coordinates that lie to the right of pj and to the left
of pi. Since pj is the predecessor of pi on the final upper hull, all of the points of P lie
below the supporting line ℓ =←→pjpi, and hence, all the points of Ui−1 between pj and pi
lie below the supporting line segment pjpi.

pi

pj
ℓ

Hi−1

pi

pj

Hi−1

v

v′

(a) (b)

pi

pj

Hi

(c)

Fig. 8: Correctness of Graham’s scan.

Let v denote the point on the stack currently under consideration and let v′ denote its
predecessor on the stack (see Fig. 8(b)). All the vertices along Ui−1 between pj and v
lie below the segment pipj and above the segment pjv. Therefore, they all lie within the
triangle △pivpj . By basic geometry, the angle ∠pivpj is strictly smaller than 2π, which
implies that orient(pi, v, pj) < 0. It follows that orient(pi, v, v

′) < 0, and therefore v will
be popped off the stack, as desired. By induction, all the vertices of Ui−1 up to (but not
including) pj will be popped, and pi will be pushed, as desired (see Fig. 8(c)).

How much detail? Wow, that was a lot of explaining! A question that often arises at this
point of the semester is, “How much detail are you expecting in our geometrical proofs
of correctness?” While geometric arguments are often aided by figures, you should not
rely on your figures to do the “heavy lifting” in your proof. Your proof should reduce
the task to a configuration involving a small number of points or lines. From there, you
can appeal to easy geometric facts, without the need to spell them all out. There is a
bit of art in doing this, and you will gain experience as the course progresses.

Don’t be fooled by your drawings: There is a saying that “Geometry is reasoning well
from badly drawn figures”. Don’t be fooled by coincidents that arise in your drawings.
For example, if you were to draw Fig. 8 poorly, you might be tempted to assert that pj
is the point on Ui−1 with the largest y-coordinate. While this might be true, it is clearly
not always the case.

Running-time analysis: We will show that Graham’s algorithm runs in O(n log n) time. Clearly,
it takes this much time for the initial sorting of the points. After this, we will show that O(n)
time suffices for the rest of the computation.

Let di denote the number of points that are popped (deleted) on processing pi. Because each
orientation test takes O(1) time, the amount of time spent processing pi is O(di + 1). (The

Lecture 2 8 Fall 2023

CMSC 754 Dave Mount

extra +1 is for the last point tested, which is not deleted.) Thus, the total running time is
proportional to

n∑
i=1

(di + 1) = n+
n∑

i=1

di.

To bound
∑

i di, observe that each of the n points is pushed onto the stack once. Once a
point is deleted it can never be deleted again. Since each of n points can be deleted at most
once,

∑
i di ≤ n. Thus after sorting, the total running time is O(n). Since this is true for the

lower hull as well, the total time is O(2n) = O(n).

Convex Hull by Divide-and-Conquer: As with sorting, there are many different approaches
to solving the convex hull problem for a planar point set P . Next, we will consider another
O(n log n) algorithm, which is based on divide-and-conquer. It can be viewed as a generaliza-
tion of the well-known MergeSort sorting algorithm (see any standard algorithms text). Here
is an outline of the algorithm. As with Graham’s scan, we will focus just on computing the
upper hull, and the lower hull will be computed symmetrically.

The algorithm begins by sorting the points by their x-coordinate, in O(n log n) time. In splits
the point set in half at its median x-coordinate, computes the upper hulls of the left and right
sets recursively, and then merges the two upper hulls into a single upper hull. This latter
process involves computing a common upper supporting line, called the upper tangent, for
both hulls. The remainder of the algorithm is shown in the code section below.

Divide-and-Conquer (Upper) Convex Hull

(1) If |P | ≤ 3, then compute the upper hull by brute force in O(1) time and return.

(2) Otherwise, partition the point set P into two sets P ′ and P ′′ of roughly equal sizes by a vertical line.

(3) Recursively compute upper convex hulls of P ′ and P ′′, denoted H ′ and H ′′, respectively (see Fig. 9(a)).

(4) Compute the upper tangent ℓ = p′p′′ (see Fig. 9(b)) by a process explained below.

(5) Merge the two hulls into a single upper hull by discarding all the vertices of H ′ to the right of p′ and
the vertices of H ′′ to the left of p′′ (see Fig. 9(c)).

(a) (b) (c)

upper tangent

H ′
H ′′p′

p′′

H ′
H ′′

Fig. 9: Divide and conquer (upper) convex hull algorithm.

Computing the Upper Tangent: The only nontrival step is that of computing the common
tangent line between the two upper hulls. Our algorithm will exploit the fact that the two
hulls are separated by a vertical line. The algorithm operates by a simple “walking procedure.”

Lecture 2 9 Fall 2023

CMSC 754 Dave Mount

We initialize p′ to be the rightmost point of H ′ and p′′ to be the leftmost point of H ′′ (see
Fig. 10(a)). We will walk p′ backwards along H ′ and walk p′′ forwards along H ′′ until we hit
the vertices that define the tangent line.

(a) (b) (c)

p′ p′′

q′′

p′
p′′

q′ p′
q′

p′′
q′′

Orient(p′, p′′, q′′) ≥ 0 Orient(p′′, p′, q′) ≤ 0 Orient(p′′, p′, q′) > 0

Orient(p′, p′′, q′′) < 0 and

Fig. 10: Computing the upper tangent.

As in Graham’s scan, it is possible to determine just how far to walk simply by applying
orientation tests. In particular, let q′ be the point immediately preceding p′ on H ′, and
let q′′ be the point immediately following p′′ on H ′′. Observe that if orient(p′, p′′, q′′) ≥ 0,
then we can advance p′′ to the next point along H ′′ (see Fig. 10(a)). Symmetrically, if
orient(p′′, p′, q′) ≤ 0, then we can advance p′ to its predecessor alongH ′ (see Fig. 10(b)). When
neither of these conditions applies, that is, orient(p′, p′′, q′′) < 0 and orient(p′′, p′, q′) > 0, we
have arrived at the desired points of mutual tangency (see Fig. 10(c)).

There is one rather messy detail in implementing this algorithm. This arises if either q′ or q′′

does not exist because we have arrived at the leftmost vertex of H ′ or the rightmost vertex
of H ′′. We can avoid having to check for these conditions by creating two sentinel points.
We create a new leftmost vertex for H ′ that lies infinitely below its original leftmost vertex,
and we create a new rightmost vertex for H ′′ that lies infinitely below its original rightmost
vertex. The tangency computation will never arrive at these points, and so we do not need
to add a special test for the case when q′ and q′′ do not exist. The algorithm is presented in
the following code block.

Computing the Upper Tangent

UpperTangent(H ′, H ′′) :

(1) Let p′ be the rightmost point of H ′, and let q′ be its predecessor.

(2) Let p′′ be the leftmost point of H ′′, and let q′′ be its successor.

(3) Repeat the following until orient(p′, p′′, q′′) < 0 and orient(p′′, p′, q′) > 0:

(a) while (orient(p′, p′′, q′′) ≥ 0) advance p′′ and q′′ to their successors on H ′′.

(b) while (orient(p′′, p′, q′) ≤ 0) advance p′ and q′ to their predecessors on H ′.

(4) return (p′, p′′).

Running-time analysis: The asymptotic running time of the algorithm can be expressed by a
recurrence. Given an input of size n, consider the time needed to perform all the parts of
the procedure, ignoring the recursive calls. This includes the time to partition the point set,
compute the upper tangent line, and return the final result. Clearly, each of these can be

Lecture 2 10 Fall 2023

CMSC 754 Dave Mount

performed in O(n) time, assuming any standard list representation of the hull vertices. Thus,
ignoring constant factors, we can describe the running time by the following recurrence:

T (n) =

{
1 if n ≤ 3
n+ 2T (n/2) otherwise.

This is the same recurrence that arises in Mergesort. It is easy to show that it solves to
T (n) ∈ O(n log n) (see any standard algorithms text).

Jarvis’s March: Our next convex hull algorithm, called Jarvis’s march. This algorithm is output
sensitive, meaning that its running time depends on the number of vertices on the final convex
hull. Let n denote the number of input points, and let h denote the number of vertices on
the final convex hull. We will see that Jarvis’s march computes the convex hull in O(nh)
time by a process called “gift-wrapping.” In the worst case, h = n, so this is inferior to
Graham’s algorithm for large h, it is superior if h is asymptotically smaller than log n, that
is, h = o(log n).

Jarvis’s algorithm begins by identifying any one point of P that is guaranteed to be on the
hull, say, the point with the smallest y-coordinate. (As usual, we assume general position,
so this point is unique.) Call this v1. It then repeatedly finds the next vertex on the hull in
counterclockwise order.

Given a triple of distinct points ⟨p, q, r⟩, define the turning angle of r with respect to p and q
to be the (CCW) angle between the directed line pq and the directed line qr (see Fig. 11(a)).

v0
v1

(d)(c)

v1

vi−2

vi−1

vi

v2

v3

(b)

(−∞, 0)
p

(a)

q

r

Turning angle

v2

v3

v4

v5

v6

Fig. 11: Jarvis’s march.

Jarvis’s march works by repeatedly computing the next hull vertex vi as the point of P that
minimizes the turning angle with respect to the prior two, vi−2 and vi−1 (see Fig. 11(c)). Since
we need two points, to get the ball rolling, it is convenient to define an imaginary “sentinel
point” v0 = (−∞, 0), which has the effect that the initial line v0v1 is directed horizontally to
the right (see Fig. 11(d)).

The algorithm’s correctness follows from the fact that (by induction) vi−2vi−1 is a CCW-
directed edge of the hull, and hence the next vertex of the hull is the one that minimizes the
turning angle.

By basic trigonometry, turning angles can be computed in constant time. But it is interesting
to note that it is possible to compare turning angles just using orientation tests. (Try this

Lecture 2 11 Fall 2023

CMSC 754 Dave Mount

Jarvis’s March

(1) Given P , let v0 = (−∞, 0) and let v1 be the point of P with the smallest y-coordinate

(2) For i← 2, 3, . . .

(a) vi ← the point of P \ {vi−1, vi−2} that minimizes the turning angle with respect to vi−2 and vi−1

(b) If vi == v1, return ⟨v1, . . . , vi−1⟩

yourself.) This implies that if the input coordinates are integers, the vertices of the hull can
be computed exactly (assuming double-precision integer computations).

To obtain the running time, observe that v1 can be computed in O(n) time, and each iteration
can be implemented in O(n) time. After h iterations, the algorithm terminates, so the total
running time is O(n+ nh) = O(nh).

Lecture 2 12 Fall 2023

