
1

Learning The Physics World with
Differentiable Simulation & Geometry
- In Vision, Language, Robotics, etc…
- Fully connected networks, CNNs, Transformers, etc.

39

39

Physics Simulation
• Serve as an inductive bias for learning algorithms
• Utilize the power of deep learning to solve physics problems

Physics
Simulation

Deep
Learning

Model-based

Data-Driven

40

2

Differentiable Physics Simulation
as a Network Layer
○ Physical property estimation (material, friction, etc)
○ Control of physical systems
○ Model-based RL

41

ResNet
NeuralODE

(ResNet)
Differentiable

Physics

Differentiable Physics Simulation
as a Network Layer

42

3

(1) Scalable Differentiable Physics for Learning and Control. (ICML 2020)
(2) Efficient Differentiable Simulation of Articulated Bodies. (ICML 2021)
(3) Differentiable Simulation of Soft Multi-body Systems. (NeurIPS 2021)
(4) OF-VO: Efficient Navigation among Pedestrians Using Commodity Sensors. (ICRA/RAL 2021)
(5) Differentiable Fluids with Solid Coupling for Learning and Control. (AAAI 2021)
(6) Differentiable Hybrid Traffic Simulation. (Siggraph Asia 2022, Journal Track)
(7) NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos. (NeurIPS 2022)
(8) Differentiable Analog Quantum Computing for Optimization and Control. (NeurIPS 2022)

Dynamics
Generalizing to

Different Dynamics

Control
Designing Efficient

Control Policy

Observation
high-quality

inverse rendering

Rigid
Body

Articulated
Body

Soft
Body

Fluids Hybrid Traffic
Model

Quantum
Dynamics

Single?
Articulated!

Rigid?
Soft!

Flow?
Hybrid!

Lagrangian? Eulerian! Classical?
Quantum!

Robotics Graphics Vision

(1) (2) (3)

(5) (6)

(7)

(8)

(2,4)

43

Differentiable Cloth Simulation

Junbang Liang1, Ming Lin1, and Vladlen Koltun2

1University of Maryland at College Park

2Intel Labs

https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth

44
NeurIPS 2019

44

https://gamma.umd.edu/researchdirections/virtualtryon/differentiablecloth

4

Limitations with State-of-the-Art

● Differentiable rigid body simulation
ü Formulation not scalable to high dimensionality

● Learning-based physics
ü Unable to guarantee physical correctness

45

45

Key Contributions

● Dynamic collision detection to reduce collision dimensionality

● Gradient computation of collision response using implicit differentiation

● Optimized backpropagation using QR decomposition

46

46

5

Gradients of Physics Solve

47

47

Collision Response

48

48

6

Gradients of Collision Response

● Karush-Kuhn-Tucker (KKT) condition:

● Implicit differentiation:

49

49

Gradients of Collision Response

● Solution:

 where dz and dλ is provided by the linear equation:

50

50

7

Acceleration of Gradient Computation

● Explicit solution of the linear equation:

 where Q and R is obtained from:

● Theoretical speedup: O((n+m)3) à O(nm2)

51

51

Results

● Speed improvement in backpropagation.
● Scene setting: A large piece of cloth crumpled inside a pyramid.

52

The runtime performance of gradient computation is significantly
improved by up to two orders of magnitude

52

8

Results

● Application: Material estimation
● Scene setting: A piece of cloth hanging under gravity and a constant wind

force.

53

Our method achieves the best runtime performance & the smallest error

53

Results

● Application: Motion control
● Scene setting: A piece of cloth being lifted and dropped to a basket.

54

Our method achieves the best performance with a much
smaller number of simulations

54

9

Video Demos

55

55

Summary

● A fully differentiable cloth simulation
○ Dynamic collision handling
○ Derivations of gradients using implicit differentiation

● Backpropagation acceleration by using QR decomposition to obtain the
explicit solution

● Application examples: material estimation and motion control
○ Enabling ‘simulate-and-compare’ when embedding with deep network

56

56

10

Scalable Differentiable Physics for
Learning and Control

Yi-Ling Qiao1, Junbang Liang1, Vladlen Koltun2, and Ming C. Lin1

1University of Maryland at College Park

2Intel Labs

https://gamma.umd.edu/researchdirections/mlphysics/diffsim/

57
ICML 2020

57

Motivation
● Differentiable Physics Simulation as a Network Layer

○ Control of physical systems

58

58

https://gamma.umd.edu/researchdirections/mlphysics/diffsim/

11

Motivation

● Scalable Differentiable Physics
○ Large number of interacting objects
○ Non-trivial shapes
○ Large variety of object sizes
○ Different physical properties/material types

59

59

Our Approach

1. Scalable
○ Localized collision handling - collisions are sparse

○ Fast differentiation - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects - mesh scales well and can model complex objects

○ Interaction between different dynamics - coupling between rigid body and cloth

63

63

12

Our Approach

1. Scalable
○ Localized collision handling - collisions are sparse

○ Fast differentiation - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects - mesh scales well and can model complex objects

○ Interaction between different dynamics - coupling between rigid body and cloth

64

64

Our Approach

1. Scalable
○ Localized collision handling - collisions are sparse

○ Fast differentiation - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects - mesh scales well and can model complex objects

○ Interaction between different dynamics - coupling between rigid body and cloth

65

65

13

Our Approach

1. Scalable
○ Localized collision handling - collisions are sparse

○ Fast differentiation - compute the gradients efficiently in large scenes

2. General
○ Modeling different objects - mesh scales well and can model complex objects

○ Interaction between different dynamics - coupling between rigid body and cloth

66

66

Mesh Simulation Flow

1.

2.
○

3.

4.

5.

○ S

6.

67

67

14

Mesh Simulation Flow: Backpropagation

1.

2.
○ S

○ Newton’s method

3.

4.

5.

Gradient computation available?

Handled by auto-differentiation

Handled by auto-differentiation

Handled by auto-differentiation

68

68

Implicit Differentiation: Linear Solve

69

69

15

Implicit Differentiation: Linear Solve

70

70

Mesh Simulation Flow: Backpropagation

1.

2.
○ S

○ Newton’s method

3.

4.

5.

Using implicit differentiation!
Algorithm-dependent

Gradient computation available?

71

71

16

Our Goal

● Scalability regarding resolution and shape
○ Mesh-based representation

● Scalability regarding material and quantity
○ Coupled physics between rigid body and deformable cloth

○ Localized collision handling

72

72

Key Contributions

● Adopting meshes as a general representation of objects.

● Leveraging the structure of contacts by grouping using localized impact zones

● An acceleration scheme that can handle the nonlinear constraints using
implicit differentiation

● Demonstration examples on applications to learning and control scenarios,
where the presented framework outperforms derivative-free and model-free
base-lines by at least an order of magnitude.

73

73

17

Mesh Simulation Flow

1.

2.
○ S

○ Newton’s method

3.

4.

5.

74

74

Dynamics Formulation

● Simulated objects: rigid body and deformable cloth

● Degree of freedom: 6 for rigid body, 3m for deformable cloth

● Stacked general coordinates:
○ for rigid bodies
○ for clothes

● Dynamics:

75

75

18

Collision Handling

● Global LCP solve for rigid bodies
○ Good at static contacts and static frictions

○ Difficult to couple with other materials

○ Slow

● Local constraint solver for clothes
○ Impulse-based solution: easy to couple between different materials
○ Solve within independent zones: faster computation

○ Unstable for large scale static contacts

76

76

Collision Handling

● Global LCP solve for rigid bodies
○ Good at static contacts and static frictions

○ Difficult to couple with other materials

○ Slow

● Local constraint solver for clothes
○ Impulse-based solution: easy to couple between different materials
○ Solve within independent zones: faster computation

○ Unstable for large scale static contacts

77

77

19

Local Collision Handling

Impact zone model (Harmon et al. 2008)

● Constraints built upon impacts
● Linear w.r.t. vertex positions

○ S

78

78

Local Collision Handling

Impact zone model (Harmon et al. 2008)

● Introduce minimum energy: QP formulation

● Solve the optimization for each `connected component’ of impacts

79

composed of:

79

20

Local Collision Handling

Coupling with rigid bodies

● Treating one rigid body as one node

● Nonlinear constraint for optimization

80

80

Mesh Simulation Flow: Backpropagation

○ S

○ Newton’s method

1.

Gradient computation available?

81

81

21

Gradient Computation for Collision

● Optimization problem:

● Karush-Kuhn-Tucker (KKT) condition at optimal point:
○ Stationarity (gradient=0), and complementary slackness

82

82

Results

1. Scalable
○ Large number of objects - Linear w.r.t. number of objects

○ High resolution

2. General
○ Complex objects
○ Two-way Coupling - Constant

3. Applications
○ Inverse Problem - Faster than derivative-free methods

○ Control - Faster than RL

86

86

22

Results - Scalable

● Scale the number of objects

● Scene setting: A bunch of (20 - 1000) objects collide with the ground.
○ Methods: Ours vs. ChainQueen[8] (on CPU, for 2 second)

○ Scale the number of objects, while keeping the density of collisions and objects

○ When the number of object scales from 20 to 200, the grid size of ChainQueen[8] scales from

64 to 640

87

87

Results - Scalable

● Scale the number of objects

● Scene setting: A bunch of (20 - 1000) objects collide with the ground.

● Our method scales well (linearly) in large scenes with big number of objects.

88

88

23

Results - Scalable
● Scale the resolution

● Scene setting: A bunny and a piece of cloth. Vary the relative sizes of cloth.
○ Methods: Ours vs. ChainQueen[8] (on CPU, for 2 second)

○ The relative size of two cloths: n:1.
○ n scales from 1 to 10.

○ The grid size of ChainQueen[8] scales from 64 to 640

89

89

Results - Scalable
● Scale the resolution

● Scene setting: A bunny and two piece of cloths. Vary the relative sizes of

clothes.

● Our method runs in constant time in different resolutions.

90

90

24

Results - Inverse Problem
● Learn the trajectory

● Scene setting: Compute the force on the marble in each step to drive it to a target

point.
○ Methods: Ours vs. CMA-ES
○ The combined force vector has 100 dimensions

○ Object function: the distance to target + norm of the force vector

91

91

Results - Inverse Problem
● Learn the trajectory

● Scene setting: Compute the force on the marble in each step to drive it to a target

point.

● Our method converges more than 10x faster than CMA-ES.

92

92

25

Results - Control

● Manipulation

● Scene setting: Control the motion of a pair of parallel grippers, to move an

object towards a random target in 2 second
○ Methods: Ours vs. DDPG[6]

○ Fixed initial position and random target.

○ Loss is the L2 distance from the target to the current position. Reward = -1 * Loss
○ Observation: [x_now - x_target, v_now, time, reward]

○ Action: [v_next]

93

93

Results - Control

● Manipulation

● Scene setting: Control the motion of a pair of parallel grippers, to move an

object towards a random target

● Our method converges much faster than RL

94

94

26

Results - Control

● Motion control

● Scene setting: Control the motion of four handles on a cloth, to move the cube

towards a random target
○ Methods: Ours, DDPG[6]

○ Fixed initial position and random target.

○ Loss is the L2 distance from the target to the current position. Reward = -1 * Loss
○ Observation: [x_now - x_target, v_now, time, reward]

○ Action: [v_next]

95

95

Results - Control

● Motion control

● Scene setting: Control the motion of four handles on a cloth, to move the cube

towards a random target

● Our method converges much faster than RL

96

96

27

Results - General

● Two-way coupling between cloth and rigid body

● Scene setting: Cloth & dominos

97

97

Conclusion

● A method for scalable and general differentiable physics

● Future work
○ More general dynamics
○ More Application

98

98

28

Video Demonstration

99

99

Efficient Differentiable Articulated Dynamics
Yi-Ling Qiao*, Junbang Liang*, Vladlen Koltun, and Ming Lin*

*

100

Code & data: https://github.com/YilingQiao/diffarticulated ICML 2021

100

https://github.com/YilingQiao/diffsim

29

Motivation

● Differentiable articulated body simulation as a network layer
○ Control physical systems
○ Enhance reinforcement learning
○ Estimate physics parameters

101

101

Applications

102

[2] Murthy et al. (2021)

[5] Song et al. (2020)

102

30

Related/concurrent work

103

[1] Geilinger et al. (2020) [7] Werling et al. (2021)

103

Key Contributions

● Derive the adjoint formulations for the entire articulated body simulation
workflow, enabling a 10x acceleration over autodiff tools

● Adapt the checkpointing method to the structure of articulated body simulation
to reduce memory consumption by 100x, making stable collection of ex-
tended experiences feasible

● Introduce two general schemes for accelerating reinforcement learning using
differentiable physics

● Demonstrate the utility of differentiable simulation of articulated bodies in
motion control and parameter estimation, enhancing performance in these
scenarios by more than an order of magnitude

104

104

31

Workflow of one simulation step

105

105

Checkpointing

Forward and backward workflow with checkpointing scheme

106

106

32

Checkpointing

107

checkpoints Intermediate variables

107

Application with Reinforcement Learning
● Sample enhancement

○ Increase sample efficiency

○ Faster convergence

● Policy enhancement

○ Update the policy using analytic gradients

○ Better scalability in high dimensionality

108

108

33

Sample Enhancement

● Idea: Use simulation gradients to generate extra nearby examples

● Point sample → patch sample

○ Faster convergence

a: action
s: observation
s’: next-step observation
r: reward

Enabled by differentiable simulation!

109

109

Policy Enhancement

● Idea: Use simulation gradients to compute better policy gradients

● Use one-step rollout to approximate the action gradients

Soft Actor-Critic Ours

a: action
s: observation
s’: next-step observation
r: reward
Q: critic network
μ: policy network
Z: regularization term

Enabled by differentiable simulation!

110

110

34

Results - Performance

● Compare the runtime and memory usage.

● Scene: One Laikago released from the air and hitting the ground

○ Scale the simulation length: 50, 100, 500, 1000, 5000 steps

● Comparisons:

○ Use autodiff tools in the same simulation pipeline

111

111

Results - Performance

● Compare the runtime and memory usage.

● Scene: A Laikago released from the air and hitting the ground

● Our method has the highest speed and the lowest memory usage

○ x10 faster than autodiff tools with 1% of memory usage

112Peak Memory (MB)Forward simulation time (ms) per step

112

35

Policy Enhancement

● Scenario: N-link pendulum

● Objective: reaching the highest point within 100 frames

● Reward

○ -dist_to_target^2

● Baseline: MBPO, SAC, SQL, PPO

● Number of links: 1-7

● Number of training epochs: 100 * n_links

○ Samples per epoch: 100 113

113

Policy Enhancement

● Test metric: Best relative reward

○ Absolute reward / maximum possible reward (reaching exactly the target)

Our method scales with increasing system complexity 114

114

36

Sample Enhancement

● Scenario: Mujoco Ant

● Objective: walking towards +x axis

● Reward

○ v_x - sum(action^2)

● Baseline: MBPO, SAC, SQL, PPO

● Number of training epochs: 100

○ Samples per epoch: 1000

115

115

Sample Enhancement

● Test metric:

○ Maximum (absolute) reward

116Our method achieves the same best reward and converges faster

116

37

Motivation

● Differentiable articulated body simulation as a network layer
○ Control physical systems
○ Enhance reinforcement learning
○ Estimate physics parameters

117

117

Video Demonstration

118

118

38

Differentiable Simulation of
Soft Multi-body Systems

Yi-Ling Qiao*, Junbang Liang*, Vladlen Koltun, and Ming Lin*

*

119

119

Motivation
● Self-powered soft robot in the Mariana Trench

120

120

39

Motivation
● A Compliant Hand Based on a Novel Pneumatic Actuator.

121

121

Motivation
● Dynamic Grasping with a “Soft” Drone

122

122

40

OBJECTIVE

● Differentiable Physics Simulator to support different scenarios
○ Complex Contact
○ Embedded Skeleton
○ Joint, muscle, and pneumatic actuators

123

123

Key Contributions

● A top-down matrix assembly algorithm within Projective Dynamics to
make soft-body dynamics compatible with reduced-coordinate articulated
system

● An extended and generalized dry friction model for soft solids with a new
matrix splitting strategy to stabilize the solver

● Analytical models of muscles, joint torques, and pneumatic actuators to
enable more realistic and stable simulation results

● A unified differentiable framework that incorporates skeletons, contact, and
actuators to enable gradient computation for learning and optimization

● Experimental validation demonstrating that differentiable physics
accelerates system identification and motion control with soft articulated
bodies up to orders of magnitude 124

124

41

Background
Projective dynamics

Implicit Euler :

Solve:

Local step:

Global step:

130

130

Vertices on rigid bodies :

Linearize:

New global step:

Local step:

131

Method - rigid bodies

131

42

Skeleton tree:

Jacobian:

Compute recursively:

132

Method - Articulated body

A is the local transformation matrix

P is the prefix product
S is the suffix product

132

133

Method - Articulated body

133

43

134

Method - Articulated body

134

135

Method - Articulated body

135

44

136

Method - Actuation - Joint Torque

Solve a linear system:

Torques can be added to K_r directly

136

137

Method - Actuation - Pneumatic

137

45

138

Method - Actuation - Muscle

138

Adjusted momentum

Original global step:

Convert to velocity space:

Contact handling:

140

Method - Contact

Depends on the relative velocities/momentums of collided vertices

Current momentum

140

46

Method - Contact

● Friction law enforcement
○ The new impulse is added to the individual vertex
○ Iteratively resolved until converged

● Convergence
○ Not guaranteed
○ Depends on M and L if f and ξ are fixed

● Applicability to soft bodies
○ L too large compared to M
○ Unstable solve

141

Adjusted momentum Current momentum

141

Method - Contact

● Improvement
○ Move the diagonals of L to the left!
○ Asdf
○ When f and ξ are fixed, the improved method is guaranteed to converge

● Contact detection
○ Continuous collision detection
○ Grouped vertex-face collision handling

■ Contact forces need to be computed jointly

142

142

