Backpropagation

- Widely used for training feed-forward neural networks and generalized for ANNs & functions
- It computes the gradient of the loss function w.r.t. the weights of the network for a single I/O example and does it very efficiently
- Its efficiency makes it possible for training multilayer networks & updating weights to minimize losses
- Computing the gradient of the loss function w.r.t. each weight by the chain rule, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule

M. C. Lin
Every operation in the computational graph given its inputs can immediately compute two things:
- its output value
- the local gradient of its inputs with respect to its output value

The chain rule tells us literally that each operation should take its local gradients and multiply them by the gradient that flows backwards into it

This is backpropagation!!!
Unintuitive Effects of Backprop: Multiplication

- Consider multiplication op: \(f(a, b) = a \times b \)
- The gradients are clearly \(\partial f / \partial b = a \) and \(\partial f / \partial a = b \).
 - in a computational graph these would be local gradients w.r.t inputs
- If \(a \) is large and \(b \) is tiny, then gradient assigned to \(b \) will be large, and the gradient to \(a \) would be small
- This has implications: e.g. linear classifiers \((w^T x_i)\) where you perform many multiplications
 - the magnitude of the gradient is directly proportional to the magnitude of the data
 - multiply \(x_i \) by 1000, and the gradients also increase by 1000
 - if you don’t lower the learning rate to compensate your model might not learn
- Need to always pay attention to data normalization

M. C. Lin

Unintuitive Effects of Backprop: vanishing gradients of the sigmoid

- Popular to use sigmoids (or tanh) in hidden layers...

Gradient of \(\sigma(x) = \sigma(x)(1 - \sigma(x)) \)

- As part of a larger network where this is local gradient, if \(x \) is large (+ve or -ve), then all gradients backwards from this point will be zero due to multiplication of chain rule
 - Why might \(x \) be large?
- Maximum gradient is achieved when \(x = 0 \) (\(\sigma(x) = 0.5, dx = 0.25 \)). i.e. the maximum gradient that can flow out of a sigmoid will be a quarter of input gradient
 - What’s the implication of this in a deep network with sigmoid activations?

M. C. Lin
Working Examples

See the attached worksheet